
HAL Id: hal-03714308
https://hal.science/hal-03714308v1

Submitted on 5 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

A Tracking Model Predictive Control for Input-Output
LPV Systems using Parameter Extrapolation

Marcelo Menezes Morato, Julio E Normey-Rico, Olivier Sename

To cite this version:
Marcelo Menezes Morato, Julio E Normey-Rico, Olivier Sename. A Tracking Model Predic-
tive Control for Input-Output LPV Systems using Parameter Extrapolation. LPVS 2022 - 5th
IFAC Workshop on Linear Parameter Varying Systems, Sep 2022, Montreal, Canada. pp.55-60,
�10.1016/j.ifacol.2022.11.290�. �hal-03714308�

https://hal.science/hal-03714308v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


A Tracking Model Predictive Control for
Input-Output LPV Systems using

Parameter Extrapolation ?

Marcelo M. Morato ∗,∗∗ Julio E. Normey-Rico ∗

Olivier Sename ∗∗

∗Dept. de Automação e Sis., Univ. Fed. de Santa Catarina, Brazil.
∗∗Univ. Grenoble Alpes, CNRS, Grenoble INP>, GIPSA-lab, 38000
Grenoble, France. >Institute of Engineering Univ. Grenoble Alpes.

(marcelomnzm@gmail.com)

Abstract: This paper presents a novel Model Predictive Control (MPC) algorithm for Linear
Parameter Varying (LPV) systems represented in the Input-Output (IO) form. The proposed
MPC is derived using estimates for the future scheduling parameter trajectory, made viable
through a recursive Taylor-based extrapolation law. The method also includes explicit integral
action, which, coupled with quadratic terminal ingredients, enables offset-free reference tracking
and asymptotic IO stability. A numeric benchmark example is used to illustrate the advantages
of the proposed method, as well as its real-time capabilities.

Keywords: Model Predictive Control, Linear Parameter Varying Systems, Input-Output
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1. INTRODUCTION

Model Predictive Control (MPC) is a very well established
control method, based on a receding-horizon optimisation
problem (Camacho and Bordons, 2013). MPC schemes us-
ing state-space (SS) process models have had considerable
research focus over the last years, with a wide variety
of results (Limon et al., 2018). Moreover, exploiting the
capacity of Linear Parameter Varying (LPV) SS models to
describe nonlinear and time-varying dynamics, LPV MPC
schemes have been developed for a wide range of appli-
cations, e.g. (Cisneros and Werner, 2017; Morato et al.,
2021); refer also to the survey (Morato et al., 2020) and
references therein.

Yet with great theoretical value, the standard SS MPC
design requires the availability of state measurements in
real time. In turn, state variables are often difficult to
measure or estimate with precision. Moreover, state es-
timation schemes can significantly deteriorate closed-loop
performances of MPC in the presence on disturbances and
constraints. Due to these issues, SS realisations fall short
of industrial expectations, which are seldom anchored in
input-output (IO) process descriptions. We also highlight
that powerful LPV IO identification tools nowadays ex-
ist for a great variety of applications and system classes
(Bachnas et al., 2014; den Boef et al., 2021).

For the previous reasons, we focus henceforth on IO
MPC schemes for LPV systems. Obtaining reliable SS
descriptions of an LPV IO model is numerically very

? This work has been supported by CNPq (304032/2019 − 0),
CAPES (001) and ITEA3 European project (15016) EMPHYSIS.

tough 1 , since the dynamic-dependency problem hinders
such translation (Tóth et al., 2011a). Therefore, it is
desirable to design MPC schemes directly using IO LPV
models, without the need for any IO-SS conversion. Up to
the Authors’ best knowledge, there are only a few papers
which propose MPC schemes for LPV systems described
in the IO form: (Abbas et al., 2015, 2016, 2018). Although
these works provide closed-loop stability guarantees, they
assume that the future scheduling behaviour is known,
which is false for the vast majority of applications, or resort
to the worst-case solution, robustifying the MPC by con-
sidering the scheduling variables as bounded uncertainties,
which often leads to excessive conservativeness.

Motivated by the fact that recent works have proposed
(numerically-cheap) recursive linear schemes that are able
to extrapolate the future scheduling trajectories with ac-
curateness, e.g. (Morato et al., 2019, 2021), we formulate
herein a novel robust MPC scheme for IO LPV systems
using such parameter extrapolation laws. With their in-
clusion, we are able to enhance the previous IO LPV
MPC schemes from (Abbas et al., 2015, 2016, 2018), while
benefiting from their stability frameworks. Specifically, the
contributions of this paper are as follows:

• Using an explicit integral action scheme, we propose
an IO LPV MPC formulation (Sec. 2), which en-
ables offset-free output tracking of piece-wise con-
stant reference trajectories. The scheme includes the
future scheduling parameter estimation scheme from
(Morato et al., 2021, 2022), which uses a Taylor ar-
gument to conceive a recursive extrapolation law.

1 This issue is exploited in details in recent key papers on the topic,
e.g. (Tóth et al., 2011a,b).



• Benefiting from the stability framework from Mayne
et al. (2000) as expanded to the LPV IO setting in
(Abbas et al., 2016), we generate terminal ingredients
that ensure a recursively feasible optimisation, and
an asymptotically stable closed-loop (Sec. 3). These
ingredients are enabled through a sufficient Linear
Matrix Inequality (LMI) constraint.
• A numeric benchmark example is used to demon-

strate the effectiveness of the proposed method, as
well as its advantages and capabilities of the algo-
rithm for real-time nonlinear applications (Sec. 4).

Notation. The index set N[a,b] represents {i ∈ N | a ≤
i ≤ b}, with 0 ≤ a ≤ b. The identity matrix of size

j is denoted as Ij ; Ij,{i} denotes the i-th row of Ij ;
−→
Ikj

denotes Ij with k columns shifted to the right. 1n denotes
the stacked vector of n unitary entries. col{·} denotes
the vectorisation of the entries and diag{v} denotes the
diagonal matrix generated with the line vector v. The
predicted value of a given variable v(k) at time instant
k + i, computed based on the information available at
instant k, is denoted as v(k + i|k). K refers to the class
of positive and strictly increasing scalar functions that
pass through the origin. A C1 function f : Rm → Rn is
such that it is differentiable with continuous derivatives.
‖ · ‖ denotes the 2-norm. A′ denotes the transpose of A,
while (?) denotes corresponding symmetrical transposes in
LMIs.

2. SETUP

2.1 Preliminaries: IO LPV Model

We consider the following discrete-time multi-input multi-
output (MIMO) LPV system given in an IO form:(

Iny +

na∑
i=1

ai(ρ(k))z−i

)
y(k) =

nb∑
j=1

bj(ρ(k))z−ju(k) .(1)

Moreover, we include an implicit integral action, taking the
vector of control inputs as follows: u(k) := δ(k) + u(k −
1) ∈ Rnu , where δ(k) stands for the corresponding control
increments. In (1), y(k) ∈ Rny is the process outputs
vector, z−1 is the one-sample backward shift operator,
na, nb ≥ 0, while ai ∈ Rny×ny and bi ∈ Rny×nu are
coefficient functions.

This LPV system is scheduled by the vector of time-
varying parameters ρ(k) ∈ Rnρ . Specifically, we assume
that these parameters are output-dependent, bounded and
measured online, this is: ρ(k) = fρ(y(k − 1)) ∈ P ⊆ Rnρ ,
being P a known set. Moreover, we consider that the
nonlinear scheduling map fρ(y) is algebraic, class C1 for
all y; P := {ρ ∈ Rnρ : ρ

j
≤ ρj ≤ ρj , j ∈ N[1,nρ]} defines a

compact, convex scheduling set. By definition, the future
scheduling parameters ρ(k + j), ∀j ∈ N[1,∞] are unknown
at time instant k.

Remark 1. Nonlinear systems can be embedded to a LPV
realisations such as Eq. (1), as long as a differential inclu-
sion property is satisfied. This topic is further explained
in (Morato et al., 2020), with experimental examples given
in (Hoffmann and Werner, 2014).

2.2 Impulse Response

The IO realisation from Eq. (1) has an equivalent infinite
impulse response form, which is given by:

y(k) =

+∞∑
i=0

hi(ρ(k), . . . , ρ(k − i))u(k − i) , (2)

where hi(·) ∈ Rny×nu are known as the Markov coefficients
of the LPV systems. These coefficients can be computed
recursively as follows, where hi(k) := hi(ρ(k), . . . , ρ(k−i)):

hi(k) =

{
bi(ρ(k))−

∑min(i,na)
j=1 aj(ρ(k))hi−j(k − j), i ≤ nb,

−
∑min(i,na)
j=1 aj(ρ(k))hi−j(k − j), else.

2.3 SS Representation for Analyses

Now, we give a non-minimal, non-unique SS representation
of Eq. (1), taking δ(k) as input. This SS model, used for
the stability analyses presented in Sec. 4, is as follows:

x(k + 1) =A(ρ(k))x(k) +B(ρ(k))δ(k) , (3)

y(k) =C(ρ(k))x(k) +D(ρ(k))δ(k) ,

where x(k) = [y(k−1)′, . . . , y(k−na)′, u(k−1)′, . . . , u(k−
nb)
′] ∈ Rnx defines the state vector with nx = nany +

nbnu. Note that in this SS representation, all states are
known variables (current and past values of the inputs and

outputs). The corresponding matrices

[
A(·) B(·)
C(·) D(·)

]
are:



−a1(·) . . . −ana(·) (b0(·) + b1(·)) . . . bnb(·) b0
Iny . . . 0 0 . . . 0 0

...
...

...
0 . . . 0 Inu . . . 0 Inu
0 . . . 0 Inu . . . 0 0

...
...

...
−a1(·) . . . −ana(·) (b0(·) + b1(·)) . . . bnb(·) b0(·)


.

2.4 Full-horizon IO Predictor

The IO LPV model from Eq. (1) is used by an MPC
algorithm and, thus, a full-horizon prediction equation is
required to compute control law at each sample. Consider
that P (k|k) = col{ρ(k + j|k)′}′,∀j ∈ N[0,Np−1] is known
(we will discuss how this vector can be generated later on),
being Np the prediction horizon. Thus, it follows that:

Y (k|k) =H(P (k|k))∆(k|k) + Θ(P (k|k))x(k) , (4)

where Y (k) = col{y(k + j|k)′}′,∀j ∈ N[0,Np−1] ∈ RnyNp
and ∆(k) = col{δ(k + j|k)′}′,∀j ∈ N[0,Np−1] ∈ RnuNp . In
MPC theory H(P (k|k))∆(k) is usually named the “forced
response” of the system, giving the dynamics implied by
the control effort, where Θ(P (k|k))x(k) is called the “free
response”, which gives the behaviour in the absence of
future control inputs. The prediction matrices are:

H(P (k|k)) =

 h0(k) . . . 0
...

. . .
...∑Np−1

0 hi(k +Np − 1) . . . h0(k +Np − 1)

 ,

Θ(P (k|k)) =
[
θ̃(k + 1)′ . . . θ̃(k +Np)

′
]′

.



The elements of Θ(P (k|k)) are found using θ(k + j) =

−
∑min(j,na)
i=1 ai(ρ(k+ j|k))θ(k+ j − 1) +

−→
Ij θ̆(k+ j) , ∀j ∈

N[1,Np], with θ̆(k + j) = [−a1(ρ(k + j|k)) . . . − ana(ρ(k +

j|k))b1(ρ(k+j|k)) . . . bnb(ρ(k+j|k))]′ and
−→
Ij = diag{

−→
Ijna ,

−→
Ijnb}.

Finally, each θ̃(k+j) is given by θ(k+j) with its (na+1)-th

element added to a correction bias
∑j
i=1 hi(k + j).

2.5 Process Constraints

We consider that the LPV system in Eq. (1) is subject
to hard compact polyhedral constraints on outputs and
inputs, which define an admissible operation. Specifically,
we use y(k) ∈ Y and u(k) ∈ U ,∀k ≥ 0, where:

Y := {y ∈ Rny : |yj | ≤ yj , ∀j ∈ N[1,ny ]} , (5)

U := {u ∈ Rnu : |uj | ≤ uj , ∀j ∈ N[1,nu]} .

Due to the explicit integral description of the control input,
the following constraint is also used: δ(k) ∈ D :=, {δ ∈
Rnu : |δj | ≤ δj , ∀j ∈ N[1,nu]} ∀k ≥ 0.

Through the sequel, we assume that the scheduling proxy
is locally Lipschitz whenever these constraints are satisfied:

Assumption 1. The nonlinear scheduling parameter map
fρ : Y → P agrees to a local Lipschitz condition around
any arbitrary point y ∈ Y, i.e. ‖fρ(y) − fρ(ŷ)‖∞ ≤
γρ‖(y − ŷ)‖∞ , ∀ y, ŷ ∈ Y, where the smallest constant
γρ is known as the Lipschitz constant for fρ(·).

2.6 Scheduling Parameter Extrapolation

The concept of MPC is based on spanning a prediction of
the process variables along a future horizon window. For
such, we use the IO LPV prediction Eq. (4). As previously
stated, the future scheduling sequence P (k|k) is required.

For this, we benefit from the framework from (Morato
et al., 2022), which is based on a first-order Taylor ex-
pansion of the scheduling proxy fρ(y(k − 1)). The main
advantage of this extrapolation procedure is that it guar-
antees a convergent guess with a small, bounded residual
error, while only resorting to linear operators.

Denote δy(k) = (y(k)− y(k − 1)) as the incremental out-
put deviation. By definition, δy is bounded to a compact
and convex box-type set δY := {δy ∈ Rny : |δyj | ≤
δyj ,∀j ∈ N[1,ny ]}.
The method is as follows: consider that the static schedul-
ing map fρ(y) can be approximated, at the first derivative

order, by fρ(y) = fρ(y)|y̆+
∂fρ(y)
∂y

∣∣∣
y̆

(y−y̆)+ξρ, being y̆ the

expansion point and ξρ a residual which inherits the dis-
crepancy between the real static map and its approximate.
Since fρ(y) is assumed class C1, it is direct that the partial

derivatives f∂ρ (k) :=
∂fρ(y)
∂y

∣∣∣
y(k)

are ultimately bounded for

all y(k) ∈ Y. From this development, we obtain:

ρ(k + 1) = ρ(k) + f∂ρ (k)δy(k) + ξρ(k) ,

...

ρ(k +Np − 1) = ρ(k +Np − 2)

+ f∂ρ (k +Np − 2)δy(k +Np − 2)

+ ξρ(k +Np − 2) .

Note that ρ(k) and δy(k) are known variables at each
instant k, whereas f∂ρ (k) can be numerically evaluated. In

practice, f∂ρ (k+j) is unknown for j ∈ N[1,N−2], but we can
assume that it shows an approximately uniform variation
rate, i.e. f∂ρ (k+j) = f∂ρ ,∀ j ∈ N[1,N−2], where f∂ρ denotes
the partial derivative evaluated at instant k (refer to the
discussion in (Morato et al., 2022)). By doing so, it is
implied that ρ(k + j) ≈ ρ(k + j − 1) + f∂ρ δy(k + j − 1|k).

Therefore, the estimate for the future scheduling variables
can be written as the sum of the estimate from the previous
sample corrected with an adjustment term f∂ρ δy(k+j−1).
Accordingly, we can write the vector-wise extrapolation in
a recursive fashion:

P (k|k) = P (k − 1|k − 1) + f∂ρ δY (k|k) , (6)

where the sequence of output increments is given by
δY (k) = col{δy(k + j|k)}′,∀j ∈ N[0,Np−2].

Lemma 1. Assume that fρ(·) is class C1 and that f∂ρ is
ultimately bounded. Assume that (1) is stable in closed-
loop. Then, the recursive extrapolation algorithm in Eq.
(6) converges.

Proof 1. This proof is reduced for brevity. Complementary
discussions are available in (Morato et al., 2022). Con-
sider that the residual term ξρ(k + j) should turn null.
Thus, use limk→∞ y(k) = ye holds (stability) and take
ξρ(k) = fρ(y(k − 1)) − fρ(y(k − 2)) − f∂ρ δy(k). Due to
the stabilisation, it directly follows that limk→∞ fρ(y(k −
1)) = limk→∞ fρ(ye) and limk→∞ δy(k) = 0, which im-
plies in limk→∞ ξρ(k) = − limk→∞ f∂ρ δy(k) → 0. This
concludes the proof. �

Lemma 2. The estimation error (residual) is ultimately

bounded, i.e. ‖ξρ(k)‖∞ ≤
(
γρ + f∂ρ

)
δy,∀k ≥ 0.

Proof 2. The residual term in the extrapolation law is
given by ξρ(k + j + 1) = fρ(y(k + j + 1)) − fρ(y(k +
j))− f∂ρ δy(k+ j). Using a triangular inequality, we obtain
‖ξρ(k+ j + 1)‖∞ ≤ ‖fρ(y(k+ j + 1))− fρ(y(k+ j))‖∞ +
‖f∂ρ δy(k + j)‖∞. Finally, due to Assumption 1, we state

that ‖ξρ(k + j + 1)‖∞ ≤ γρ‖δy(k + j)‖∞ + ‖f∂ρ δy(k +

j)‖∞. Since f∂ρ is ultimately bounded, it follows that:

‖ξρ‖∞ ≤
(
γρ + f∂ρ

)
δy. This concludes the proof. �

Remark 2. The extrapolation procedure presented in this
section is completely detailed in (Morato et al., 2022).
The Hessian-based estimates from (Hanema et al., 2021)
and the iteratively refined estimated from (Cisneros and
Werner, 2017) are comparable methods to the one con-
sidered herein. Nevertheless, the main advantage of the
proposed scheme is that converging estimates with reduced
error bounds, formulated by the means of linear laws.
Thereof, the corresponding model-process uncertainties



that are derived when applying MPC became very re-
duced, enabling less conservative control synthesis.

2.7 The MPC Design

As previously stated, we consider an MPC design for LPV
processes with IO descriptions. Accordingly, we use the
recursive extrapolation procedure in Eq. (6) to generate
the scheduling sequence P (k|k) that is used to compute
the future output predictions Y (k) through Eq. (4). In
this paper, we assume that the residual errors ξρ are null.
The MPC terminal ingredients are presented later, in Sec.
3.

Consider the following cost function:

J =

Np−1∑
i=0

` (e(k + i), v(k + i)) + V (x(k +Np)− xr) ,

where the stage cost `(e, v) := ‖e‖Q + ‖v‖R is given with
respect to the output tracking error e(k) = r(k) − y(k),
under the assumption that r(k) is piece-wise constant s.t.
r(k+j) = r(k),∀j ∈ N[0,Np−1]. The terminal cost V (x−xr)
requires x, which is the state description given through Eq.
(3), and xr, the envisioned state reference target, defined
in terms of r(k); this cost is used to penalise the distance
of non-minimal states at the end of the prediction horizon
to a given target, whereas `(·, ·) weights the performance
along the horizon. Consider Q and R as positive definite
weighting matrices, used to imply the envisioned trade-off
between control effort and output reference tracking.

Taking J into account, the proposed MPC resides in
solving the following optimisation, at each instant k:

min
∆(k)

Np−1∑
i=0

` (e(k + i), v(k + i)) + V (x(k +Np)− xr) ,

s.t. : Y (k|k) = H(P (k|k))∆(k) + Θ(P (k|k))x(k), (7)

y(k + j|k) ∈ Y ,

u(k + j|k) ∈ U ,

δ(k + j|k) ∈ D ,

(x(k +Np)− xr) ∈ Xf ,

where Xf is a terminal invariant set for the controlled
IO LPV system. Let J? (x(0), r(k), P (k|k)) be the optimal
solution of the optimisation in Eq. (7), from which ∆(k)? is
the optimal sequence of control inputs. Then, the MPC law
at time instant k considers in apply the first entry of ∆(k)?,
i.e. δ?(k|k), to the process using u(k) = u(k − 1) + δ?(k).

Definition 1. Positive Invariant Set
Assume that there exists a terminal set Xf . Xf is a
positively invariant set for stability-related SS LPV model
from Eq. (3) iff, for any x ∈ Xf and ρ ∈ P, it follows
that x+ ∈ Xf , where the successor state x+ is given by
A(ρ)x+B(ρ)δ.

3. CLOSED-LOOP STABILITY AND RECURSIVE
FEASIBILITY

Next, we discuss how to generate the MPC terminal ingre-
dients V (·) and Xf in order to render an asymptotically

stable closed-loop, as well as a recursively feasible optimi-
sation.

First, let us define the admissible steady-state targets for
the IO LPV system in Eq. (1). Consider r as a constant
output reference target. We say that r ∈ R is an admissible
target if and only if there exists a control input ur ∈ U
such that

(
Iny +

∑na
i=1 ai(fρ(r))

)
r = (

∑nb
i=1 bi(fρ(r)))ur.

Accordingly, we introduce the set of all admissible terminal
state-input targets (xr, ur), that is: Xr := {xr ∈ Rnx |xr =
[1nar, 1nbur] ,∀(r, ur) ∈ R × U}. Due to the box-type
constraints over y and u, Xr can be equivalently described
as {x ∈ Rnx | |xj | ≤ xj ,∀j ∈ N[1,nx]}.
Assumption 2. The reference trajectory R(k) = col{r(k+
j)},∀j ∈ N[0,Np−1] is known, piece-wise constant, and
admissible at each sampling instant k, i.e. r(k) ∈ R.

Assumption 3. The scheduling parameters take a constant
value ρr in steady-state, i.e. ρ = ρr, ∀ (x− xr) ∈ Xf .

Assumption 4. The stage cost function is positive definite
and uniformly continuous such that `(e, δ) ≥ α`(‖e‖) and
|`(e1, δ1)−`(e2, δ2)| ≤ λe(‖e1−e2‖)+λδ(‖δ1−δ2‖), where
α`, λe and λδ are K-functions. It is implied that `(0, 0) = 0.

Assumption 5. (1) There exists an admissible terminal
feedback law u(k − 1) + κt (x(k), r(k), P (k|k)) ∈ U .

(2) The terminal set Xf is closed, contains the origin,
and represents admissible positive invariant set.

(3) The terminal cost V (x−xr) is continuous and positive
for all x−xr ∈ Xr. Moreover V (·) represents a control
Lyapunov function for the unconstrained LPV system
in Eq. (1), meaning that there exist constants b > 0
and σ > 1 such that V (x − xr) ≤ b|x − xr|σ. This
implies that V (A(fρ(r))(x−xr)+B(ρ)κt(·))−V (x−
xr) ≤ `(y − r, κt(·)), for all r ∈ R and V (x1 − xr) −
V (x2−xr) ≤ αr (|x1 − x2|) (i.e. V (·) is a K function).

The following Theorems ensure that the error dynamics
e(k) = r(k)−y(k) converge to the origin, which conversely
means that offset-free reference tracking is ensured.

Theorem 1. Stability and Recursive Feasibility
Consider that Assumptions 2-5 hold. Suppose that there
exists a terminal control law δ = kt(x, r, P ). Consider
that the IO LPV system in Eq. (1) is controlled by the
MPC, as rendered through Eq. (7). Then, asymptotic
output stability is ensured if the following conditions hold
∀ρ ∈ P:
(C1) The origin x(k)−xr(k) = 0 lies in the interior of Xf ;
(C2) Xf is positively invariant under the terminal feed-
back controller κt(·);
(C3) The discrete Lyapunov equation is verified within
this invariant set, this is, ∀x − xr ∈ Xf and ∀ ρ ∈ P:
V (x+ − xr, ) − V (x− xr) ≤ −`(e, κt(·)), where x+ =
A(ρ)x+B(ρ)κt(·);
(C4) The image of the terminal control is admissible, i.e.
κt(·) + u ∈ U , ∀ρ ∈ P;
(C5) The terminal set Xf is a subset of Xr.
Assuming that the initial solution of the MPC problem
∆?(k) is feasible, then, the MPC is recursively feasible,
steering e(k) = r(k)− y(k) to the origin.

Proof 3. This proof is standard and follows (Mayne et al.,
2000; Morato et al., 2020).



In order to satisfy the conditions required by Theorem 1,
we choose the following quadratic terminal cost function
V (x − xr) = (x − xr)

′T (x − xr), where T = T ′ is
a positive definite weight. Accordingly, the terminal set
Xf is taken as a sub-level set of the terminal cost, i.e.:
Xf := {x ∈ Rnx |x′Tx ≤ 1}.
By definition, Xf is an ellipsoidal set constraint, which
should be positively invariant for the terminal feedback
κt(·). Thus, the following Theorem gives a numerically
solvable sufficient solution that can be used to generate
the terminal ingredients.

Theorem 2. Terminal Ingredients
Consider that Assumptions 2-5 hold. Then, conditions
(C1)-(C5) from Theorem 1 are satisfied if there exist a
symmetric positive definite matrix T ∈ Rnx×nx and a
rectangular matrix W ∈ Rnu×nx such that Y = T−1 >
0, W = KY and that LMIs (8)-(10) hold under the
minimisation of log det{Y } for all ρ ∈ P. The terminal
feedback is then given by κt(·) = K(x− xr).

Y ? ? ?
(A(ρ)Y +B(ρ)W ) Y ? ?

Y 0 Q̃−1 ?
W 0 0 R−1

≥ 0 , (8)

[
x2
j I{j}Y

I{j}Y
′ Y

]
≥ 0, j ∈ N[1,nx] ,(9)[

δ
2

i I{i}W
? Y

]
≥ 0, i ∈ N[1,nu] .(10)

Proof 4. Consider r(k) is piece-wise constant, thus sat-
isfying Assumption 2. Note that `(e, v) = ‖e‖Q +

‖v‖R is equivalent to ‖x − xr‖Q̃ + ‖v‖R, using Q̃ =

diag{QInyna , 0nunb}. Consider P (k|k) is known due to
the extrapolation procedure from Eq. (6). Since ρ(k) =
fρ(y(k − 1)), it follows that ρ(k) = ρr in steady-state,
iff limk→+∞ y(k − 1) = r. Then, by applying a Schur
complement to LMI (8), we obtain condition (C3), which
suffices for (C2). By definition, an ellipsoid ensures (C1).
(C4) and (C5) are respectively satisfied by applying Schur
complements to LMI (9) and (10). In turn, the terminal
feedback κt(·) = K(x− xr) ensures that the SS represen-
tation in Eq. (3) is asymptotically stable, which conversely
implies in the output tracking of r(k). This concludes the
proof. �

Remark 3. The terminal ingredients provided through
Theorem 2 ensure recursive feasibility and asymptotic
stability of the tracking error trajectories (refer to Propo-
sitions 1-2). Note that LMI (8) is infinite-dimensional,
having to hold ∀ ρ ∈ P. In practice, the solution can be
found by enforcing the inequalities over a sufficiently dense
grid of points (ρ) along P, then verifying it for a denser
grid.

Remark 4. An alternative formulation to the prior can be
used in order to drop the parameter-dependency of LMI
(8): the full-block S-procedure over a corresponding Lin-
ear Fractional Transformation (LFT) of the LPV system
(Scherer, 2001), leading to similar LMIs to those presented
in (Abbas et al., 2018).

Proposition 1. (Recursive Feasibility). Consider Y as a so-
lution to Theorem 2. Then, given any x ∈ Xf , xr ∈ Xr, r ∈
R and δ = κt(x, r, ·), we have x+ = Ax+BKx ∈ Xf . Con-

sider an optimal sequence ∆? = (δ?0 , δ
?
1 , . . . , δ

?
Np−1) and

an reference target r. Then δ̂c = (δ?1 , . . . , δ
?
Np−1, κt(x, r, ·))

define feasible (candidate) solution of the MPC problem in
Eq. (7) for any r ∈ R, which means that the optimisation
is recursively feasible.

Proof 5. Let Assumptions 2-5 hold. Consider there exists
a solution Y to Theorem 2. Then, from conditions (C1),
(C2), (C4), and (C5) from Theorem 1, we can infer that
the generated control signal provides recursively feasible
solutions to the MPC optimisation in (7). Take the feed-
back 2 κt(·) = K(x− xr) and ρr = fρ(r). Then, the if the
initial condition x(0) generates a feasible input sequence
∆?, all future iterations of the optimisation will also be
feasible: the generated control law control is admissible
(condition (C4)) and all state variables x ∈ Xf generate
successor state variables x+ which are also inside Xf (con-
dition (C2)), which contains the origin (condition (C1),
terminal condition for (x−xr), and Xf being sub-set of Xr
(condition (C5), which ensures that x, x+ are admissible).
This concludes the proof. �

Proposition 2. (Asymptotic Stability). Consider Y as a
solution to Theorem 2. Then, the LPV system (1) in closed
loop with the MPC input κt(·) exhibits an asymptotic
stable tracking error dynamics. That is, for any feasible
initial condition x0 and constant set-point r ∈ R, it is
implied that ‖x(k) − xr‖ ≤ β(‖x(0)‖, k), where β is a K-
function which passes through the origin.

Proof 6. Let there be a terminal stage cost V (·) such
that Assumption 4 holds. Let Assumption 5 also hold
and Proposition 1 be verified. Note that since `(·, ·) is a
quadratic stage cost, α`, λe and λu indeed exists. Consider
there exists a solution Y to Theorem 2. Then, the SS
closed-loop is stable due to (C3) of Theorem 1, which
conversely ensures that V (x(k)−xr)−V (x(k−1)−xr)) ≤
−‖y(k)− r‖Q. Thus, we obtain ‖y(k)− r‖Q ≤ β(‖(x(0)−
xr)‖, k). Since Q > 0 (positive definite), we have ‖y(k) −
r(k)‖Q ≥ ‖x(k) − xr‖ and thus asymptotic stability is
established. This concludes the proof. �

4. NUMERIC BENCHMARK

In this Section, we demonstrate the effectiveness of the
proposed method for controlling LPV system in the IO
form, without any state measure or estimation procedure
involved. For such, we consider an adapted version of the
unstable second order system from (Abbas et al., 2015),
with additional nonlinearities, given as:

2 Note that this not a traditional state-feedback, since x relates to
past input and output measurements only (refer to Eq. (3)).



y(k) =

−a1(ρ(k))︷ ︸︸ ︷
(0.2− 0.7

y(k − 1)2

10
) y(k − 1) (11)

+

−a2(ρ(k))︷ ︸︸ ︷
(−0.7− 0.4

y(k − 1)2

10
) y(k − 2)

+

b1(ρ(k))︷ ︸︸ ︷
(3.4− 1.2

y(k − 1)2

10
)u(k − 1)

+

b2(ρ(k))︷ ︸︸ ︷
(1.6− 2.8

y(k − 1)2

10
)u(k − 2) ,

where the scheduling parameter is endogenous and given

by ρ(k) = y(k−1)2

10 . This system should be controlled
such that the output trajectory y(k) tracks a given piece-
wise reference signal, whilst the following constraints are
respected: u(k) ∈ U := [−1, 1], δ(k) ∈ D := [−0.04, 0.04],
y(k) ∈ Y := [0, 5],∀k ≥ 0. We note that these constraints
imply that ρ(k) ∈ P := [0 , 2.5],∀k ≥ 0. This system
is assumed to operate under a sampling rate of 40 Hz.
The proposed MPC is tuned with a prediction horizon of
Np = 10 discrete-time steps, thus previewing a window of
250 ms.

First of all, we show that there indeed exists a solution to
Theorem 2, given by:

T−1 = Y =

 15.9262 1.2843 1.6841 2.5095
? 14.9439 2.3116 1.4652
? ? 1 0.4505
? ? ? 1

 ,

W = [ 0.1042 0.0991 0.0299 0.0299 ] .

Therefore, we can affirm that κt(x − xr) = K(x − xr),
with K = WT , V (x − xr) = (x − xr)

′T (x − xr), and
Xf := {x−xr ∈ Rnx | (x−xr)′T (x−xr) ≤ 1} are suitable
terminal ingredients for the MPC optimisation in Eq.
(7), ensuring recursive feasibility and asymptotic stability
(and, in turn, offset-free reference tracking). We stress that
these ingredients are generated offline, with respect to the
tuning parameters Q = 0.8Iny and R = 0.2Iny and the
known sets U , D, Y, and P.

Taking into account that stability is ensured by design
(and, thus, Lemma 1 holds), we now demonstrate how the
scheduling parameter extrapolation procedure operates.
During the implementation, the recursive estimates are
generated through the linear operator given in Eq. (6).
As shows Fig. 1, the generated estimates P (k|k) are very
accurate, thus passing to the MPC precise information
regarding the future behaviour of ρ. In this Fig., we can
also see that the estimation error ξρ is indeed small (refer
to Lemma 2) and converges rapidly, which means that it
can be neglected for simplicity (treating this uncertainty
robustly directly in the MPC synthesis step is a topic for
future works).

Next, we show the obtained performances with the pro-
posed method. Fig. 2 shows the system trajectories being
steered to the terminal set Xf , as ensured by the MPC.
The left-side sub-figure gives a three-dimensional cut of
Xf , while the right-side shows a two-dimensional projec-

tion. The system trajectories shown are the tracking error
e(k) = r(k)− y(k) and the control input u(k). As one can
see, the tracking error dynamics are repeatedly steered to
the origin (for each new reference goal). Fig. 3 gives the
control input trajectories (and the control increment), al-
together with the piece-wise constant reference target sig-
nal r(k) and the output. Evidently, the integral-embedded
MPC ensures offset-free tracking, which is significant.

The MPC requires, in average, 6.5 ms to solve the op-
timisation procedure, while the Taylor-based scheduling
extrapolation takes only 0.07 ms, in average. This clearly
indicates the relieved numeric burden of the proposed
technique (6.57 ms, in average), which is ready for real-
time embedded applications. We recall, once again, that
no state measures or observers are necessary, making the
proposed method coherent with industrial practices.

5. CONCLUSIONS

In this paper, a novel MPC algorithm for IO LPV systems
is proposed. The future LPV scheduling parameters are
extrapolated using a recursive Taylor expansion law, which
generates the MPC prediction matrices at each sampling
period. Terminal ingredients are offered through an LMI-
solvable remedy, which ensures Lyapunov properties of
the closed-loop. The method is able to ensure asymptotic
offset-free reference tracking, also thanks to an explicit
integral action and to these optimisation ingredients. In
order to demonstrate the effectiveness of the method,
it is to a numeric benchmark system, exhibiting good
performances.

The proposed IO MPC method exhibits real-time capabil-
ities, since its online implementation only requires a linear
operation (scheduling parameter extrapolation) and the
solution of a single quadratic optimisation problem. Also,
the method is directly applicable to nonlinear systems,
as long as if LPV embedding is satisfied. Moreover, the
method does not require any additional reference tracking
tool (such as the artificial reference variables).

For future works, we plan on generalising the proposed
framework for data-driven predictive control synthesis,
replacing the IO LPV description of the system by a data-
based IO realisation.
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Tóth, R., Willems, J.C., Heuberger, P.S., and Van den
Hof, P.M. (2011b). The behavioral approach to linear
parameter-varying systems. IEEE Transactions on Au-
tomatic Control, 56(11), 2499–2514.


