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Determinants and Limit Systems in some

Idempotent and Non-Associative Algebraic

Structure

*Walter Briec

June, 2022

Abstract

This paper considers an idempotent and symmetrical algebraic struc-
ture as well as some closely related concepts. A special notion of de-
terminant is introduced and a Cramer formula is derived for a class of
limit systems derived from the Hadamard matrix product. Thereby, some
standard results arising for Max-Times systems with nonnegative entries
appear as a special case. The case of two sided systems is also analyzed.
In addition, a notion of eigenvalue in limit is considered. It is shown that
one can construct a special semi-continuous regularized polynomial whose
zeros are related to the eigenvalues of a matrix with nonnegative entries.

AMS: 15A80, 06D50, 06F25

Keywords: Idempotent algebraic structure, semilattices, determinant, Cramer’s
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1 Introduction

Exotic or tropical semirings such as the Max-Plus semiring, have been developed
since the late fifties. They have many applications to various fields: performance
evaluation of manufacturing systems; graph theory and Markov decision pro-
cesses; Hamilton-Jacobi theory. However, it is well known that there is no
nontrivial algebraic structures satisfying both idempotence, symmetry and hav-
ing a neutral element. Despite this, there exist methods for symmetrizing an
idempotent semiring imitating the familiar construction of Z from N, for an ar-
bitrary semiring. Symmetrization of idempotent Semirings plays a crucial role
to develop an approach in term of determinant in Max-Plus Algebra. Gaubert
[19] introduced a balance relation to preserve transitivity. Familiar identities
valid in rings admit analogues, replacing equalities by balances. The balance
relation yields to relations similar to those arising for ordinary determinants
making a lexical change. This symmetrization was invented independently by
G. Hegedüs [21] and M. Plus [28]. It follows that solving linear equations in
the Max-Plus semi-ring requires to solve systems of linear balances. Results
concerning Cramer solutions can be found in [5].

In this paper we have taken a different point of view. We consider an idem-
potent algebraic structure having the symmetry property and 0 as a neutral
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element. The price to pay is that associativity no longer holds true. More pre-
cisely, we focus on a Max-Times algebraic structure which is derived as a limit
case of the generalized power-mean that involves an homeomorphic transforma-
tion of the real field. The binary operation defined from this algebraic structure
was mentioned in [20] as an exercice due to Gerard Duchamp.1 Though it is
not associative it admits an n-ary extension and satisfies some interesting prop-
erties. In particular, one can construct a scalar product which will play an
important role in the paper. It has been shown in [8, 9] that such an algebraic
structure is useful to extend a Max-Times idempotent convex structure from Rn+
to the whole Euclidean vector space. The problem arising with such a cancela-
tive algebraic structure is that it involves a natural n-ary operation which is not
continuous nor associative. One can circumvent this difficulty by considering
a special class of semi-continuous (upper and lower) regularized inner products
analysed in [9].

The paper focusses on the asymptotic Cramer solutions of a special se-
quence of generalized power-linear systems. These systems are constructed
from an homeomorphic transformation of the usual matrix product involving
the Hadamard power for vectors and matrices.2 The formula of the determi-
nant and Cramer’s rule are then derived with respect to the non-associative
algebraic structure considered in [8]. Along this line, we give the algebraic form
of a sequence of hyperplanes passing through a finite number of points. More
importantly, a general class of limit systems is defined over Rn. These limit
systems involve several inequations that are derived from the semi-continuous
(upper and lower) regularizations of the non-associative inner product. They
include as a special case all the Max-Times systems defined from a matrix with
positive entries. The Kaykobad’s conditions established in [22] can then be ap-
plied to warrant the asymptotic existence of a positive solution. This algebraic
structure does not require any balance relation and one can give an explicit
form to some solutions of a two-sided Max-Times system. In addition, it is
shown that one can construct a special polynomial to find the eigenvalues of a
matrix with nonnegative entries. To do that the limit of the Perron-Frobenius
eigenvalue is considered. A parallel viewpoint was adopted in [2] in a Max-Plus
context. Asymptotic descriptions of Max-Times algebra eigenvalues via clas-
sical eigenvalues of Hadamard powers of nonnegative matrices have also been
proposed in [6], [17], [18] and [25].

The paper unfolds as follows. We lay down the groundwork is section 2. In
section 3, a suitable notion of determinant is defined with respect to this non-
associative algebraic structure. Section 4 considers a class of semi-continuous
regularized operators. Hence an explicit algebraic form of the limit of a sequence
of generalized hyperplanes is provided. In section 5 a class of limit systems of
equations is analyzed for which an explicit Cramer formula is established includ-
ing the case of Max-Times systems with nonnegative entries. In addition, we
provide a solution for a class of two-sided systems and we compare the balance
relations and the non-associative algebraic structure used in the paper. Fi-
nally, a notion of eigenvalues in limit is analyzed and connected to the algebraic
structure proposed in the paper.

1Exercice 41, p. 25.
2A similar approach was considered in [2] modulo a logarithmic change in the variables

related to the Max-Plus algebraic structure.
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2 Preliminary Properties

2.1 An Idempotent and Non-Associative Algebraic Struc-
ture

For all p ∈ N, let us consider a bijection ϕp : R −→ R defined by:

ϕp : x −→ x2p+1 (2.1)

and φp(x1, ..., xn) = (ϕp(x1), ..., ϕp(xn)); this is closely related to the approach
proposed by Ben-Tal [7] and Avriel [4]. One can induce a field structure on
R for which ϕp becomes a field isomorphism. Given this change of notation

via ϕp and φp we can define a R-vector space structure on Rn by: λ
ϕp. x =

φ−1
p (ϕp(λ).φp(x)) = λ.x and x

ϕp
+ y = φ−1

p (φp(x) + φp(y)); we call these two
operations the indexed scalar product and the indexed sum (indexed by ϕp).

The ϕp-sum denoted
ϕp∑

of (x1, ..., xm) ∈ Rn×m is defined by3

ϕp∑
i∈[m]

xj = φ−1
p

( ∑
j∈[m]

φp(xj)
)
. (2.2)

For simplicity, throughout the paper we denote for all x, y ∈ Rn:

x
p
+ y = x

ϕp
+ y. (2.3)

Recall that Kuratowski-Painlevé lower limit of the sequence of sets {An}n∈N,
denoted Lin→∞An, is the set of points x for which there exists a sequence
{x(n)}n∈N of points such that x(n) ∈ An for all n and x = limn→∞ x(n).
The Kuratowski-Painlevé upper limit of the sequence of sets {An}n∈N, de-
noted Lsn→∞An, is the set of points x for which there exists a subsequence
{xnk}k∈N of points such that x(nk) ∈ Ank for all k and x = limk→∞ x(nk).
A sequence {An}n∈N of subsets of Rn is said to converge, in the Kuratowski-
Painlevé sense, to a set A if Lsn→∞An = A = Lin→∞An, in which case we
write A = Limn→∞An.

2.2 A Limit Algebraic Structure

In [8] it was shown that for all x, y ∈ R we have:

lim
p−→+∞

x
p
+ y =

 x if |x| > |y|
1
2 (x+ y) if |x| = |y|

y if |x| < |y|.

Along this line one can introduce the binary operation � defined for all x, y ∈ R
by:

x� y = lim
p−→+∞

x
p
+ y. (2.4)

Though the operation � does not satisfy associativity, it can be extended by
constructing a non-associative algebraic structure which returns to a given n-
tuple a real value. For all x ∈ Rn and all subsets I of [n], let us consider the
map ξI [x] : R −→ Z defined for all α ∈ R by

ξI [x](α) = Card{i ∈ I : xi = α} − Card{i ∈ I : xi = −α}. (2.5)

3For all positive natural numbers n, [n] = {1, ..., n}.
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This map measures the symmetry of the occurrences of a given value α in the
coordinates of a vector x.

For all x ∈ Rn let JI(x) be a subset of I defined by

JI(x) =
{
j ∈ I : ξI [x](xj) 6= 0

}
= I\

{
i ∈ I : ξI [x](xi) = 0

}
. (2.6)

JI(x) is called the residual index set of x. It is obtained by dropping from
I all the i’s such that Card{j ∈ I : xj = xi} = Card{j ∈ I : xj = −xi}.

For all positive natural numbers n and for all subsets I of [n], let zI : Rn −→
R be the map defined for all x ∈ Rn by

zI(x) =

maxi∈JI(x) xi if ξI [x]
(

maxi∈JI(x) |xi|
)
> 0

mini∈JI(x) xi if ξI [x]
(

maxi∈JI(x) |xi|
)
< 0

0 if ξI [x]
(

maxi∈JI(x) |xi|
)

= 0.
(2.7)

where ξI [x] is the map defined in (2.5) and JI(x) is the residual index set of
x. The operation that takes an n-tuple (x1, ...., xn) of Rn and returns a single
real element zI(x1, ..., xn) is called a n-ary extension of the binary operation �
for all natural numbers n ≥ 1 and all x ∈ Rn, if I is a nonempty subset of [n].
From [8], for all n-tuple x = (x1, ..., xn), one can define the operation:

�
i∈I

xi = lim
p−→∞

ϕp∑
i∈I

xi = zI(x). (2.8)

Clearly, this operation encompasses as a special case the binary operation
mentioned in [20] and defined in equation (2.2). For all (x1, x2) ∈ R2, we have:

�
i∈{1,2}

xi = x1 � x2.

For example, if x = (−3,−2, 3, 3, 1,−3), we have F[6](−3,−2, 3, 3, 1,−3) =

F[2](−2, 1) = −2 = �i∈[6]
xi. There are some basic properties that can be

inherited from the above algebraic structure:

(i) If all the elements of the family {xi}i∈I are mutually non symmetric,
then:

�
i∈I

xi =

{
max
i∈I
|xi| if max

i∈I
xi > −min

i∈I
xi

−max
i∈I
|xi| if max

i∈I
xi < −min

i∈I
xi.

(ii) For all α ∈ R, one has: α
(
�i∈I

xi

)
=�i∈I

(αxi);

(iii) Suppose that x ∈ εRn+ where ε is +1 or −1. Then �i∈I
xi =

εmaxi∈I{εxi};
(iv) We have |�i∈I

xi| ≤�i∈I
|xi|;

(v) For all x ∈ Rn:[
xi �

(
�

j∈I\{i}

xj
)]
∈
{

0,�
j∈I

xj

}
and �

i∈I
xi =�

i∈I

[
xi �

(
�

j∈I\{i}

xj
)]
.

The algebraic structure (R,�, ·) can be extended to Rn. Suppose that x, y ∈
Rn, and let us denote x � y = (x1 � y1, ..., xn � yn). Moreover, let us consider
m vectors x1, ..., xm ∈ Rn, and define

�
j∈[m]

xj =
(
�
j∈[m]

xj,1, ...,�
j∈[m]

xj,n

)
. (2.9)
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The n-ary operation (x1, ..., xn)→�i∈[n]
xi is not associative. To simplify

the notations of the paper, for all z ∈ {zi1,...,im : ik ∈ Ik, k ∈ [m]}, where
I1, ..., Im are m index subsets of N, we use the notation:

�
ik∈Ik
k∈[m]

zi1,...,im = �
(i1,...,im)∈

∏
k∈[m] Ik

zi1,...,im . (2.10)

Notice that for all x ∈ Rn and all y ∈ Rm:(
�
i∈[n]

xi

)(
�
j∈[m]

yj

)
= �

i∈[n]
j∈[m]

xiyj . (2.11)

This relation immediately comes from the fact that for all natural numbers p,
we have: ( ϕp∑

i∈[n]

xi

)( ϕp∑
j∈[m]

yj

)
=

ϕp∑
i∈[n]

ϕp∑
j∈[m]

xiyj =

ϕp∑
i∈[n]
j∈[m]

xiyj . (2.12)

Taking the limit on both sides yields equation (2.11). In the remainder, we will
adopt the following notational convention. For all x ∈ Rn:

�
i∈[n]

xi = x1 � · · ·� xn = z[n](x). (2.13)

2.3 Scalar Product

This section presents the algebraic properties induced by the isomorphism of
scalar field ϕp on the scalar product. Most of the results have been pointed in
details by Avriel [4] and Ben Tal [7]. A norm ‖ · ‖ yields another norm induced

by the algebraic operations
p
+ and ·. The map ‖ · ‖ϕp : Rn −→ R defined by

‖x‖ϕp = ϕ−1
p (‖φp(x)‖) is a norm over Rn endowed with the operations

p
+ and

·. Since ϕp is continuous over R, the topological structure is the same. Along
this line it is natural to define a scalar product. If 〈·, ·〉 is an inner product over
Rn, then there exists a symmetric bilinear form 〈·, ·〉ϕp : Rn×Rn −→ R defined
by:

〈x, y〉ϕp = ϕ−1
p

(〈
φp(x), φp(y)

〉)
=
( ∑
i∈[n]

x2p+1
i y2p+1

i

) 1
2p+1 . (2.14)

Now, let us denote
[
〈y, ·〉ϕp ≤ λ

]
=
{
x ∈ Rn : 〈y, x〉ϕp ≤ λ

}
and let 〈·, ·〉p stands

for this scalar product.
In the following we introduce the operation 〈·, ·〉∞ : Rn × Rn −→ R defined

for all x, y ∈ Rn by 〈x, y〉∞ =�i∈[n]
xiyi. Let ‖ · ‖∞ be the Tchebychev norm

defined by ‖x‖∞ = maxi∈[n] |xi|. It is established in [8] that for all x, y ∈ Rn,

we have: (i)
√
〈x, x〉∞ = ‖x‖∞; (ii) |〈x, y〉∞| ≤ ‖x‖∞‖y‖∞; (iii) For all α ∈ R,

α〈x, y〉∞ = 〈αx, y〉∞ = 〈x, αy〉∞. By definition, we have for all x, y ∈ Rn:

〈x, y〉∞ = lim
p−→∞

〈x, y〉p (2.15)

3 Limit of Linear Operators and Determinant

This section is devoted to study the matrix representation of a linear operator

defined on the scalar field (R,
p
+, ·). Along this line some limit properties are

derived to establish several results in closed algebraic form when p −→∞.
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3.1 ϕp-linear Endomorphisms

Let L(Rn,Rm) denotes the set of all the linear morphisms defined from Rn to
Rm. L(Rn,Rn) is then the set of all the linear endomorphisms defined over
Rn. In the following, we say that a map f : Rn −→ Rn is ϕp-linear if for all

λ ∈ R, f(λx
p
+ y) = λf(x)

p
+ f(y). Moreover, for all natural numbers p, let

L(p)(Rn,Rn) denotes the set of all the ϕp-linear endomorphisms.
Let Mn(R) denotes the set of all the n × n matrices defined over R. Let

Φp :Mn(R) −→Mn(R) be the map defined for any matrix A = (ai,j)i=1...n
j=1..n

∈
Mn(R) as:

Φp(A) =
(
ϕp(ai,j)

)
i=1...n
j=1...n

=
(
ai,j

2p+1
)
i=1...n
j=1...n

. (3.1)

Its reciprocal is the map Φ−1
p :Mn(R) −→Mn(R) defined by:

Φ−1
p (A) =

(
ϕ−1
p (ai,j)

)
i=1...n
j=1...n

=
(
ai,j

1
2p+1

)
i=1...n
j=1...n

. (3.2)

Φp is a natural extension of the map φp from Rn to Mn(R). Φp(A) is the
2p+ 1 Hadamard power of matrix A. In the following we introduce the matrix
product:

A
p. x =

ϕp∑
j∈[n]

xj .a
j , (3.3)

where aj stands for the j-th column of A. It is straightforward to show that
this formulation is equivalent to the following:

A
p. x = φ−1

p

(
Φp(A).φp(x)

)
. (3.4)

Another equivalent formulation involves the inner product 〈·, ·〉p:

A
p. x =

ϕp∑
i∈[n]

〈ai, x〉pei, (3.5)

where ai is the i-th line of matrix A and {ei}i∈[n] is the canonical basis of Rn.

It is easy to see that the map x 7→ A
p
· x is ϕp-linear. Conversely, if g is a

ϕp-linear map then it can be represented by a matrix A such that g(x) = A
p
· x

for all x ∈ Rn. If A,B ∈Mn(R), the product B
p
· A is the matrix representation

of the map:

x 7→ B
p
· A

p
· x = φ−1

p

(
Φp(B)Φp(A)φp(x)

)
. (3.6)

Notice that the identity matrix I is invariant with respect to Φp.
Let f : Rn −→ Rn be a linear endomorphism and let A be its matrix rep-

resentation in the canonical basis. The map T (p) : L(Rn,Rn) −→ L(p)(Rn,Rn)
defined for all x ∈ Rn by:

T (p)(f)(x) = f (p)(x) := φ−1
p

(
Φp(A)φp(x)

)
is called the ϕp-linear transformation of f .

A ϕp-linear endomorphism g is invertible if and only if Φp(A) is invertible.
For any n × n matrix A, let |A| denotes its determinant. Let us introduce the
following definition of a ϕp-determinant

|A|p = ϕ−1
p |Φp(A)|. (3.7)
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Let Sn be the set of all the permutations defined on [n]. The Leibnitz formula
yields

|A|p =
( ∑
σ∈Sn

sgn(σ)
∏
i∈[n]

a2p+1
i,σ(i)

) 1
2p+1

. (3.8)

In the remainder, if A is the matrix of a linear endomorphism f , then we
define the ϕp-determinant of f as |f |p = |A|p. If f (p) is invertible, then we have
the equivalences:

y = f (p)(x) ⇐⇒ y = φ−1
p

(
Φp(A)φp(x)

)
⇐⇒ φ−1

p

(
Φp(A)

−1
φp(y)

)
= x. (3.9)

Along this line, the ϕp-cofactor matrix A?,p is defined as:

A?,p = (a?,pi,j )i∈[n]
j∈[n]

=
(

(−1)i+j
∣∣Ai,j∣∣p)i∈[n]

j∈[n]

, (3.10)

where Ai,j is obtained from matrix A by dropping line i and column j. The φp-
inverse matrix of a ϕp-invertible matrix A (such that |A|p 6= 0) is then defined
as:

A−1,p =
1

|A|p
tA
?,p
, (3.11)

where tA denotes the transpose of A. Suppose that f is a linear endomorphism
having a matrix representation A in the canonical basis and let b ∈ Rn. Given
a system of ϕp-linear equations of the form:

f (p)(x) = b ⇐⇒ A
p
· x = b, (3.12)

if |A|p 6= 0, then the solution is x? = A−1,p p· b.

3.2 Limit Properties

Proposition 3.2.1 Let f : Rn −→ Rn be a linear endomorphism having a
matrix representation A in the canonical basis of Rn. For all p ∈ N, let f (p) be
its ϕp-linear transformation. Then:

lim
p−→∞

f (p)(x) = �
j∈[n]

xja
j = �

i∈[n]

〈ai, x〉∞ei,

where ai and aj respectively mean the i-th row and the j-th column of A.

Proof: For all i ∈ [n], we have from [8]:

lim
p−→∞

ϕp∑
j∈[n]

xjai,j = lim
p−→∞

(∑
j∈[n]

xj
2p+1a2p+1

i,j

) 1
2p+1 = �

j∈[n]

xjai,j = 〈ai, x〉∞.

Therefore

lim
p−→∞

ϕp∑
j∈[n]

xja
j = �

j∈[n]

xja
j .

The last equality immediately follows. 2

For any squared matrix A,

|A|∞ = �
σ∈Sn

(
sgn(σ)

∏
i∈[n]

ai,σ(i)

)
(3.13)

is called the determinant in limit of A. Moreover, for any linear endo-
morphism f whose matrix is A, the determinant in limit of f is defined as
|f |∞ = |A|∞.
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Proposition 3.2.2 For all A ∈Mn(R), we have:

lim
p−→∞

|A|p := |A|∞ = �
σ∈Sn

(
sgn(σ)

∏
i∈[n]

ai,σ(i)

)
.

Proof: From [8] we have:

lim
p−→∞

( ∑
σ∈Sn

sgn(σ)
∏
i∈[n]

a2p+1
i,σ(i)

) 1
2p+1

= �
σ∈Sn

(
sgn(σ)

∏
i∈[n]

ai,σ(i)

)
. 2

In Max-Plus algebra the term determinant of a matrix A is often used for a
max-permanent (see [13], page. 30). To that end, we consider a notion of Max-
Times permanent which is a multiplicative version of the notion of permanent
used in a Max-Plus context. For all matrices A ∈ Mn(R+), the Max-Times
permanent of A is defined as:

per(A) = �
σ∈Sn

∏
i∈[n]

ai,σ(i) = max
σ∈Sn

∏
i∈[n]

ai,σ(i). (3.14)

The main difference, compared to the definition of limit determinants, is that
the terms of the equation are not alternated. This is a multiplicative version
of the notion of permanent arising in Max-Plus algebra that can be derived
from an exponential transformation. This version of the notion of permanent is
particularly useful for examining the geometric and algebraic eigenvalues of a
non-negative matrix. This question is analysed in Section 6.

Proposition 3.2.3 Let f : Rn −→ Rn be a linear endomorphism having a
matrix representation A. For all p ∈ N, let f (p) be its ϕp-linear transformation.
If |A|∞ 6= 0, then there is some p0 ∈ N such that for all p ≥ p0, f (p) is ϕp-

invertible and for all b ∈ Rn, there exists a solution x(p) to the system A
p
· x = b

with:

x
(p)
i =

|A(i)|p
|A|p

=

∣∣Φp(A(i))
∣∣ 1
2p+1∣∣Φp(A)

∣∣ 1
2p+1

,

where A(i) is obtained from A by dropping column i and replacing it with b.
Moreover, we have:

lim
p−→∞

x(p) = x?,

and for all i ∈ [n]

x?i =
|A(i)|∞
|A|∞

.

Proof: Since |A|∞ 6= 0 and limp−→∞ |A|p = |A|∞, there is some p0 such that
for all p ≥ p0, |A|p 6= 0, which implies that A is ϕp-invertible. In such a case,

there exists a unique solution to the system A
p
· x = b, that is x(p) = A−1,pb.

Moreover, we have:

A
p. x = b ⇐⇒ φ−1

p

(
Φp(A)φp(x)

)
= b ⇐⇒ Φp(A)φp(x) = φp(b).

Since f (p) is ϕp-invertible, it follows that Φp(A) is invertible. Set u = φp(x).
The system Φp(A)u = φp(b) has a solution for all p ≥ p0. Applying the Cramer’s
rule the solution is the vector up satisfying the relation:

u(p) =

∣∣[Φp(A)](i)
∣∣∣∣Φp(A)
∣∣ =

∣∣Φp(A(i))
∣∣∣∣Φp(A)
∣∣ .

8



Setting x(p) = φ−1
p (u(p)), we obtain the result. From Proposition 3.2.2, lim−→∞ |A(i)|p =

|A(i)|∞ and lim−→∞ |A|p = |A|∞, which ends the proof. 2

The next properties are useful. We first establish the following Lemma.

Lemma 3.2.4 Suppose that there is some x = (x1, ..., xn) ∈ Rn such that

�i∈[n]
xi = 0. Then for all p ∈ N,

ϕp∑
i∈[n] xi = 0. Moreover, for all ma-

trices A ∈Mn(R), if |A|∞ = 0 then |A|p = 0 for all p ∈ N.

Proof: Let Λ[x] = {α ∈ R+ : |xi| = α, i ∈ [n]}. Since �i∈[n]
xi = 0, we have

for all α, ξ[x](α) = Card{i : xi = α} − Card{i : xi = −α} = 0. Hence, for all

α ∈ Λ[x],
ϕp∑
|xi|=α xi = 0. Thus

ϕp∑
i∈[n]

xi =

ϕp∑
α∈Λ[x]

ϕp∑
|xi|=α

xi = 0.

The second part of the statement is an immediate consequence of the Leibniz
formula. 2

For all p ∈ N ∪ {∞} and for all matrices A ∈ Mn(R), let us denote
|a1, ..., an|p = |A|p where the aj ’s are the column vectors of A.

Proposition 3.2.5 For all A ∈Mn(R), we have the following properties.
(a) For all α ∈ R, |a1, ..., αaj , ..., an|∞ = α|A|∞;
(b) For all permutations σ of Sn, |aσ(1), ..., aσ(n)|∞ = sgn(σ)|A|∞;
(c) If there exists α ∈ Rn\{0} such that �j∈[n]

αja
j = 0 then |A|∞ = 0.

(d) If |A|∞ = 0 then there exists a sequence {α(p)}p∈N ⊂ Rn\{0} such that
p∑
j∈[n] α

(p)
j aj = 0 for all p ∈ N.

Proof: (a) Since |A|p = ϕ−1
p

(
|Φp(A)|

)
, we deduce that for all natural numbers p,

|a1, ..., αaj , ..., an|p = α|a1, ..., an|p. Taking the limit yields the result. (b) Sim-
ilarly, for all permutations σ ∈ Sn, |aσ(1), ..., aσ(n)|p = sgn(σ)|A|p, which yields
(b), by taking the limit. (c) If there exists α ∈ Rn\{0} such that�j∈[n]

αja
j =

0, from Lemma 3.2.4, then we deduce that for all natural numbers p,
p∑
j∈[n]

α
(p)
j aj = 0. However, this implies that |A|p = 0 for all p. Hence |A|∞ =

limp−→∞ |A|p = 0. (d) If |A|∞ = 0, then �σ∈Sn

(
sgn(σ)

∏
i∈[n] ai,σ(i)

)
= 0.

Thus, from Lemma 3.2.4

ϕp∑
σ∈Sn

(
sgn(σ)

∏
i∈[n]

ai,σ(i)

)
= 0

for all natural numbers p. Hence, for all p, there is α(p) ∈ Rn\{0} such that
p∑
j∈[n] α

(p)
j aj = 0, which ends the proof. 2

Determinants are intimately linked to the exterior product of vectors that
is an algebraic construction used to study areas, volumes, and their higher-
dimensional analogues. Paralleling the earlier definitions, a map f : Rn −→
R is called a ϕp-multilinear form if it is ϕp-linear in each argument. A
ϕp-multilinear form is alternating if for each permutation σ ∈ Sn we have
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f(x1, ..., xn) = sgn(σ)f(xσ(1), ..., xσ(n)). For all natural numbers r an alter-
nating ϕp-linear r-form is a map defined for all x1, x2, ..., xr ∈ Rn as:

(
f1

p
∧ f2

p
∧ · · ·

p
∧ fr

)
(x1, ..., xr) =

ϕp∑
σ∈Sr

sign(σ)f
(p)
1 (xσ(1)) · · · f (p)

n (xσ(r)), (3.15)

where for any i, fi is a linear form and, and f
(p)
i is the corresponding ϕp-

transformation.
p
∧ is called the ϕp-exterior product of the linear forms f1, ..., fr.

Let {e?1, ..., e?n} be the canonical basis of the dual space L(Rn,R). Suppose that
r = n and let f =

∑
i∈[n] f i(ei)e

?
i be the linear endomorphism constructed from

f1, ..., fn.

Proposition 3.2.6 Let us consider n linear forms f1, ..., fn. Then for all
x1, x2, ..., xn ∈ Rn, we have(

f1

p
∧ f2

p
∧ · · ·

p
∧ fn

)
(x1, ..., xn) = |f |p

(
e?1

p
∧ e?2

p
∧ · · ·

p
∧ e?n

)
(x1, ..., xn).

Moreover, we have:

lim
p−→∞

(
f1

p
∧ f2

p
∧ · · ·

p
∧ fn

)
(x1, ..., xn) = |f |∞

(
e?1
∞
∧ e?2

∞
∧ · · ·

∞
∧ e?n

)
(x1, ..., xn),

where(
e?1
∞
∧ e?2

∞
∧ · · ·

∞
∧ e?n

)
(x1, ..., xn) = lim

p−→∞
(e?1

p
∧ e?2

p
∧ · · · e?n

p
∧ e?n)(x1, ..., xn) = |x1, ..., xn|∞.

Proof: Suppose that for i = 1, ..., n there is a vector ai ∈ Rn such that fi(x) =

〈ai, x〉. Then f
(p)
i (x) = ϕ−1

p

(
〈φp(ai), φp(x)〉

)
=
(∑

i∈[n] a
2p+1
i x2p+1

i

) 1
2p+1 . It

follows that:(
f1

p
∧ f2

p
∧ · · ·

p
∧ fn

)
(x1, ..., xn) =

(∑
σ∈Sn

sign(σ)
∏
i∈[n]

〈φp(ai), φp(xσ(i))〉
) 1

2p+1

=
(∑
σ∈Sn

sign(σ)
∏
i∈[n]

a2p+1
i x2p+1

σ(i)

) 1
2p+1

.

For each i, let g
(p)
i : Rn −→ R be the linear form defined by g

(p)
i (z) = 〈φp(ai), z〉.

It follows that:(
f1

p
∧ f2

p
∧ · · ·

p
∧ fn

)
(x1, ..., xn) = ϕ−1

p

((
g

(p)
1 ∧g

(p)
2 ∧ · · ·∧g(p)

n

)(
φp(x1), ..., φp(xn)

))
.

Let {e?1, ..., e?n} be the canonical basis of the dual space L(Rn,R). From the
usual properties of an alternating n-form we deduce that:(
g

(p)
1 ∧g

(p)
2 ∧ · · ·∧g(p)

n

)(
φp(x1), ..., φp(xn)

)
= |Φp(A)|(e?1∧e?2∧· · ·∧e?n)(φp(x1), ..., φp(xn)),

where Φp(A) is the matrix whose line i is the vector φp(ai). Since for all i and
all x ∈ Rn we have 〈ei, x〉p = xi, this canonical basis is also, independently of
p, the canonical basis of Lp(Rn,R). Since |A|p = ϕ−1

p

(
|Φp(A)|

)
, it follows that:

(
f

(p)
1

p
∧ f (p)

2

p
∧ · · ·

p
∧ f (p)

n

)
(x1, ..., xn) = |A|p

( ∑
i∈[n]

〈ei, φp(x)〉
) 1

2p+1

= |A|p(e?1
p
∧ e?2

p
∧ · · ·

p
∧ e?n)(x1, ..., xn).
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However, we have

(e?1
p
∧ e?2

p
∧ · · ·

p
∧ e?n)(x1, ..., xn) = |x1, ..., xn|p.

We then obtain the final result taking the limit. 2

For all (f1, f2, ..., fn) ∈ L(Rn,R)
n
, let f1

∞
∧ f2

∞
∧ · · ·

∞
∧ fn denote the

pointwise limit of the sequence {f1

p
∧ f2

p
∧ · · ·

p
∧ fn}n∈N. From Proposition

3.2.6, we have:

f1

∞
∧ f2

∞
∧ · · ·

∞
∧ fn =

∣∣A|∞(e?1 ∞∧ e?2 ∞∧ · · · ∞∧ e?n). (3.16)

Consequently, since primal and dual spaces are isomorphic, one can define
for all v1, v2, ..., vn ∈ Rn the exterior product:(

v1

∞
∧ v2

∞
∧ · · ·

∞
∧ vn

)
= |v1, v2, ..., vn|∞

(
e1

∞
∧ e2

∞
∧ · · ·

∞
∧ en

)
. (3.17)

Notice however, that although this definition extends as a limit case the usual
definition of exterior product, it does not satisfy the additivity property in each
arguments with respect to the operation �.

4 Semi-continuous Regularization and Limit of
Hyperplanes

4.1 Semi-continuous Regularizations

In the following, we say that a map f : Rn −→ R is a B-form if there exists
some a ∈ Rn such that:

f(x) = �
i∈[n]

aixi = 〈a, x〉∞. (4.1)

The function above is depicted in Figure 2.2.2.

6

- x1

x2

0

〈a, x〉∞ = c > 0

〈a, x〉∞ = d < 0

〈a, x〉∞ = 0

Figure 4.1.1.1: The level lines of the form 〈a, ·〉∞

These functions were used in [8, 9] to establish a separation theorem for B-convex
sets [11].4 All the points such that 〈a, x〉∞ = 0 are represented by the diagonal

4A relaxed definition of B-convexity was proposed in [8]: a subset C of Rn is B]-convex if
for all x, y ∈ C and all t ∈ [0, 1], x � ty ∈ C.
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line. In the following, for all subsets E of Rn cl(E) and int(E) respectively
stand for the closure and the interior of E.

For all maps f : Rn −→ R and all real numbers c, the notation [ f ≤ c ]
stands for the set f−1( ]−∞, c] ). Similarly, [ f < c ] stands for f−1( ]−∞, c[ )
and [ f ≥ c ] = [−f ≤ −c ].

For all u, v ∈ R, let us define the binary operation

u
−
^ v =

 u if |u| > |v|
min{u, v} if |u| = |v|

v if |u| < |v|.

An elementary calculus shows that u� v = 1
2

[
u
−
^ v −

[
(−u)

−
^ (−v)

]]
.

Similarly one can introduce a symmetrical binary operation defined for all
u, v ∈ R defined as:

u
+
^ v =

 u if |u| > |v|
max{u, v} if |u| = |v|

v if |u| < |v|.

Equivalently, one has: u
+
^ v = −

[
(−u)

−
^ (−v)

]
. This means that u � v =

1
2

[
(u
−
^ v) + (u

+
^ v)

]
. Notice that the operations

−
^ and

+
^ are associative.

Given m elements u1, ..., um of R, not all of which are 0, let I+, respectively I−,
be the set of indices for which 0 < ui, respectively ui < 0. We can then write

u1
−
^ · · · −^ um = (

−
^i∈I+ ui)

−
^ (

−
^i∈I− ui) = (maxi∈I+ ui)

−
^ (mini∈I− ui)

from which we have:

u1
−
^ · · · −^ um =

 maxi∈I+ ui if I− = ∅ or maxi∈I− |ui| < maxi∈I+ ui
mini∈I− ui if I+ = ∅ or maxi∈I+ ui < maxi∈I− |ui|
mini∈I− ui if maxi∈I− |ui| = maxi∈I+ ui.

(4.2)
We define a lower B-form on Rn+ as a map g : Rn → R such that for all
(x1, ..., xn) ∈ Rn+,

g(x1, ..., xn) = 〈a, x〉−∞ = a1x1
−
^ · · · −^ anxn. (4.3)

It was established in [8] that for all c ∈ R, g−1 ( ]−∞, c]) = {x ∈ Rn : g(x) ≤ c}
is closed. It follows that a B-form is lower semi-continuous. It was established
in [12] that g−1 ( ]−∞, c]) ∩ Rn+ is a B-halfspace, that is a B-convex subset of
Rn+ whose complement in Rn+ is also B-convex.

Similarly, one can define an upper B-form as a map h : Rn → R such that,
for all (x1, ..., xn) ∈ Rn,

h(x1, ..., xn) = 〈a, x〉+∞ = a1x1
+
^ · · · +

^ anxn. (4.4)

For all x ∈ Rn, we clearly, have the following identities

〈a, x〉+∞ = −〈a,−x〉−∞ and 〈a, x〉−∞ = −〈a,−x〉+∞. (4.5)

The largest (smallest) lower (upper) semi-continuous minorant (majorant)
of a map f is said to be the lower (upper) semi-continuous regularization of f .
In the next statements it is shown that the lower (upper) B-forms are the lower
(upper) semi-continuous regularizations of the B-forms.

Proposition 4.1.1 [8] Let g be a lower B-form defined by g(x1, ..., xn) = a1x1
−
^

· · · −^ anxn, for some a ∈ Rn. Then g is the lower semi-continuous regulariza-
tion of the map x 7→ 〈a, x〉∞ =�i∈[n]

aixi.
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The following corollary is then immediate.

Corollary 4.1.2 [8] Let h be an upper B-form defined by h(x1, ..., xn) = a1x1
+
^

· · · +
^ anxn, for some a ∈ Rn. Then h is the upper semi-continuous regulariza-

tion of the map x 7→ 〈a, x〉∞ =�i∈[n]
aixi.

For the sake of simplicity let us denote for all x ∈ Rn:

-

î∈[n]
xi = x1

−
^ · · · −^ xn and

+

î∈[n]
xi = x1

+
^ · · · +

^ xn. (4.6)

Let f : Rn −→ R be a B-form. Let f− and f+ be respectively the lower and
upper semi-continuous regularizations of f over Rn. It it shown in [9] that for
all c ∈ R,

cl
[
f ≤ c

]
=
[
f− ≤ c

]
and cl

[
f ≥ c

]
=
[
f+ ≥ c

]
. (4.7)

The following lemma is useful. A map f : Rn −→ R is called a dual B-form if
there exists some a ∈ Rn such that, for all x ∈ Rn, f(x) = 〈a, x〉∞.

Lemma 4.1.3 For all dual B-forms f we have[
f− ≤ 0

]
∩
[
f+ ≥ 0

]
=
[
f− + f+ = 0

]
.

Proof: Suppose that x ∈
[
f− ≤ 0

]
∩
[
f+ ≥ 0

]
. If f−(x) = f+(x) = 0, the

inclusion is trivial. Suppose now that f−(x) < 0 and f+(x) > 0. There exists

a ∈ Rn such that f−(x) = a1x1
−
^ · · · −^ anxn and f+(x) = a1x1

+
^ · · · +

^
anxn. Hence there is some i− ∈ [n] such that f−(x) = ai−xi− < 0 and some
i+ ∈ [n] such that f+(x) = ai+xi+ > 0. Moreover

f+(x) = max
i∈[n]

aixi = max
i∈[n]
|aixi| = ai+xi+

and
f−(x) = min

i∈[n]
aixi = −max

i∈[n]
|aixi| = ai−xi−

Consequently, |ai−xi− | = |ai+xi+ | and ai−xi− = −ai+xi+ . Thus f−(x) +
f+(x) = 0. Hence

[
f− ≤ 0

]
∩
[
f+ ≥ 0

]
⊂
[
f− + f+ = 0

]
. Conversely if

x ∈
[
f− + f+ = 0

]
, we have f−(x)f+(x) ≤ 0, which implies the converse inclu-

sion and ends the proof. 2

In the remainder, it will be useful to consider the lower and upper semi-
continuous determinant defined as:

|A|−∞ =
-

σ̂∈Sn

(
sgn(σ).

∏
i∈[n]

ai,σ(i)

)
and |A|+∞ =

+

σ̂∈Sn

(
sgn(σ).

∏
i∈[n]

ai,σ(i)

)
.

(4.8)

6

-

[f+ ≥ c]

[f− ≤ c]

[f− ≤ c] ∩ [f+ ≥ c]

x1

x2

0

Figure 4.1.1.1 Lower and Upper halfspaces.
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4.2 Kuratowski-Painlevé Limit of Hyperplanes

This section is devoted to analyze the Kuratowski-Painlevé limit of a sequence of

half-spaces defined on the scalar field (R,
p
+, ·). The next result was established

in [9]. These half-spaces are called ϕp-halfspaces.

Proposition 4.2.1 Let f be a B-form defined by f(x) = 〈a, x〉∞ for some
a ∈ Rn\{0}. For any natural number p let fp : Rn −→ R be a map defined by
fp(x) = 〈a(p), x〉p where {a(p)}p∈N is a sequence of Rn\{0}. If there exists a
sequence {cp}p∈N ⊂ R such that limp−→∞(a(p), cp) = (a, c), then:

Limp−→∞
[
fp ≤ cp

]
= cl

[
f ≤ c

]
=
[
f− ≤ c

]
and

Limp−→∞
[
fp ≥ cp

]
= cl

[
f ≥ c

]
=
[
f+ ≥ c

]
.

6

-

[fp ≤ c]

[f− ≤ c]
x1

x2

0

Figure 4.2 Limit of a sequence of ϕp-halfspaces.

In the following, one can go a bit further by showing that a sequence of φp-
hyperplanes defined for all p ∈ N as [〈a(p), ·〉p = cp] has a Painlevé-Kuratowski
limit.

Proposition 4.2.2 Let f be a B-form defined by f(x) = 〈a, x〉∞ for some
a ∈ Rn\{0}. For any natural number p let fp : Rn −→ R be a map defined by
fp(x) = 〈a(p), x〉p where {a(p)}p∈N is a sequence of Rn\{0}. If there exists a
sequence {cp}p∈N ⊂ R such that limp−→∞(a(p), cp) = (a, c), then:

Limp−→∞
[
fp = cp

]
=
[
f− ≤ c

]
∩
[
f+ ≥ c

]
.

Proof: By definition, for all p, we have [fp = cp
]

= [fp ≤ cp
]
∩ [fp ≥ cp

]
.

Hence, we have the inclusion:

Lsp−→∞[fp = cp
]

= Lsp−→∞

(
[fp ≤ cp

]
∩ [fp ≥ cp

])
⊂
(
Lsp−→∞[fp ≤ cp

])
∩
(
Lsp−→∞[fp ≤ cp

])
=
[
f− ≤ c

]
∩
[
f+ ≥ c

]
.

In the following, we show that
[
f− ≤ c

]
∩
[
f+ ≥ c

]
⊂ Lip−→∞[fp = cp

]
. From

Proposition 4.2.1, we have Lip−→∞[fp ≤ cp
]

=
[
f− ≤ c

]
and Lip−→∞[fp ≥

cp
]

=
[
f+ ≥ c

]
. Suppose that x ∈

[
f− ≤ c

]
∩
[
f+ ≥ c

]
. This implies that there

exist two sequences {y(p)}p∈N and {z(p)}p∈N respectively such that for any p,
y(p) ∈ [fp ≤ cp

]
and z(p) ∈ [fp ≥ cp

]
with x = limp−→∞ y(p) = limp−→∞ z(p).
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For all p, the map fp is continuous. Therefore, for all natural numbers p,
there exists some αp ∈ [0, 1] such that fp(αpy

(p) + (1 − αp)z
(p)) = cp. Set

w(p) = αpy
(p) + (1− αp)(p). We have for all natural numbers p

‖x− w(p)‖ = ‖αp(x− y(p)) + (1− αp)(x− z(p))‖
≤ αp‖x− y(p)‖+ (1− αp)‖x− z(p)‖
≤ ‖x− y(p)‖+ ‖x− z(p)‖.

By hypothesis limp−→∞ ‖x−y(p)‖ = limp−→∞ ‖x−z(p)‖ = 0. Thus limp−→∞ ‖x−
w(p)‖ = 0. Since wp ∈ [fp = cp

]
for all p, we deduce that x ∈ Lip−→∞[fp = cp

]
.

Consequently,
[
f− ≤ c

]
∩
[
f+ ≥ c

]
⊂ Lip−→∞[fp = cp

]
. Since we have the

sequence of inclusions

Lsp−→∞[fp = cp
]
⊂
[
f− ≤ c

]
∩
[
f+ ≥ c

]
⊂ Lip−→∞[fp = cp

]
,

we deduce that

Limp−→∞[fp = cp
]

=
[
f− ≤ c

]
∩
[
f+ ≥ c

]
. 2

4.3 Limit Hyperplane Passing Through n Points

In this subsection we give the equation of a limit hyperplane passing though
n points. Given n points v1, ..., vn in Rn, let V be the n × n matrix whose
each column is a vector vi. If |v1, ..., vn|p 6= 0 then let Hp(V ) denote the ϕp-

hyperplane passing trough v1, ..., vn. In the following, the symbol
p
−means for all

α, β ∈ R, α
p
− β = α

p
+ (−β). Moreover, the symbol � means α�β = α� (−β).

Proposition 4.3.1 Let V be the n× n matrix with vi as i-th column for each
i. Let V(i) be the matrix obtained from V by replacing line i with the transpose
of the unit vector 11n. Suppose that |V |∞ 6= 0. Then

Limp−→∞Hp(V ) =
{
x ∈ Rn :

-

î∈[n]
|V(i)|∞xi ≤ |V |∞ ≤

+

î∈[n]
|V(i)|∞xi

}
.

Proof: First note that since |V |∞ 6= 0, there exists p0 ∈ N such that for all
p ≥ p0, |V |p 6= 0. Therefore for all p ≥ p0, there exists a hyperplane Hp(V )
which contains v1, ..., vp. Therefore, there exists some a(p) ∈ Rn and some
cp ∈ R such that

Hp(V ) =
[
〈a(p), ·〉p = c

]
.

Suppose that x ∈ Hp(V ). For all i ∈ [n]:

〈a(p), vi
p
− x〉p = c

p
− c = 0.

Let us denote Fp(V ) =
[
〈a(p), ·〉p = 0

]
. Since Fp(V ) is a n − 1-dimensional

ϕp-subspace of Rn: ∣∣v1 − x, v2 − x, · · · , vn − x
∣∣
p

= 0.

Let Vi,j be the matrix obtained suppressing line i and column j. It follows
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that:∣∣v1 − x,v2 − x, · · · , vn − x
∣∣
p

=
∣∣V ∣∣

p

p
−
∣∣x, v2, · · · , vn

∣∣
p

p
−
∣∣v1, x, v3, · · · , vn

∣∣
p

p
−
∣∣v1, v2, · · · , vn−1, x

∣∣
p

=
∣∣V ∣∣

p

p
−

ϕp∑
j∈[n]

ϕp∑
i∈[n]

(−1)i+j |Vi,j |pxi =
∣∣V ∣∣

p

p
−

ϕp∑
i∈[n]

ϕp∑
j∈[n]

(−1)i+j |Vi,j |pxi

=
∣∣V ∣∣

p

p
−

ϕp∑
i∈[n]

|V(i)|pxi = 0.

Therefore, we have:

Hp(V ) =
{
x ∈ Rn :

ϕp∑
i∈[n]

|V(i)|pxi =
∣∣V ∣∣

p

}
.

Since limp−→∞ |V(i)|p = |V(i)|∞ and limp−→∞ |V |p = |V |∞, we deduce the result
from Proposition 4.2.2. 2

A simple intuition is given in the case n = 2 with two points. The hyperplane
passing from two points u and v is a line. For all p ∈ N, let us denote Dp(u, v)
the ϕp-line spanned by u and v in R2. If p = 0, all points x = (x1, x2) ∈ D0(x, y)
satisfy the relation:

|u−x, v−x| =
∣∣∣∣u1 − x1 v1 − x1

u2 − x2 v2 − x2

∣∣∣∣ = 0. (4.9)

Equivalently, we have

(v2 − u2)x1 + (u1 − v1)x2 = |u, v|. (4.10)

For all points z ∈ Dp(u, v) we have the relation:

|u
p
− x, v

p
− x|p =

∣∣∣∣∣u1

p
− x1 v1

p
− x1

u2

p
− x2 v2

p
− x2

∣∣∣∣∣ = 0 ⇐⇒ (v2

p
− u2)x1

p
+ (u1

p
− v1)x2 = |u, v|p.

We obtain that

Limp−→∞Dp(u, v) (4.11)

=
{
x ∈ R2 :

∣∣∣∣ 1 1
u2 v2

∣∣∣∣
∞
x1
−
^

∣∣∣∣u1 v1

1 1

∣∣∣∣
∞
x2 ≤ |u, v|∞ ≤

∣∣∣∣ 1 1
u2 v2

∣∣∣∣
∞
x1

+
^

∣∣∣∣u1 v1

1 1

∣∣∣∣
∞
x2

}
.

Hence

Limp−→∞Dp(u, v) (4.12)

=
{
x ∈ R2 : (v2 � u2)x1

−
^ (u1 � v1)x2 ≤ |u, v|∞ ≤ (v2 � u2)x1

+
^ (u1 � v1)x2

}
.

Example 4.3.2 Suppose that n = 3 and that v1 = (1, 0,−3), v2 = (2,−1, 1),
v3 = (4, 1, 2). We have

V =

 1 2 4
0 −1 1
−3 1 2

 .
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Thus

V(1) =

 1 1 1
0 −1 1
−3 1 2

 , V(2) =

 1 2 4
1 1 1
−3 1 2

 and V(3) =

1 2 4
0 −1 1
1 1 1

 .

Hence |V |∞ = 1·(−1)·2�2·1·(−3)�0·1·4�(−4)·(−1)·(−3)�(−1)·1·1�0·2·2 =
−12; |V(1)|∞ = 1·(−1)·2�1·1·(−3)�0·1·1�(−1)·(−1)·(−3)�(−1)·1·1�0·1·2 =
−3; |V(2)|∞ = 1·1·2�2·1·(−3)�1·1·4�(−4)·1·(−3)�(−1)·1·1�(−1)·2·2 = 12;
|V(3)|∞ = 1 · (−1) · 1� 2 · 1 · 1� 0 · 1 · 4� (−4) · (−1) · 1� (−1) · 1 · 1� 0 · 2 · 1 = 4.

H∞(V ) =
{

(x1, x2, x3) : (−3)x1
−
^ 12x2

−
^ 4x3 ≤ −12 ≤ (−3)x1

+
^ 12x2

+
^ 4x3

}
.

It is easy to check that v1, v2, v3 ∈ H∞(V ).

5 Limit Systems of Equations

5.1 Limit Solutions of a Sequence of Systems of Equations

For all ϕp-linear endomorphisms f : x 7→ A
p
· x, where A ∈Mn(R), we consider

a sequence of ϕp-linear systems of the form A
p
· x = b. For all x ∈ Rd, let

B∞(x, d ] = {z ∈ Rn : ‖x− z‖∞ ≤ d} denote the ball of center x and radius d.
Moreover, let C∞(x, d) = {z ∈ Rn : ‖x− z‖∞ = d} denote the circle of center x
and radius d.

Proposition 5.1.1 Suppose that A ∈Mn(R) is a square matrix and let b ∈ Rn.

Then, there exists a unique x? ∈ Lsp−→∞
{
x ∈ Rn : A

p
· x = b

}
if and only if

|A|∞ 6= 0. Moreover, if |A|∞ 6= 0 then x? =
∑
i∈[n]

|A(i)|∞
|A|∞ ei and

{x?} = Limp−→∞
{
x ∈ Rn : A

p
· x = b

}
.

Proof: If |A|∞ 6= 0 then there is some p0 such that for all p ≥ p0, |A|p 6= 0.

Thus for all p ≥ p0, x(p) =
∑
i∈[n]

|A(i)|p
|A|p ei is solution of the system A

p
· x = b

and therefore x(p) ∈
{
x ∈ Rn : A

p
· x = b

}
. However, x? =

∑
i∈[n]

|A(i)|∞
|A|∞ ei =

limp−→∞ x(p). Thus x? ∈ Lip−→∞
{
x ∈ Rn : A

p
· x = b

}
. Moreover, for all

p ≥ p0, since |A|p 6= 0 we have {x(p)} =
{
x ∈ Rn : A

p
· x = b

}
. Consequently

x? is the unique solution. This implies that x? ∈ Lsp−→∞
{
x ∈ Rn : A

p
· x = b

}
.

Moreover, for each increasing sequence of natural numbers {pk}k∈N, x(pk) =∑
i∈[n]

|A(i)|pk
|A|pk

ei is the unique solution of the system of the form A
pk· x = b.

Hence Lip−→∞
{
x ∈ Rn : A

p
· x = b

}
= Lsp−→∞

{
x ∈ Rn : A

p
· x = b

}
= {x?}

which ends the first part of the statement.

To complete the proof, suppose that {x?} = Lsp−→∞
{
x ∈ Rn : A

p
· x = b

}
with |A|∞ = 0 and let us show a contradiction. This implies that for any
p ∈ N we have |A|p = 0 from Lemma 3.2.4. Thus, for any p, the system

{x ∈ Rn : A
p
· x = b

}
has either an infinity of solutions or is an empty set. If, for

all p ∈ N, it is an empty set then the upper limit of the sequence of solution sets
is empty. By assumption this is not the case. Suppose that x? ∈ Lsp−→∞

{
x ∈

Rn : A
p
· x = b

}
. In such case there exists a subsequence {pk}k∈N such that

x? = limk−→∞ x(pk) where for all k, x(pk) ∈ {x ∈ Rn : A
pk· x = b

}
that is a

ϕpk -affine subspace that contains an infinity of points. For any k let us consider
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the ball B∞(x(pk), 1] of center x(pk) and of radius 1. Since {x ∈ Rn : A
pk· x = b

}
is a ϕpk affine subspace of Rn, for all k there exits a vector v(pk) 6= 0 such that

A
pk· v(pk) = 0. This implies that:

{x(pk)
pk
+ δv(pk) : δ ∈ R} ⊂ {x ∈ Rn : A

pk· x = b
}
.

Let δpk = sup{δ : x(pk)
pk
+ δv(pk) ∈ B∞(x(pk), 1]}. Since the map δ 7→ x(pk)

pk
+

δv(pk) is a continuous vector valued function, y(pk) = x(pk)
pk
+ δpkv

(pk) ∈
C∞(x(pk), 1) which implies that d∞(x(pk), y(pk)) = 1. Now since {x(pk)}k∈N
converges to x?, There exists some d > 0 and kd ∈ N such that for all k ≥ kd,
x(pk), y(pk) ∈ B∞(x?, d ]. Since B∞(x?, d ] is a compact subset of Rn one can
extract a sequence {y(pkr )}r∈N which converges to some y? ∈ Lsp−→∞

{
x ∈ Rn :

A
p
· x = b

}
. However, for all r ∈ N, d∞(x(pkr ), y(pkr )) = 1, and we deduce

that d∞(x?, y?) = 1. This implies that x? 6= y? which contradicts the unicity.
Consequently, if the upper limit of the sequence of solution sets has a unique
element, then |A|∞ 6= 0. 2

In the following, for all matrices A ∈ Mn,l(R) and B ∈ Ml,m(R) let us
define the product:

A�B =
(
�
k∈[l]

ai,kbk,j

)
i∈[n]
j∈[m]

. (5.1)

The lower and upper semi-continuous regularized products are respectively de-
fined as:

A
−
� B =

( -

k̂∈[l]
ai,kbk,j

)
i∈[n]
j∈[m]

and A
+

� B =
(

+

k̂∈[l]
ai,kbk,j

)
i∈[n]
j∈[m]

. (5.2)

By construction, it follows that for all vectors x ∈ Rn, the matrix-vector prod-

ucts derived from
−
� and

+

� are defined by:

A
−
� x =

〈a1, x〉−∞
...

〈an, x〉−∞

 and A
+

� x =

〈a1, x〉+∞
...

〈an, x〉+∞

 . (5.3)

The next result is an immediate consequence.

Proposition 5.1.2 Suppose that A ∈Mn(R) is a square matrix and let b ∈ Rn.

If x̄ ∈ Lsp−→∞{x ∈ Rn : A
p
· x = b}, then x̄ is a solution of the system:{
A
−
� x ≤ b

A
+
� x ≥ b, x ∈ Rn.

(5.4)

Moreover, if |A|∞ 6= 0 then x? =
∑
i∈[n]

|A(i)|∞
|A|∞ ei is a solution of the system

(5.4).

Proof: From Proposition 4.2.2, for all i ∈ [n]:

Lsp−→∞{x : 〈ai, x〉p = bi} = Limp−→∞{x : 〈ai, x〉p = bi}
= [x : 〈ai, x〉−∞ ≤ bi] ∩ [x : 〈ai, x〉+∞ ≥ bi].
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From (5.15), we deduce that:

Lsp−→∞
{
x ∈ Rn : A

p
· x = b

}
= Lsp−→∞

⋂
i∈[n]

[〈ai, ·〉p = bi]

⊂
⋂
i∈[n]

Lsp−→∞[〈ai, ·〉p = bi]

⊂
⋂
i∈[n]

(
[〈ai, ·〉−∞ ≤ bi] ∩ [〈ai, ·〉+∞ ≥ bi]

)
,

which implies that if x̄ ∈ Lsp−→∞
{
x ∈ Rn : A

p
· x = b

}
then it satisfies the

system (5.4). If |A|∞ 6= 0, from Proposition 5.1.1 {x?} = Limp−→∞
{
x ∈ Rn :

A
p
· x = b

}
and this implies that x? satisfies system (5.4). 2

Since it contains any element of the upper limit set Lsp−→∞{x ∈ Rn : A
p
·

x = b}, the system (5.4) is called a limit system.

Example 5.1.3 Let us consider the matrix

A =

(
−1 1
1 1

)
with a1 = (−1, 1), a2 = (1, 1) and suppose that b1 = 2, b2 = 3. Now, let us
consider the matrices:

A(1) =

(
2 1
3 1

)
A(2) =

(
−1 2
1 3

)
.

We have |A|∞ = ((−1) · 1) � ((−1) · 1) = −1;
∣∣A(1)

∣∣
∞ = (2 · 1 � (−3 · 1)) = −3;∣∣A(2)

∣∣
∞ = ((−1) · 3 � ((−2) · 1) = −3. We obtain the solutions: x?1 = −3

−1 =

3 x?2 = −3
−1 = 3. One can then check that:(

−1 1
1 1

)
−
�

(
3
3

)
=

(
(−3)

−
^ 3

3
−
^ 3

)
=

(
−3
3

)
≤
(

2
3

)
and (

−1 1
1 1

)
+

�

(
3
3

)
=

(
(−3)

+
^ 3

3
+
^ 3

)
=

(
3
3

)
≥
(

2
3

)
.

Therefore x? = (3, 3) is a solution of the limit system. This example is depicted
in Figure 5.2.

6

-

Figure 5.2 Example of a two dimensional Limit System.

x1

x2

0

x?

[〈a2, ·〉−∞ ≤ 3] ∩ [〈a2, ·〉+∞ ≥ 3]

[〈a1, ·〉−∞ ≤ 2] ∩ [〈a1, ·〉+∞ ≥ 2]
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Example 5.1.4 Let us consider the matrix:

A =

 3 −1 3
2 −4 1
−4 5 3


with a1 = (3, 1,−3), a2 = (2,−4, 1), a3 = (−4, 5, 3), b1 = 6, b2 = 8, b3 = 4.

The limit system is:

 3 −1 3
2 −4 1
−4 5 3

 −
�

x1

x2

x3

 ≤
6

8
4

 3 −1 3
2 −4 1
−4 5 3

 +

�

x1

x2

x3

 ≥
6

8
4

 x ∈ R3.

(5.5)

Now, let us consider the matrices:

A(1) =

6 −1 3
8 −4 1
4 5 3

 ; A(2) =

 3 6 3
2 8 1
−4 4 3

 ;A(3) =

 3 −1 6
2 −4 8
−4 5 4

 .

We have |A|∞ = (−36)� 4� 30� (−48)� (−15)� 6 = −48; |A(1)|∞ = (−72)�
(−4)� 120� 48� 24� (−30) = 120; |A(2)|∞ = 72� (−24)� 24� 96� (−12)�
(−36) = 96; |A(3)|∞ = (−48) � 32 � +60 � (−96) � 8 � (−120) = −120. We
obtain that

x?1 =
120

−48
= −5

2
, x?2 =

96

−48
= −2 and x?3 =

5

2
.

Let us check that x? = (− 5
2 ,−2,− 5

2 ) satisfies the system of equations (5.5). We
have: 

 3 −1 3
2 −4 1
−4 5 3

 −
�

− 5
2
−2
5
2

 =

− 15
2

8
−10

 ≤
6

8
4

 3 −1 3
2 −4 1
−4 5 3

 +

�

− 5
2
−2
5
2

 =

 15
2
8
10

 ≥
6

8
4

 x ∈ R3.

Thus x? = (− 5
2 ,−2,− 5

2 ) satisfies the system (5.5).

In the following, we say that a solution x? of the limit system is regular if
for all i ∈ [m], 〈ai, x?〉∞ = 〈ai, x?〉−∞ = 〈ai, x?〉+∞. This implies that x? is also
solution of the equation

A� x = b. (5.6)

Equivalently, this means that:
�j∈[n]

a1,jxj = b1

...
...

�j∈[n]
am,jxj = bm.

(5.7)
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6

- x1

x2

0

x?

Figure 5.3 Regular Solutions of a Limit System.

5.2 Positive Solutions of Positive Systems of Maximum
Equations

In the following, we consider a theorem established by Kaykobad [22] that gives a
necessary condition for the existence of a positive solution to a positive invertible
linear system.

Theorem 5.2.1 Suppose that A = (ai,j)i,j∈[n] ∈ Mn(R) is a square matrix
such that for all i, j ai,j ≥ 0 and ai,i > 0 for all i ∈ [n]. Suppose moreover that
b ∈ Rn++. If for all i ∈ [n]

bi >
∑

j∈[n]\{i}

ai,j
bj
aj,j

then A is invertible and A−1b ∈ Rn++.

In the following this result is extended to a ϕp-endomorphism.

Lemma 5.2.2 Suppose that A = (ai,j)i,j∈[n] ∈Mn(R) is a square matrix such
that for all i, j ai,j ≥ 0. Suppose that there exists a permutation σ : [n] −→ [n]
such that ai,σ(i) > 0 for all i ∈ [n]. Suppose moreover that b ∈ Rn++. If for all
i ∈ [n]

bi >
( ∑
j∈[n]\{i}

(ai,σ(j))
2p+1 (bj)

2p+1

(aj,σ(j))
2p+1

) 1
2p+1

then A is ϕp-invertible and there is a solution x(p) ∈ Rn++ to the equation

A
p
· x = b.

Proof: Let Ā = (āi,j)i,j∈[n] be the n× n matrix defined by āi,j = ai,σ(j). The

system Ā
p
· x = b is equivalent to Φp(Ā)u = φp(b) setting u = φp(x). Since

ai,σ(i) > 0 for all i, we deduce that for all i, āi,i > 0. Since by definition

Φp(Ā) = (ā2p+1
i,j )i,j∈[n] and φp(b) = (b1

2p+1, ..., bn
2p+1), it follows from Theorem

5.2.1 that this system has a positive solution if:

(bi)
2p+1 >

∑
j∈[n]\{i}

(āi,j)
2p+1 (bj)

2p+1

(āj,j)
2p+1 .
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Equivalently, we deduce that the system A
p
· x = b has a solution if

(bi)
2p+1 >

∑
j∈[n]\{i}

(ai,σ(j))
2p+1 (bj)

2p+1

(aj,σ(j))
2p+1

which ends the proof. 2

First, we consider systems of max-equations, that is, systems of the form
max{a1,1x1, . . . , a1,nxn} = b1

...
...

max{am,1x1, . . . , am,nxn} = bm

(5.8)

where ai = (ai,1, . . . , ai,n) ∈ Rn+, i = 1, . . . ,m, b = (b1, . . . , bm) ∈ Rm+ and the
solution (x1, . . . , xn) is to be found in Rn+. Notice that if bi = 0 then we have to
take xj = 0 for each j such that ai,j > 0, and, as far as equation i is concerned,
the other values xl are irrelevant; equation i can therefore be removed from the
system and the number of variables decreases. In other words, we can assume
that bi > 0 for all i. In the remainder these types of systems will be called a
system of maximum-equations. We can assume that for all j there is at least
one index i such that ai,j > 0; let η(j) = {i : ai,j > 0} and

x̄ =
∑
i∈[n]

(
min
i∈η(j)

bi
ai,j

)
ei. (5.9)

It is known (see e.g. [13]) that if the system of maximum equations (5.8) has
some solution, then x̄ is a solution and, for any solution x one has x ≤ x̄. x̄ is
is called the principal solution of the system (5.8). This condition is equivalent
to the following.

Lemma 5.2.3 Let A ∈ Mn(R) be a square matrix such that ai,j ≥ 0 for all
i, j ∈ [n]. For all j ∈ [n], let us denote η(j) = {i : ai,j > 0} and assume that
η(j) is nonempty. Suppose moreover that b ∈ Rn++. The system of maximum
equations (5.8) has a solution in Rn+ if and only if there exists a permutation
σ : [n] −→ [n] such that for all i ∈ [n] we have ai,σ(i) > 0 and

bi ≥ max
j∈[n]\{i}

ai,σ(j)
bj

aj,σ(j)
.

Moreover, this solution is unique if and only if for all i ∈ [n]

bi > max
j∈[n]\{i}

ai,σ(j)
bj

aj,σ(j)
.

Proof: The system (5.8) has a solution if and only if the point

x̄ =
∑
j∈[n]

(
min
i∈η(j)

bi
ai,j

)
ej

is a solution. Suppose that x̄ is a solution. This implies that for all k, we have
x̄k = mini∈η(k)

(
bi
ai,k

)
. Moreover, for all j

max
k∈[n]

(
aj,kx̄k

)
= max
k∈[n]

{
aj,k

(
min
i∈η(k)

bi
ai,k

)}
= bj .
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Therefore, there is some σ(j) ∈ [n] such that:

aj,σ(j)x̄σ(j) = aj,σ(j) min
i∈η
(
σ(j)
) ( bi
ai,σ(j)

)
= bj .

Note that, since bj > 0, this condition implies that aj,σ(j) > 0. Hence, we deduce

the equality min
i∈η
(
σ(j)
) bi
ai,σ(j)

=
bj

aj,σ(j)
. Therefore, for all i and all i ∈ η

(
σ(j)

)
, we

have bi
ai,σ(j)

≥ bj
aj,σ(j)

, and equivalently:

bi ≥ ai,σ(j)
bj

aj,σ(j)
.

Moreover, if i /∈ η
(
σ(j)

)
then ai,σ(j) = 0. Consequently, for all i, j ∈ [n],

bi ≥ ai,σ(j)
bj

aj,σ(j)
. Therefore, we deduce that

bi ≥ max
j∈[n]\{i}

ai,σ(j)
bj

aj,σ(j)
. (1)

Let us prove that for each j, σ(j) can be chosen such that σ defines a permutation
on [n]. If this is not the case then there is no surjective map j 7→ σ(j) such that,
for all j, aj,σ(j)x̄σ(j) = maxk∈[n] aj,kx̄k = bj . Consequently, there is some k0 ∈
[n] such that for all i ∈ η(k0), ai,k0 x̄k0 < bi. This is equivalent to x̄k0 <

bi
ai,k0

for

all i ∈ η(k0) which means that x̄k0 < min
i∈η(k0)

bi
ai,k0

= x̄k0 that is a contradiction.

Hence, the first implication is established.
To prove the converse note that, condition (1) implies that for all i, we have

ai,σ(i)

(
bi

ai,σ(i)

)
= bi = max

k∈[n]

(
ai,σ(k)

bk
ak,σ(k)

)
. Therefore the vector

∑
i∈[n]

(
bi

ai,σ(i)

)
eσ(i)

is a solution. Since ai,σ(i) > 0 for all i, this is the greatest solution and it follows
that

x̄σ(i) =
bi

ai,σ(i)

for all i ∈ [n]. To complete the proof, let us establish a necessary and sufficient
condition for the uniqueness of a solution. From the first part of the statement,
the strict inequality

bi > max
j∈[n]\{i}

ai,σ(j)
bj

aj,σ(j)
(2)

is equivalent to

max
j∈[n]

(
ai,σ(j)x̄σ(j)

)
= ai,σ(i)x̄σ(i) = bi > max

j∈[n]\{i}

(
ai,σ(j)x̄σ(j)

)
for all i ∈ [n]. Suppose now that (2) holds and that there is some u ∈ Rn+ with
u ≤ x̄ that is a solution. It follows that for all i, we have maxj∈[n]

(
ai,σ(j)x̄σ(j)

)
=

maxj∈[n]

(
ai,σ(j)uσ(j)

)
= bi. Since x̄ ≥ u, we have

ai,σ(i)x̄σ(i) > max
j∈[n]\{i}

(
ai,σ(j)uσ(j)

)
.

Therefore ai,σ(i)x̄σ(i) = ai,σ(i)uσ(i) = bi. Since ai,σ(i) 6= 0, we deduce that
xσ(i) = uσ(i). Consequently, if u is non-negative solution then u = x̄ which
proves the uniqueness of the solution. Conversely, suppose that there is a unique

solution of the system (5.8). Let x̄(i) be a vector of Rn+ such that x̄
(i)
j = 0 if j = i
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and x̄
(i)
j = x̄j if j 6= i. We have x̄(i) ≤ x̄ and x̄

(i)
i = 0 < bi

σ(i) = x̄i. Since there

is a unique solution, bi = maxj∈[n]

(
ai,σ(j)x̄σ(j)

)
> maxj∈[n]

(
ai,σ(j)x̄

(i)
σ(j)

)
=

maxj∈[n]\{i}
(
ai,σ(j)x̄σ(j)

)
which proves (2) and ends the proof. 2

The next statement shows that if the limit system (5.4) has a regular so-
lution, then there exists a nonnegative solution to the system of maximum
equations (5.8).

Lemma 5.2.4 Let A ∈ Mn(R+) be a square matrix such that ai,j ≥ 0 for all
i, j ∈ [n]. Suppose moreover that b ∈ Rn+. Any solution of the limit system (5.4)
in Rn+ is a solution of the system of maximum equations (5.8). Moreover, if
the limit system has a regular solution x? ∈ Rn then the system of maximum
equations (5.8) has a solution in Rn+ given by

∑
i∈[n] |x?i |ei.

Proof: First note that if x? ∈ Rn+ is a solution of the limit system, then we
have maxj∈[n] ai,jxj = bi = 〈ai, x?〉+∞ = 〈ai, x?〉−∞. Hence x? is a solution of the
system (5.8). Suppose now that x? is a regular solution of the semi-continuous
regularized system (5.4). This implies that for all i, bi = 〈ai, x?〉+∞ = 〈ai, x?〉−∞.

Let us prove that y? =
∑
i∈[n] |x?i |ei is a solution of the system (5.8). Let

J◦ = {j : x?j < 0}. Since A ∈ Mn(R+) and y? ∈ Rn+, for all i ∈ [n] we have
bi = 〈ai, x?〉−∞ ≤ 〈ai, y?〉−∞. If y? is not solution of the system (5.8) then, there
is some i ∈ [n] and some j◦ ∈ J◦ such that 〈ai, y?〉−∞ = ai,j◦ |x?j◦ | > bi. However,
this implies that 〈ai, x?〉−∞ = ai,j◦x

?
j◦
< 0 ≤ bi, which is a contradiction. Conse-

quently y? is a solution of the system (5.4). 2

In the following, a condition is given to ensure that the Cramer formula
expressed in this idempotent and non-associative algebraic structure yields a
solution to a system of maximum equations. This is a limit case of the condition
proposed by Kaykobad [22] when p −→∞.

Proposition 5.2.5 Let A ∈ Mn(R) be a square matrix such that ai,j ≥ 0 for
all i, j ∈ [n]. Suppose that b ∈ Rn++. If there exists a permutation σ : [n] −→ [n]
such that for all i, we have ai,σ(i) > 0 and

bi > max
j∈[n]\{i}

ai,σ(j)
bj

aj,σ(j)
,

then |A|∞ 6= 0. Moreover, there exists a unique solution x? =
∑
i∈[n]

|A(i)|∞
|A|∞ ei ∈

Rn+ to the system of maximum equations (5.8).

Conversely, suppose that |A|∞ 6= 0. If x? =
∑
i∈[n]

|A(i)|∞
|A|∞ ei is a unique

regular solution of the limit system (5.4) then x? is a nonnegative solution of
the system of maximum equations (5.8).

Proof: We first establish that |A|∞ 6= 0. Let us consider the system A
p
· x = b.

We have established that if

bi >
( ∑
j∈[n]\{i}

(ai,j)
2p+1 (bj)

2p+1

(aj,j)
2p+1

) 1
2p+1

(1)

for all i ∈ [n], then A is ϕp-invertible and there is a solution x(p) ∈ Rn++ to the

system A
p
· x = b.
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By hypothesis there exists a permutation σ : [n] −→ [n] such that for all i,
we have ai,σ(i) > 0 and

bi > max
j∈[n]\{i}

ai,σ(j)
bj

aj,σ(j)
.

However, we have

max
j∈[n]\{i}

ai,σ(j)
bj

aj,σ(j)
= lim
p−→∞

( ∑
j∈[n]\{i}

(ai,σ(j))
2p+1 (bj)

2p+1

(aj,σ(j))
2p+1

) 1
2p+1

.

Hence, there is some p0 ∈ N such that for all p ≥ p0, condition (1) is satisfied,
which implies that A is ϕp-invertible. Therefore, for all p ≥ p0 we have |A|p 6= 0.
From Lemma 3.2.4, the condition |A|∞ = 0 implies |A|p = 0 for all p. Hence,

we deduce that |A|∞ 6= 0. Moreover, for all p ≥ p0, x(p) =
∑
i∈[n]

|A(i)|p
|A|p ei ∈

Rn++ is a solution of the system A
p
· x = b. However x? =

∑
i∈[n]

|A(i)|∞
|A|∞ ei =

limp−→∞ x(p). It follows that x? ∈ Rn+. We only need to prove that for all i ∈ [n],

maxj ai,jx
?
j = bi. We have shown that x? ∈ Lip−→∞{x ∈ Rn : A

p
· x = b}. We

also have Lip−→∞{x ∈ Rn : A
p
· x = b} ⊂

⋂
i∈[n]

(
[〈ai, ·〉−∞ ≤ bi] ∩ [〈ai, ·〉+∞ ≥

bi]
)
. However since ai ≥ 0 for all i, it follows that for all i:

〈ai, x?〉−∞ = 〈ai, x?〉+∞ = max
j
ai,jxj = bi.

Therefore x? is a solution of the system of maximum equations. Moreover,
from Lemma 5.2.3, this solution is unique. Conversely, if |A|∞ 6= 0, then

x? ∈ Lip−→∞{x ∈ Rn : A
p
· x = b}. Consequently, if x? is regular, we de-

duce from Lemma 5.2.4 that x? is a nonnegative solution system of maximum
equations (5.8). 2

6

- x1

x2

0

x?

Figure 5.4 Positive Solutions of Limit Systems

Note that if there is a unique positive solution of the system (5.8) then x?

is identical to the principal solution x̄. We illustrate these results on simple
numerical examples.

Example 5.2.6 Let us consider the following system:{
max{2x1, 3x2} = 1
max{4x1, x2} = 1.

(5.10)
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We have a1 = (2, 3), a2 = (4, 1), b1 = 1 and b2 = 1, from which we obtain
x̄1 = min

{
1
2 ,

1
4

}
= 1

4 and x̄2 = min
{

1
3 ,

1
1

}
= 1

3 . One can check that ( 1
4 ,

1
3 ) is a

solution of the system (5.10). Let us consider the matrices:

A =

(
2 3
4 1

)
A(1) =

(
1 3
1 1

)
A(2) =

(
2 1
4 1

)
.

We have |A|∞ = (2 · 1 � (−3 · 4)) = −12;
∣∣A(1)

∣∣
∞ = (1 · 1 � (−3 · 1)) = −3;∣∣A(2)

∣∣
∞ = (2 · 1 � (−1 · 4)) = −4. One can then retrieve the principal solution:

x?1 =
1

4
x?2 =

−4

−12
=

1

3
.

In the following a three dimensional example is given.

Example 5.2.7 Let us consider the following system:max{x1, 3x2, 4x3} = 1
max{2x1, 5x2, x3} = 1
max{4x1, 2x2, x3} = 1.

(5.11)

We have a1 = (1, 3, 4), a2 = (2, 5, 1), a3 = (4, 2, 1), b1 = b2 = b3 = 1, from
which we get x̄1 = min

{
1, 1

2 ,
1
4

}
= 1

4 , x̄2 = min
{

1
2 ,

1
5 ,

1
3

}
= 1

5 , and x̄3 =

min
{

1
4 , 1, 1

}
= 1

4 . One can check that ( 1
4 ,

1
5 ,

1
4 ) is a solution of the system

(5.11). Let us consider the matrices:

A =

1 3 4
2 5 1
4 2 1

 A(1) =

1 3 4
1 5 1
1 2 1

 A(2) =

1 1 4
2 1 1
4 1 1

 A(3) =

1 3 1
2 5 1
4 2 1

 .

We have:
|A|∞ = 1 · 5 · 1 � 3 · 1 · 4 � 2 · 2 · 4 � (−4 · 5 · 4) � (−1 · 2 · 1) � (−2 · 3 · 1) = −80;

∣∣A(1)
∣∣
∞ = 1 · 5 · 1� 3 · 1 · 1� 1 · 2 · 4� (−4 · 5 · 1)� (−3 · 1 · 1)� (−2 · 1 · 1) = −20;

∣∣A(2)
∣∣
∞ = 1 ·1 ·1�2 ·1 ·4�1 ·1 ·4�(−4 ·1 ·4)�(−1 ·2 ·1)�(−1 ·1 ·1) = −16 and∣∣A(3)
∣∣
∞ = 1 · 5 · 1� 2 · 2 · 1� 3 · 1 · 4� (−4 · 5 · 1)� (−1 · 2 · 1)� (−2 · 3 · 1) = −20.

One can then retrieve the principal solution:

x?1 =
−20

−80
=

1

4
x?2 =

−16

−80
=

1

5
x?3 =

−20

−80
=

1

4
.

5.3 Limit Two-Sided Systems

Let A,C ∈Mn(R) and let b, d ∈ Rn. We consider the following system:
(
A
−
� x

) −
^ d ≤

(
C
−
� x

) −
^ b(

A
+
� x

) +
^ d ≥

(
C

+
� x

) +
^ b, x ∈ Rn

(5.12)

In the following, we provide a sufficient condition for the existence of a
solution. To do that we introduce the matrix:

A� C = (ai,j � ci,j)i,j∈[n].
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Proposition 5.3.1 Let A,C ∈ Mn(R) and let b, d ∈ Rn. If |A � C|∞ 6= 0,
then

x? =
∑
i∈[n]

|(A� C)(i)|∞
|A� C|∞

ei

is a solution of the system (5.12), where (A � C)(i) is the matrix obtained by
replacing the i-th column with b � d. Moreover, {x?} = Limp−→∞

{
x ∈ Rn :

(A� C)
p
· x = (b� d)

}
. It follows that x? is a solution of the limit system:{ (
A� C

) −
� x ≤ b� d(

A� C
) +
� x ≥ b� d, x ∈ Rn.

(5.13)

Proof: Let (a�c)i = ai�ci denote the i-th line of the matrix A�C. Moreover,

for all natural numbers p, let us denote ai
p
− ci the i-th line of matrix A

p
− C.

We have limp−→∞ ai
p
− ci = ai � ci and limp−→∞ bi

p
− di = bi � di. It follows

from Proposition 4.2.1 that for all i:

Lip−→∞
[
〈ai

p
− ci, ·〉p ≤ bi

p
− di

]
=
[
〈ai � ci, ·〉−∞ ≤ bi � di

]
.

Proposition 4.2.1 also implies Lip−→∞
[
〈ai � ci, ·〉p ≤ bi � di

]
=
[
〈ai � ci, ·〉−∞ ≤

bi � di
]
. Thus, we deduce that:

Lip−→∞
[
〈ai

p
− ci, ·〉p ≤ bi

p
− di

]
= Lip−→∞

[
〈ai � ci, ·〉p ≤ bi � di

]
.

Moreover, we have:

Lip−→∞
⋂
i∈[n]

[
〈ai � ci, ·〉p = bi � di

]
⊂
⋂
i∈[n]

Lip−→∞
[
〈ai � ci, ·〉p = bi � di

]
.

Hence, we deduce that

Lip−→∞
⋂
i∈[n]

[
〈ai � ci, ·〉p = bi � di

]
⊂
⋂
i∈[n]

Lip−→∞
[
〈ai

p
− ci, ·〉p ≤ bi

p
− di

]
.

Moreover, since |A� C|∞ 6= 0, from Proposition 5.1.1

x? =
∑
i∈[n]

|(A� C)(i)|∞
|A� C|∞

ei ∈ Limp−→∞
⋂
i∈[n]

[
〈ai � ci, ·〉p = bi � di

]
. (5.14)

Hence, we deduce that

x? ∈
⋂
i∈[n]

Lip−→∞
[
〈ai

p
− ci, ·〉p = bi

p
− di

]
. (5.15)

For all natural numbers p, let us denote: E
(p)
i = {z ∈ Rn × Rn × R2 :

〈(ai,−ci, di,−bi), z〉p ≤ 0]}, F1 = {z ∈ Rn × Rn × R2 : zi = zi+n : i ∈ [n]}
and F2 = {z ∈ Rn × Rn × R2 : z2n+1 = z2n+2 = 1}. However,{

(x, x, 1, 1) ∈ R2n+2 : 〈ai
p
− ci, x〉p ≤ bi

p
− di

}
= E

(p)
i ∩ F1 ∩ F2.

Therefore

Lip−→∞
{

(x, x, 1, 1) ∈ R2n+2 : 〈ai
p
− ci, x〉p ≤ bi

p
− di

}
⊂ Lip−→∞

(
E

(p)
i ∩B1∩B2

)
.
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It follows that

z? = (x?, x?, 1, 1) ∈
(
Lip−→∞E

(p)
i

)
∩
(
F1 ∩ F2

)
.

However

Lip−→∞E
(p)
i =

[
〈(ai,−ci, di,−bi), ·〉−∞ ≤ 0

]
∩
[
〈(ai,−ci, di,−bi), ·〉+∞ ≥ 0

]
.

Hence:(
Lip−→∞E

(p)
i

)
∩
(
F1 ∩ F2

)
={

(x, x, 1, 1) ∈ R2n+2 :
( -

ĵ∈[n]
ai,jxj

) −
^
( -

ĵ∈[n]
(−ci,j)xj

) −
^ di

−
^ (−bi) ≤ 0,

( +

ĵ∈[n]
ai,jxj

) +
^
( +

ĵ∈[n]
(−ci,j)xj

) +
^ di

+
^ (−bi) ≥ 0

}
Now, note that, for all real numbers α, β

α ≤ β ⇐⇒ α
−
^ (−β) ≤ 0 ⇐⇒ 0 ≤ (−α)

+
^ β.

Starting from System (5.12), we have for all i ∈ [n]:( -

ĵ∈[n]
ai,jxj

) −
^
( -

ĵ∈[n]
(−ci,j)xj

) −
^ di

−
^ (−bi) ≤ 0

⇐⇒
( -

ĵ∈[n]
ai,jxj

) −
^ di ≤

( -

ĵ∈[n]
ci,jxj

) −
^ bi

and ( +

ĵ∈[n]
ai,jxj

) +
^
( +

ĵ∈[n]
(−ci,j)xj

) +
^ di

+
^ (−bi) ≥ 0

⇐⇒
( +

ĵ∈[n]
ai,jxj

) +
^ di ≥

( +

ĵ∈[n]
ci,jxj

) +
^ bi.

Hence from equation (5.15), and since (x?, x?, 1, 1) ∈
⋂
i∈[n]

(
Lip−→∞E

(p)
i

)
∩(

F1 ∩ F2

)
we deduce that x? satisfies system (5.12). To conclude, since |A �

B|∞ 6= 0, from Proposition 5.1.1 and equation (5.14) we deduce that:

{x?} = Limp−→∞{x ∈ Rn : (A� C)
p
· x = b� d}.

Moreover, from Proposition 5.1.2 we deduce that x? is a solution of the system
(5.13). 2

If the matrices A = (ai,j)i,j∈[n], C = (ci,j)i,j∈[n] and the vectors b and
d have positive entries, the problem of finding a nonnegative solution to the
system (5.12) can be written:

max{a1,1x1, . . . , a1,nxn, d1} = max{c1,1x1, . . . , c1,nxn, b1}
...

...
...

max{an,1x1, . . . , an,nxn, dn} = max{cn,1x1, . . . , cn,nxn, bn}.
(5.16)

A solution of the system (5.12) is said to be regular if for all i ∈ [n]:

-

ĵ∈[n]
ai,jx

?
j
−
^ di =

+

ĵ∈[n]
ai,jx

?
j

+
^ di and

-

ĵ∈[n]
ci,jx

?
j
−
^ bi =

+

ĵ∈[n]
ci,jx

?
j

+
^ bi.

(5.17)
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Proposition 5.3.2 Let A,C ∈ Mn(R+) and let b, d ∈ Rn+. If x? is a regular
solution of the system (5.12) then it is a solution of the system (5.16), moreover∑
i∈[n] |x?i |ei is a nonnegative solution of (5.16).

Proof: Suppose that x? is a regular solution system (5.12). Let us denote
y? =

∑
i∈[n] |xi|ei. For any equation (i), we consider four cases:

(i)
-
^j∈[n] ai,jx

?
j
−
^ di = bi. In such a case, since bi ≥ 0,

-
^j∈[n] ai,jy

?
j
−
^ di =

bi

(ii) bi =
-
^j∈[n] ci,jx

?
j
−
^ bi. Similarly, since di ≥ 0,

-
^j∈[n] ci,jy

?
i
−
^ bi = di

(iii) Suppose that (i) and (ii) do not hold. In such a case:

-

ĵ∈[n]
ai,jx

?
j
−
^ di =

-

ĵ∈[n]
ai,jx

?
j =

-

ĵ∈[n]
ci,jx

?
j =

-

ĵ∈[n]
ci,jx

?
j
−
^ bi.

If
-
^j∈[n] ai,jx

?
j =

-
^j∈[n] ci,jx

?
j < 0, then there is some j0, k0 ∈ [n] such that

x?j0 < 0, x?k0 < 0 and such that

ai,j0xj0 =
-

ĵ∈[n]
ai,jx

?
j =

-

ĵ∈[n]
ci,jx

?
j = ci,k0xk0 .

It follows that

-

ĵ∈[n]
ai,jy

?
j = −ai,j0x?j0 = −ci,k0x?k0 =

-

ĵ∈[n]
ci,jy

?
j > 0,

which implies that

-

ĵ∈[n]
ai,jy

?
j
−
^ di =

-

ĵ∈[n]
ci,jy

?
j
−
^ bi.

Since these properties hold for all i, we deduce the result. 2

Example 5.3.3 Let us consider the system{
max{2x1, x2, 3} = max{x1, x2, 4}
max{x1, 3x2, 2} = max{2x1, 2x2, 3}.

(5.18)

We have A =

(
2 1
1 3

)
, C =

(
1 1
2 2

)
, b =

(
4
3

)
, and d =

(
3
2

)

A� C =

(
2 0
−2 3

)
and b� d =

(
4
3

)
.

It follows that:

(A� C)(1) =

(
4 0
3 3

)
and (A� C)(2) =

(
2 4
−2 3

)
.

We obtain

x?1 =
12

6
= 2 and x?2 =

8

6
=

4

3
.
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5.4 Some Remarks on the Symmetrisation of Idempotent
Semirings

The above algebraic structure can be viewed as some kind of non-associative
symmetrization of the idempotent semi-ring (R+,∨, ·). However there exists an-
other approach to construct a ring involving a balance relation and symmetriz-
ing (R+,∨, ·) (see [21] and [28] in a Max-Plus context). Following the usual
construction of integers from natural numbers, one can introduce the following
balance relation defined on R2

+ × R2
+ by:

(x+, x−)∇(y+, y−) ⇐⇒ max{x+, y−} = max{y+, x−}, (5.19)

where x+, x−, y+, y− ∈ R+. Let us denote x = (x+, x−) for all (x+, x−) ∈ R2
+

and consider the quotient S = R2
+\∇. Let us define the operations ⊕ and ⊗ on

S as:

x⊕ y = (x+ ⊕ y+, x− ⊕ y−) = (max{x+, y+},max{x−, y−}), (5.20)

and
t⊗ x = (t+x+ ⊕ t−x−, t+x− ⊕ t−x+). (5.21)

S can be decomposed in three equivalence classes S⊕, S	 and S◦ respectively
associated to the sets {(x+, t) : t < x+} (called positive), {(t, x−) : t < x−}
(called negative) and {(x◦, x◦)} called balanced. All the familiar identities valid
in rings admit analogues replacing equalities by balances. This means that
associativity holds over S. It follows that the binary operation ⊕ defined on S
cannot be identified to the binary operation �. However, it can be related to

the semi-continuous regularized operators
−
^ and

+
^.

Let V : S −→ R be the map defined as V (⊕x+) = x+ for all x+ ∈ R+,
V (	x−) = −x− for all x− ∈ R+, and V (x◦, x◦) = 0 for all x◦ ∈ R+. Suppose
that (x1, ...,xm) ∈ Sm. Then

V
( ⊕
i∈[m]

xi

)
= V

(
max
i∈[n]

xi,+,max
i∈[n]

xi,−

)
=

1

2

(
+
^
i∈[m]

V (xi) +
-
^
i∈[m]

V (xi)
)
. (5.22)

Suppose that A =
(
ai,j
)
i=1...n
j=1...n

∈ Mn(S). A determinant can be derived

from this associative algebraic structure as:

|A|S =
⊕
σ∈Sn

sgn(σ)
⊗
i∈[n]

ai,σ(i), (5.23)

where sgn(σ) = ⊕1 if σ is even and sgn(σ) = 	1 if σ is odd. Suppose that A
is a 3× 3-dimensional real matrix

A =

3 2 3
1 3 2
3 1 3

 .

The positive components of A can be identified to S⊕. If A is the correspond-
ing matrix, then |A|S = (27, 27)∇0 and we cannot derive a Cramer solution.
However, one can check that |A|∞ = 12 6= 0.

The symmetrization process described above is in general used in the con-
text of Maslov’s semi module where we replace ∨ with ⊕ and + with ⊗ [24].
Applications can be found in [23] and [26] for Max-Plus. To be more pre-
cise, let M = R ∪ {−∞}. For x and y in Mn let dM+

(x, y) =|| ex − ey ||∞
where ex = (ex1 , . . . , exn), with the convention e−∞ = 0, and, for u ∈ Rn+,
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|| u ||= maxi∈[n] xi. The map x 7→ ex is a homeomorphism from Mn with the
metric dM+

to Rn+ endowed with the metric induced by the norm || · ||∞; its
inverse is the map ln(x) = (ln(x1), . . . , ln(xn)) from Rn+ to Mn, with the con-
vention ln(0) = −∞. For all t1, . . . , tm ∈ M and all x1, . . . , xm ∈ Mn, let us
denote:

m⊕
i=1

ti ⊗ xi =

m∨
i=1

(
xi + ti11n

)
. (5.24)

In Chapter 3 of [23] it was shown that Max-Plus algebra can also be viewed
as a limit algebraic structure via the dequantization principle. For any nat-
ural number p, let ρp : M −→ R+ be the map defined for all x ∈ M as
ρp(x) = e(2p+1)x. We obviously have ρp(−∞) = 0. Consequently, ρp is an home-
omporphism from M to R+. Let us consider the binary operation ⊕p defined
for all x, y ∈M as x⊕p y = ρp

−1(ρp(x) + ρp(y)) = 1
2p+1 ln

(
e(2p+1)x + e(2p+1)y

)
.

We have here replaced the continuous parameter h with 1
2p+1 to keep nota-

tions homogeneous. From [23], it can easily be checked that limp−→∞ x⊕p y =
x⊕y = max{x, y}. Moreover, note that for all p the product ρp

−1(ρp(x).ρp(y)) =
x+ y = x⊗ y is invariant.

In the following a non-associative symmetrisation is proposed. Suppose now
that x ∈ R− and let us extend the logarithm function to the whole set of real
numbers. This we do by introducing the set

M̃ = M ∪ (R + iπ) (5.25)

where i is the complex number such that i2 = −1 and R+iπ = {x+iπ : x ∈ R}.
In the following we extend the logarithmic function to M̃. Let ψln : R −→ M̃
be the map defined by:

ψln(x) =

 ln(x) if x > 0
−∞ if x = 0

ln(−x) + iπ if x < 0.
(5.26)

The map x 7→ ψln(x) is an isomorphism from R to M̃. Let ψexp(x) : M̃ −→ R
be its inverse. Notice that ψln(−1) = iπ. The scalar multiplication is extended

to the binary operation ⊗̃ : M̃× M̃ −→ M̃ defined by
x ⊗̃ y = y ⊗̃ x = x+ y
x ⊗̃ (y + iπ) = (y + iπ) ⊗̃ x = x+ y + iπ

(x+ iπ) ⊗̃ (y + iπ) = (y + iπ) ⊗̃ (x+ iπ) = x+ y
(x+ iπ) ⊗̃ −∞ = −∞ ⊗̃ (x+ iπ) = −∞.

(5.27)

For all z ∈ M̃ the symmetrical element is z̃ = iπ⊗z. One can then introduce
a corresponding absolute value function | · |M̃ : M̃ −→ R ∪ {−∞} defined by:

|z|M̃ =

z − iπ if z ∈ R + iπ
z if z ∈ R
−∞ if z = −∞.

(5.28)

This absolute value allows us to define the following binary operation on
M̃× M̃:

z�̃u =


z if |z|M̃ > |u|M̃
z if z = u
−∞ if z̃ = u
u if |z|M̃ < |u|M̃.

(5.29)
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By definition we have z�̃u = ψln

(
ψexp(z)�ψexp(u)

)
. Moreover, we have z⊗̃u =

ψln

(
ψexp(z)⊗ ψexp(u)

)
. For all z ∈ M̃n, let us denote:

˜�
i∈[n]

zi = ψln

(
�
i∈[n]

ψexp(zi)
)
. (5.30)

In the remainder, we introduce a sign function s̃gn defined on Sp such that
s̃gn(σ) = 0 if σ is even and s̃gn(σ) = iπ if σ is odd. Suppose that A is a square

matrix of Mn(M̃). The symmetrized determinant defined on M̃ is now:

|A|M̃,∞ = ψln

(
|ψexp(A)|∞

)
= ˜�
σ∈Sn

(
s̃gn(σ)⊗̃i∈[n]

ai,σ(i)

)
. (5.31)

We end this section by showing that the dequantization principle can also
be applied to retrieve as a limit case the operation �̃.

Lemma 5.4.1 For all z ∈ M̃n, we have

�̃i∈[n]
zi = lim

p−→∞

1

2p+ 1
ψln

( ∑
i∈[n]

ψexp

(
(2p+ 1)zi

))
.

Proof: Let α : M̃ −→ {−∞, 0, iπ} be the map defined as:

α(z) =

 iπ if z ∈ R + iπ
0 if z ∈ R
−∞ if z = −∞.

This map is the analogue of a sign function defined on M̃. By construction, for
all i we have from equation (5.28):

zi = α(zi) + |zi|M̃

with |zi|M̃ ∈ R ∪ {−∞}. Moreover

ψexp

(
α(zi) + |zi|M̃

)
= ψexp

(
α(zi)

)
ψexp

(
|zi|M̃

)
.

Since ψexp(iπ) = −1, ψexp(0) = 1 an ψexp(−∞) = 0, we deduce that

(ψexp(z1), ..., ψexp(zn)) ∈ Rn.

Therefore:

lim
p−→∞

( ∑
i∈[n]

ψexp

(
(2p+ 1)zi

)) 1
2p+1

= lim
p−→∞

( ∑
i∈[n]

(
ψexp(zi)

)2p+1
) 1

2p+1

= �
i∈[n]

ψexp

(
zi
)
.

It follows that

lim
p−→∞

1

2p+ 1
ψln

( ∑
i∈[n]

ψexp

(
(2p+ 1)zi

))
= ψln

(
�
i∈[n]

ψexp

(
zi
))

= �̃i∈[n]
zi,

which ends the proof. 2
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6 Eigenvalues in Limit

In the following, we say that λ ∈ R is an eigenvalue of A in limit, if: (1) there

exists a sequence {(λp, vp)}p∈N ⊂ R×Rn such that for all p, vp 6= 0 and A
p
· vp =

λpvp, ; (2) there is an increasing sequence {pk}k∈N with limk−→∞(λpk , vpk) =
(λ, v) and v 6= 0. v is called an eigenvector in limit of A.

We start with the following intermediary result which will be useful in the

following. We say that for all λ ∈ R, P
(p)
A (λ) = |A

p
− λIn|p where In is the

n-dimensional identity matrix, is a ϕp-characteristic polynomial in λ.

Proposition 6.0.1 Let A ∈ Mn(R) be a square matrix. For all λ ∈ R, the

ϕp-characteristic polynomial P
(p)
A (λ) in λ is

P
(p)
A (λ) =

ϕp∑
k∈{0}∪[n]

(−1)n−k
ϕp∑
I⊂[n]

Card(I)=k

ϕp∑
σ∈SI

(
sign(σ)

∏
i∈I

ai,σ(i)

)
λn−k,

where SI denotes the set of all the permutations defined on I. Moreover for all
λ ∈ R

P
(∞)
A (λ) = lim

p−→∞
P

(p)
A (λ) = �

I⊂[n],Card(I)=k
σ∈SI , k∈{0}∪[n]

(−1)n−k
(
sign(σ)

∏
i∈I

ai,σ(i)

)
λn−k.

Proof: The first part is derived using the method of expanding a character-
istic polynomial with respect to its principal minors and making the formal

substitution + 7→
p
+. Since the empty product is by convention equal to the

multiplicative identity, the coefficient of the highest degree term is equal to 1.
Let

Ξn =
⋃

k∈{0}∪[n]

{
σ : σ ∈ SI , I ⊂ [n],Card(I) = k

}
.

If Card(I) = k, then Card(SI) = k!. Therefore Card(Ξn) =
∑n
k=0 k!Ckn. Let

us denote qn =
∑n
k=0 k!Ckn and let Bqn = {e1, ..., eqn} be the canonical basis of

Rqn . Since Card(Ξn) = qn, there exists a bijective index function j : Ξn 7→ [qn]
which associates with each permutation of Ξn an integer in [qn]. Therefore, we
have Bqn = {ej(σ)}σ∈Ξn . Let us consider the vector γA ∈ Rqn defined as:

γA =
∑

k∈{0}∪[n]

∑
σ∈SI

I⊂[n],Card(I)=k

(
sign(σ)

∏
i∈I

ai,σ(i)

)
ej(σ). (6.1)

Let us introduce the transformation τA : R −→ Rqn defined by

τA(λ) =
∑

k∈{0}∪[n]

∑
σ∈SI

I⊂[n],Card(I)=k

λn−kej(σ). (6.2)

An elementary calculus shows that, for all λ ∈ R

P
(p)
A (λ) =

〈
γA, τA(λ)

〉
p
.

For all u ∈ Rqn , we have limp−→∞〈γA, u〉p = 〈γA, u〉∞. Hence, P∞A (λ) =
limp−→∞

〈
γA, τA(λ)

〉
p

= 〈γA, τA(λ)〉∞. 2
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P∞A is called the limit characteristic polynomial. Let us introduce now the
lower and upper characteristic polynomials, respectively defined by

P
(∞)
A,− (λ) =

-
^

I⊂[n],Card(I)=k
σ∈SI , k∈{0}∪[n]

(−1)n−k
(
sign(σ)

∏
i∈I

ai,σ(i)

)
λn−k (6.3)

and

P
(∞)
A,+ (λ) =

+
^

I⊂[n],Card(I)=k
σ∈SI , k∈{0}∪[n]

(−1)n−k
(
sign(σ)

∏
i∈I

ai,σ(i)

)
λn−k. (6.4)

Proposition 6.0.2 Let A ∈Mn(R) be a square matrix. We have:

Limp−→∞[P
(p)
A = 0] = [P∞A,− ≤ 0] ∩ [P∞A,+ ≥ 0] = [P∞A,− + P∞A,+ = 0].

Moreover, λ ∈ R is an eigenvalue in limit if and only if:

λ ∈ [P∞A,− + P∞A,+ = 0].

Proof: Let us denote γA and τA(λ) respectively as in equation (6.1) and
(6.2). From Proposition 4.2.2, we have Limp−→∞[〈γA, ·〉p = 0] = [〈γA, ·〉−∞ ≤
0] ∩ [〈γA, ·〉+∞ ≥ 0]. Since that map τA is continuous, Limp−→∞[P

(p)
A = 0] =

Limp−→∞
[〈
γA, τA(·)

〉
p

= 0
]

=
[〈
γA, τA(·)

〉−
∞ ≤ 0

]
∩
[〈
γA, τA(·)

〉+
∞ ≥ 0

]
. How-

ever, we have for all λ

P
(∞)
A,− (λ) =

〈
γA, τA(λ)

〉−
∞ and P

(∞)
A,+ (λ) =

〈
γA, τA(λ)

〉+
∞.

Hence Limp−→∞[P
(p)
A = 0] = [P∞A,− ≤ 0]∩[P∞A,+ ≥ 0]. The last equality is an im-

mediate consequence of Lemma 4.1.3. To complete the proof, from Proposition
4.2.2, λ ∈ [P∞A,− ≤ 0] ∩ [P∞A,+ ≥ 0] if and only if there is an increasing sequence
{pq}q∈N and a sequence of real numbers {λpq}q∈N such that limq−→∞ λpq = λ

and P
(pq)
A (λpq ) =

〈
γA, τA(λpq )〉pq = 0 for all q. Hence, since τA is continuous, λ

is an eigenvalue in limit, if and only if:

τA(λ) ∈ Limp−→∞
[
〈γA, ·〉p = 0

]
=
[
〈γA, ·〉−∞ ≤ 0

]
∩
[
〈γA, ·〉+∞ ≥ 0

]
.

From Lemma 4.1.3 this condition is equivalent to

τA(λ) ∈
[
〈γA, ·〉−∞ + 〈γA, ·〉+∞ = 0

]
.

Equivalently, we have:〈
γA, τA(λ)

〉−
∞ + 〈γA, τA(λ)

〉+
∞ = 0.

Thus λ ∈ R is an eigenvalue in limit if and only if P∞A,−(λ)+P∞A,+(λ) = 0, which
ends the proof.2

Given a square matrix with positive entries A ∈ Mn(R++), the Perron-
Frobenius theorem states that there is an eigenvalue called the spectral radius
of A and denoted by ρA such that ρA ≥ |λ| for all eigenvalues of A, where
| · | denotes the module of λ. ρA is related to an eigenvector vA ∈ Rn++, with
AvA = ρAvA. λ > 0 is an eigenvalue in the sense of the matrix product � (a
�-eigenvalue) if there is a positive vector v ∈ Rn+ such that A� v = λv. In such
a case λ is also called a geometric Max-Times eigenvalue. We say that λ is a
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ϕp-eigenvalue of A if A
p
· v = λv for some vector v ∈ Rn\{0}. If A ∈Mn(R++),

then Φp(A) ∈Mn(R++). Hence Φp(A) is endowed with a spectral radius ρΦp(A),

and a vector u
(p)
A ∈ Rn++ such that Φp(A)u

(p)
A = ρΦ(A)u

(p)
A . It follows that setting

v
(p)
A = φ−1

p (u
(p)
A ) and ρ

(p)
A = ϕ−1

p (ρΦp(A)) that

A
p
· v(p)

A = ρ
(p)
A v

(p)
A . (6.5)

In such a case, ρ
(p)
A is called a ϕp-spectral radius of A. Notice that in the case

where A ∈ Mn(R++) there is only one �-eigenvalue in R++ (see for instance
[13]).

The next result was proven in [6] (Proof 4 on page 7 and Theorem 8) which
also mentions relation (6.5). The eigenvalue part of Proposition 6.0.3 can also be
found in [17] and [18]. Additional related results can be found in [25] (Theorems
2.3 and 2.6).

Proposition 6.0.3 Let A ∈ Mn(R++) be a square matrix. For λ ∈ R++ and
all vectors v ∈ Rn+\{0} such that A�v = λv, there is an increasing subsequence

{pq}q∈N such that λ = limq−→∞ ρ
(pq)
A and v = limq−→∞ v

(pq)
A where for all p,

A
p
· v(p)

A = ρ
(p)
A v

(p)
A .

Proposition 6.0.4 Let A ∈ Mn(R++) be a square matrix. If λ ∈ R++ is
a �-eigenvalue then λ ∈ [P∞A,− + P∞A,+ = 0]. Moreover, if λ is maximal in

[P∞A,− + P∞A,+ = 0], then it is a �-eigenvalue and λ = limq−→∞ ρ
(pq)
A .

Proof: From Proposition 6.0.3, we have λ = ρ∞A , we deduce that

λ ∈ Limp−→∞[P
(p)
A = 0] = [P∞A,− ≤ 0] ∩ [P∞A,+ ≥ 0] = [P∞A,− + P∞A,+ = 0].

Conversely, suppose that λ ∈ [P∞A,− ≤ 0] ∩ [P∞A,+ ≥ 0] and assume that λ is

maximal in [P∞A,− + P∞A,+ = 0]. Then there is a real sequence {λ(p)}p∈N with

λ(p) ∈ [P
(p)
A = 0] for all natural numbers p and such that limp−→∞ λ(p) = λ.

Let {ρ(p)
A }p∈N such that ρ

(p)
A is a ϕp-Perron-Frobenius eigenvalue for all p. From

Proposition 6.0.3, there is a �-eigenvalue µ such that µ = limp−→ ρ
(p)
A . It follows

that µ ∈ [P∞A,− ≤ 0] ∩ [P∞A,+ ≥ 0] = [P∞A,− + P∞A,+ = 0]. Suppose that µ 6= λ
and let us show a contradiction. Since λ is maximal, this implies that µ < λ.
However, this also implies that there is some p0 ∈ N such that for all p > p0,

λ(p) > ρ
(p)
A , which is a contradiction. Consequently, µ = λ and it follows that λ

is a �-eigenvalue, which ends the proof. 2

In the following, we propose several examples that we relate to the literature
on tropical matrix algebra. For that we are going to transfer in a Max-Times
context several notions used in Max-Plus algebras. In particular, we study the
notion of algebraic eigenvalue analysed in [13] and [2]. A �-polynomial function
is a map P� : R+ −→ R+ of the form P�(λ) = �i∈[n]

piλ
i = maxi∈[n] piλ

i.

If pn 6= 0, P� is of degree n. Suppose that all the entries of A are positive.
The roots of a polynomial function P� are the points of non-differentiability of
P�. All these points can be seen as exponential transformations of the corner
points defined in [13]. The notion of maximum cycle mean arising in Max-Plus
algebra can be transferred in a Max-Times context. It is the maximum of the
geometric weight-to-length ratio over all cycles (see [13] and [2] in a Max-Plus
context). It can be seen as the spectral radius of a matrix in the context of the
Max-Times semi-ring:

ρ(A) = max
k≥1

max
i1,...,ik

(
ai1,i2 × · · · × aik,i1

) 1
k . (6.6)
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The permanent polynomial characteristic of A is

χA(λ) = per(A� λIn). (6.7)

It is shown in [13] that the greatest corner (tropical roots) of the Max-Plus
permanent polynomial is the corresponding maximum cycle mean in Max-Plus
algebra (Theorem 5.3.4; see also [2]). As the exponential function is increasing,
the ranking of the roots is not modified in a Max-Times context.

Example 6.0.5 Let us consider the matrix A =

(
2 1
1 2

)
. The geometric mean

of elementary cycles of length 1, are 2, 2. The geometric mean of the cycle
of length 2 is 1. The permanent polynomial characteristic of A is χA(λ) =
(2 � λ)2 � 1 = max{max{2, λ}2, 1} = (λ� 2)2. Clearly ρ = 2 is a �-eigenvalue
and v = (1, 1) is a �-eigenvector, since A � v = 2v. Moreover ρ = 2 is also
an algebraic eigenvalue of A in the idempotent semiring Max-Times. The

ϕp Perron-Frobenius eigenvalue is ρ
(p)
A = (22p+1 + 12p+1)

1
2p+1 and we have

limp−→∞ ρ
(p)
A = 2. We have

P
(p)
A (λ) =

(
(λ2)2p+1 − (2λ)2p+1 − (2λ)2p+1 + 42p+1 − 1

) 1
2p+1 .

Hence, taking the limit yields:

P∞A (λ) = (λ2) � (−2λ) � (−2λ) � 4 � (−1).

Moreover
P∞A,−(λ) = (λ2)

−
^ (−2λ)

−
^ (−2λ)

−
^ 4

−
^ (−1)

and
P∞A,+(λ) = (λ2)

+
^ (−2λ)

+
^ (−2λ)

+
^ 4

+
^ (−1).

We have P∞A,−(2) = −4 ≤ 0 and P∞A,+(2) = 4 ≥ 0.

Example 6.0.6 Let us consider the matrix A =

1 2 1
2 2 9
1 1 3

. The geometric

mean of elementary cycles of length 1, are 1, 2, 3, of length 2 are 1 2, 3, of
length 3 are 18

1
3 , 2

1
3 . Clearly ρ = 3 is a �-eigenvalue and v = (2, 3, 1) is a

�-eigenvector, since A � v = 3v. The permanent polynomial characteristic of
A is

χA(λ) = (1 � λ)(2 � λ)(3 � λ) � 2 � 18 � (2 � λ) � 4(3 � λ) � 9(1 � λ).

An elementary simplification yields

χA(λ) = λ3 � 3λ2 � 9λ� 18.

The factorization (see the resolution algoritm proposed in [13], p. 108) is:

χA(λ) = (λ� 3)2(λ� 2).

It follows that the roots of the permanent characteristic polynomial are ρ = 3
(the greatest root) and µ = 2. These roots are the algebraic eigenvalues of A.
However only ρ = 3 is a geometric eigenvalue. We have

P
(p)
A (λ) =

(
− (λ3)2p+1 +

[
(2λ2)2p+1 + (1λ2)2p+1 + (3λ2)2p+1

]
−
[
(2 · 3 · λ)2p+1 − (1 · 9 · λ)2p+1 − (1 · 2 · λ)2p+1

+ (2 · 2 · λ)2p+1 − (1 · 3 · λ)2p+1 + (1 · 1 · λ)2p+1
]

+
[
(1 · 2 · 3)2p+1 + (2 · 1 · 1)2p+1 + (2 · 9 · 1)2p+1

− (1 · 2 · 1)2p+1 − (2 · 2 · 3)2p+1−(1 · 9 · 1)2p+1
]) 1

2p+1

.
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Hence, taking the limit yields:

P∞A (λ) = −λ3 � 2λ2 � λ2 � 3λ2

� 6λ� (−9λ) � (−2λ) � 4λ� (−3λ) � λ

� 3 � 2 � 18 � (−2) � (−12) � (−9).

Moreover

P∞A,−(λ) = −λ3 −^ 2λ2 −^ λ2 −^ 3λ2

−
^ 6λ

−
^ (−9λ)

−
^ (−2λ)

−
^ 4λ

−
^ (−3λ)

−
^ λ

−
^ 3

−
^ 2

−
^ 18

−
^ (−2)

−
^ (−12)

−
^ (−9).

and

P∞A,+(λ) = −λ3 +
^ 2λ2 +

^ λ2 +
^ 3λ2

+
^ 6λ

+
^ (−9λ)

+
^ (−2λ)

+
^ 4λ

+
^ (−3λ)

+
^ λ

+
^ 3

+
^ 2

+
^ 18

+
^ (−2)

+
^ (−12)

+
^ (−9).

We have P∞A,−(3) = −27 ≤ 0 and P∞A,+(3) = 27 ≥ 0. µ = 2 is an algebraic
eigenvalue and also satisfies the condition P∞A,−(2) = −18 ≤ 0 and P∞A,+(2) =
18 ≥ 0. Therefore µ is also an eigenvalue in limit.

In the next example, we consider a case where there is some µ ∈ [P∞A,− ≤
0] ∩ [P∞A,+ ≥ 0] = [P∞A,− + P∞A,+ = 0] that is an eigenvalue in limit but is not an
algebraic eigenvalue over the Max-Times idempotent semi-ring.

Example 6.0.7 Let us consider the matrix A =

(
1 1
1 1

)
. ρ = 1 is a �-

eigenvalue associated to v = (1, 1) since A � v = 1 · v The permanent is

(λ � 1)2. The ϕp-Perron-Frobenius eigenvalue is ρ
(p)
A = 2

1
2p+1 and we have

limp−→∞ ρ
(p)
A = 1. For all p, there is another eigenvalue µ(p) = 0. We have

P
(p)
A (λ) = (λ2)2p+1 − λ2p+1 − λ2p+1 + 12p+1 + (−1)2p+1.

Taking the limit yields:

P∞A (λ) = (λ2) � (−λ) � (−λ) � 1 � (−1).

Therefore

P∞A,−(λ) = (λ2)
−
^ (−λ)

−
^ (−λ)

−
^ 1

−
^ (−1)

and
P∞A,+(λ) = (λ2)

+
^ (−λ)

+
^ (−λ)

+
^ 1

+
^ (−1).

We have P∞A,−(1) = −1 ≤ 0 and P∞A,+(1) = 1 ≥ 0. There is another solution µ =
0, we have P∞A,−(0) = −1 ≤ 0 and P∞A,+(0) = 1 ≥ 0. Hence P∞A,−(0)+P∞A,+(0) =
0 and 0 is an eigenvalue in limit associated with the vector u = (1,−1). We
have A� u = 0. However u is not a nonnegative vector. Moreover, 0 is not an
algebraic eigenvalue.

Example 6.0.7 shows that an eigenvalue in limit may not be algebraic. How-
ever, examples 6.0.5, 6.0.6 and 6.0.7 do not show any situation in which an
algebraic eigenvalue is not an eigenvalue in limit. In example 6.0.6, µ = 2
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is an algebraic (non-geometric) eigenvalue which is an eigenvalue in limit. In
the following, Example 6.0.8 shows that an algebraic eigenvalue may not be an
eigenvalue in limit. However, further investigations would be needed to know
if any algebraic eigenvalue of a non-negative matrix is the absolute value of an
eigenvalue in limit. In particular, it would be interesting to determine if a fac-
torization of the polynomials in limit is possible and how it is linked to that of
the permanent of a non-negative matrix.

Example 6.0.8 Let us consider the matrix A =

(
2 7
1 3

)
. The geometric mean

of elementary cycles of length 1, are 2, 3. The geometric mean of the cycle
of length 2 is 7

1
2 . Clearly ρ = 3 is a �-eigenvalue. The permanent polynomial

characteristic of A is χA(λ) = (2�λ)(3�λ)�7 = max{max{2, λ}·max{3, λ}, 7}.
The factorization is:

χA(λ) = (λ� 3)
(
λ�

7

3

)
.

Hence, η = 7
3 is also an algebraic eigenvalue of A in the idempotent semiring

Max-Times. We have

P
(p)
A (λ) =

(
(λ2)2p+1 − (2λ)2p+1 − (3λ)2p+1 + 62p+1 − 72p+1

) 1
2p+1 .

Hence, taking the limit yields:

P∞A (λ) = (λ2) � (−2λ) � (−3λ) � 6 � (−7).

Moreover
P∞A,−(λ) = (λ2)

−
^ (−2λ)

−
^ (−3λ)

−
^ 6

−
^ (−7)

and
P∞A,+(λ) = (λ2)

+
^ (−2λ)

+
^ (−3λ)

+
^ 6

+
^ (−7).

The geometric eigenvalue ρ = 3 satisfies the relations P∞A,−(3) = −9 ≤ 0 and

P∞A,+(3) = 9 ≥ 0. We can check that the algebraic eigenvalue η = 7
3 is not

an eigenvalue in limit. We have P∞A,−( 7
3 ) = −7 < 0 and P∞A,+( 7

3 ) = −7 < 0.

Therefore P∞A,−( 7
3 ) + P∞A,+( 7

3 ) = −14 6= 0. However, µ = − 7
3 is an eigenvalue

in limit since P∞A,−(− 7
3 ) = −7 ≤ 0 and P∞A,+(− 7

3 ) = 7 ≥ 0.
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