A Tracking Model Predictive Control for Input-Output LPV Systems using Parameter Extrapolation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

A Tracking Model Predictive Control for Input-Output LPV Systems using Parameter Extrapolation

Résumé

This paper presents a novel Model Predictive Control (MPC) algorithm for Linear Parameter Varying (LPV) systems represented in the Input-Output (IO) form. The proposed MPC is derived using estimates for the future scheduling parameter trajectory, made viable through a recursive Taylor-based extrapolation law. The method also includes explicit integral action, which, coupled with quadratic terminal ingredients, enables offset-free reference tracking and asymptotic IO stability. A numeric benchmark example is used to illustrate the advantages of the proposed method, as well as its real-time capabilities.
Fichier principal
Vignette du fichier
LPV22_IO_LPVMPC_v2.pdf (1.34 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03714308 , version 1 (05-07-2022)

Licence

Identifiants

Citer

Marcelo Menezes Morato, Julio E Normey-Rico, Olivier Sename. A Tracking Model Predictive Control for Input-Output LPV Systems using Parameter Extrapolation. LPVS 2022 - 5th IFAC Workshop on Linear Parameter Varying Systems, Sep 2022, Montreal, Canada. pp.55-60, ⟨10.1016/j.ifacol.2022.11.290⟩. ⟨hal-03714308⟩
48 Consultations
132 Téléchargements

Altmetric

Partager

More