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Abstract
Landfilled biodegradable materials are subject to biological evolution, namely biodegradation or
digestion, under the action of aerobic bacteria and further anaerobic bacteria. In the absence of
special provisions, the liquid flowing through the mass of waste produces leachate, being charged
with chemical or biological substances. Therefore, the mathematical modeling is of great interest
for making decisions in the field of waste management since it makes possible to predict the
behavior of the various complex systems underlying the management of waste. The analysis of the
dynamics of the model considered in our work describes the process of anaerobic biodegradation
with leachate reinjection, and allows us to predict the amount of biogas produced in the long
term. The system admits an infinity of non hyperbolic equilibria but we are able to describe the
asymptotic behavior of the solutions depending on the initial condition. Thanks to this model, we
can highlight the influence of the leachate recirculation on the production of biogas, with the help
of numerical simulations. This recirculation could be a part of the sustainable solutions adapted by
recent technologies for the treatment of waste, not only to optimize the total production of biogas,
but also to obtain a good quality of the outgoing liquid to meet the discharge standards.

Keywords
Anaerobic digestion ; Mathematical modeling ; Biogas ; Leachate recirculation; Stability analysis,
Non-hyperbolic equilibrium.

I INTRODUCTION

The anaerobic digestion process is characterized by a succession of complex reactions. In the
literature, there exists different multi-step models but whose mathematical analysis is often
difficult or merely not possible [2, 3].

In the Rouez’s model [6], a simplification has been proposed in which the process is reduced
to two fundamental steps which are the hydrolysis/acidogenesis and the methanogenesis. This
model has been extended in [4] by considering that a part of the dead microorganisms returns to
the slowly biodegradable material. On the other hand, in [5] the organic matter is decomposed
into two types of substrat, soluble and insoluble. Our model gathers these features, that are

1. the two-steps process,
2. the consideration of both soluble and insoluble substrates,
3. the distribution of the dead microbial matter into a part returning (slowly) to degradable

material and another one transformed directly into carbon dioxide.
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Our objective is to investigate the influence of leachate recirculation on the performances of
biogas production.

The biological scheme underlining the different interactions of the process is depicted on Figure
1.

Figure 1: Biological diagram of the interactions of the anaerobic digestion process of organic matter
(where f1 = f1i + f1s).

II MODEL AND ASSUMPTIONS

2.1 Model equations

The process described in Figure 1 is modeled by the following dynamical system:

Ẋ = −δX + αmB

Ṡi = f1iδX − h(u)g(Si)

Ṡs = f1sδX + h(u)g(Si)− 1
Y
µ(Ss)B

Ḃ = (µ(Ss)−m)B
˙CO2 = (1− f1)δX + (1− f2)

1−Y
Y

µ(Ss)B + (1− α)mB
˙CH4 = f2

1−Y
Y

µ(Ss)B

(1)

where we posit

f1 = f1i + f1s .

The state variables are the concentrations :
X(t) of complex organic matter at time t,
Si(t) of insoluble substrate at time t,
Ss(t) of soluble substrate at time t,
B(t) of methanogenic bacteria at time t,
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and the output variables are the amounts produced per unit of volume :
CO2(t) of carbon dioxide at time t,
CH4(t) of methane at time t.

The function µ(·) is the specific growth rate of the biological reaction, while the function
(u, Si) 7→ h(u)g(Si) describes the conversion rate of insoluble substrate into soluble one,
where u is the recirculation rate. As the conversion rate of insoluble substrate into soluble
one is a function of two variables that is equal to 0 in absence of insoluble substrate or null
recirculation, we have assumed that it can be written as a product of two functions h(·), g(·) of
each variable (equal to 0 when their argument is zero).

The parameters of the model are :
α: the proportion of nutrient recycling,
u: the leachate recirculation rate (that can be a manipulating variable),
δ: the degradation rate of the organic matter,
m: the mortality rate of the biomass,
Y : the conversion rate of the substrate,
f1i , f1s , f2: the stochiometric coefficients.

2.2 Hypotheses

H1. The function µ(·) is C1 on R+, non-negative and bounded with µ(0) = 0.
H2. The functions g(·) and h(·) are C1 on R+, increasing with bounded derivative and equal

to 0 at zero.
H3. The parameters α, u, m, ,Y , f1i , f1s , f2 satisfy the following properties:

δ > 0,
0 < α ≤ 1 and 0 < u ≤ umax < +∞,
0 < m < maxSs>0 µ(Ss),
0 < Y < 1,
0 < f1i , f1s , f2 < 1 (with f1i + f1s = f1).

III MATHEMATICAL RESULTS

In this section, we present some results, their proofs are given in the appendix.

3.1 Existence and uniqueness of solutions

Proposition 1. The vector field associated to the system of equations (1) is C1 in R6. Therefore,
for any non-negative initial condition, the Cauchy problem admits a unique solution defined for
any time (see for instance [7]). Moreover, the solution remains non-negative for any positive
time.

3.2 Asymptotic behavior

Theorem 1. Under hypotheses H1, H2, H3, for any non-negative initial condition, the solution
of (1) is bounded. In addition, one has

lim
t→+∞

X(t) = lim
t→+∞

B(t) = 0,

lim
t→+∞

Si(t) = 0, lim
t→+∞

Ss(t) := S⋆
s ≥ 0,

3



with

S⋆
s ≤ X(0)

αY
+ (Si(0) + Ss(0)) +

B(0)

Y
.

Moreover, if X(0), Si(0) or Ss(0) is non-null, then S⋆
s > 0.

3.3 Attractor

Let us define the set

E := {Ss ∈ R+ : µ(Ss) ≤ m}.

Proposition 2. Under hypotheses H1, H2, H3, for any non-negative initial condition, one has

S⋆
s = lim

t→+∞
Ss(t) ∈ E .

The system (1) admits a continum of equilibria which are all non hyperbolic. Therefore, one
cannot conclude about their stability by studying the single linearization of the dynamics (and
the Center Manifold Theorem is not enough informative). We use the same technique as in [4]
which consists in considering a (non-linear) change of coordinates parameterized by S⋆

s ∈ E ,
such that the dynamics admits a unique equilibrium in these coordinates (see Annex 2). For each
S⋆
s ∈ E , this equilibrium is a hyperbolic saddle point, with a stable manifold of dimension three

that matches all trajectories of (1) with limt→+∞ Ss(t) = S⋆
s . Then, we obtain the following

result.
Proposition 3. Under the same hypotheses than before,

A := {0} × {0} × E × {0}

is a forward attractor of any non-negative initial condition of (1).

3.4 Asymptotic production of biogas

Let us denote by G(t) the total amount of biogas per unit of volume that is produced at time t,
that is

G(t) = CO2(t) + CH4(t).

Proposition 4. Under the same hypotheses than before, for any non-negative initial condition,
the solution of the system (1) verifies

lim
t→+∞

G(t) = G(0) +X(0) + aB(0) + Si(0) + Ss(0)− S⋆
s

where

a :=
1− αf1Y

1− f1Y
> 0.
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IV NUMERICAL SIMULATIONS

For the growth function µ, we have chosen the Haldane law [1] which modeled a growth inhi-
bition under large concentration of substrate

µ(Ss) = µ̄
Ss

Ks +Ki +
S2
s

Ki

where µ̄ is the maximum growth rate, Ks is the half-saturation constant and Ki the inhibition
constant, and the simplest functions for g and h:

g(Si) = Si, h(u) = u.

The values of parameters are inspired from [4] and given in Table 1.

µ̄ Ks Ki δ m Y α f1i f1s f2
0.3h−1 160mg.l−1 10mg.l−1 0.176h−1 0.02h−1 0.05 0.9 0.4 0.3 0.76

Table 1: Parameters values

For these values, the set E of attracting values for Ss is computed numerically as

E ≃ [0, 14.09] ∪ [125.90,+∞).

Initial condition and parameter u for the recirculation are given in Table 2.

X(0) Si(0) Ss(0) B(0) u
300mg.l−1 0 0 2mg.l−1 0.3

Table 2: Operating conditions

The time evolution of the variables and the production of biogas are depicted on Figure 2.

Figure 2: Time evolution of the state variables (left) and total biogas production (right).

To have insights on the impacts of changing operating conditions, we have performed different
simulations:

1. Figure 3: soluble substrate for different load of organic matter. As expected, the asymp-
totic value of Ss never reaches the interval (14.09, 125.90).
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2. Figure 4: effect of absence of recirculation. When u = 0, the concentration Si is carrying
on increasing all the time, differently to the case u > 0 for which we have proved that it
converges asymptotically to 0.

3. Figure 5: effect of leachate recirculation and initial load of organic matter on the biogas
production. This shows that a minimum of recirculation is necessary to obtain good
performances. Moreover, the inhibition in the growth (which implies that the set E is not
connected) induces a discontinuity in the biogas production as a function of X(0). There
exists a threshold on the initial load of organic matter above which the biogas production
falls down drastically.

Figure 3: Time evolution of the soluble substrate for different values of X(0).

Figure 4: Insoluble substrate (left) and biogas production (right) with and without recirculation.

V CONCLUSIONS

• The theoretical results are confirmed by the numerical simulations.
• With Haldane growth function, the biogas production is a non monotonic function of the

initial load of organic matter X(0) (it increases and then decreases with a discontinuity at
the maximal value).

• Future perspectives of this work concern the maximization of the biogas production:
1. for large amounts of organic matter to be treated, the optimal supply of organic matter
over time, 2. the optimal control of the recirculation rate u.
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Figure 5: Total production of biogas as a function of the recirculation (left) and of the initial load of
organic matter X(0) (right).
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A ANNEX 1. PROOF OF PROPOSITION 1

Under hypotheses H1, H2, H3, for any non-negative initial condition (X0, S0
i , S

0
s , B

0, CO0
2, CH0

4 ) we have
Ḃ(t) = (µ(Ss)−m)B(t), then B(t) = B0 exp(

∫ t

0
(µ(Ss(z))−m)dz), therefore

B(t) ≥ 0,∀t ≥ 0.

Moreover, Ẋ(t) = −δX(t) + αmB(t). Since B(t) ≥ 0,∀t ≥ 0, one has Ẋ(t) ≥ −δX(t),∀t ≥ 0, and, by
Grönwall Lemma [7], X(t) ≥ X0. exp(−δt),∀t ≥ 0. As X0 ≥ 0, then

X(t) ≥ 0,∀t ≥ 0.

In addition, Ṡi(t) = f1iδX(t)− h(u)g(Si). Since X(t) ≥ 0,∀t ≥ 0, then Ṡi(t) ≥ −h(u)g(Si) ∀t ≥ 0.
Considering the following Cauchy problem:{

˙̄Si(t) = −h(u)g(S̄i)
S̄i(0) = S0

i .
(2)

By Comparison Lemma [7], one has S̄i(t) ≤ Si(t),∀t ≥ 0. Then, it suffices to show that 0 ≤ S̄i(t),∀t ≥ 0.
⋆ if S0

i = 0, as g(0) = 0 , it’s clear that 0 is a solution of the Cauchy problem (2).
⋆ if S0

i > 0, therefore S̄i(t) > 0, for all t ≥ 0, indeed by uniqueness of the solution of the Cauchy problem (2),
S̄i(.) can’t cross the axis S̄i = 0. We deduce that

S̄i(t) ≥ 0,∀t ≥ 0.

In the same way, we show that
Ss(t) ∈ R+,∀t > 0.

Let us now prove that
CO2(t) ∈ R+,∀t ≥ 0, and CH4(t) ∈ R+,∀t ≥ 0.

By integrating between 0 and t the following equations

˙CO2(t) = (1− f1)δX(t) + (1− f2) ·
1− Y

Y
µ(Ss)B(t) + (1− α)mB(t) (3)

˙CH4(t) = f2 ·
1− Y

Y
µ(Ss)B(t) (4)

and since X(t), B(t) and µ(Ss) are non negative for all t ≥ 0, our result is proved.

B ANNEX 2. PROOF OF THEOREM 1
To show the boundedness of the solution of the system (1) we introduce the following function:

F (t) = X(t) + αY (Si(t) + Ss(t)) + αB(t), ∀t ≥ 0. (5)

From the equations of the system (1) we obtain:

Ḟ (t) = (αf1Y − 1)δX(t). (6)

Since αf1Y < 1, and X(.) is non negative, then F (.) is non-increasing, so that F (t) ≤ F (0),∀t ≥ 0.
And in addition, by the non-negativity of the variables X(.), Si(.), Ss(.) and B(.), one has:

0 ≤ F (t) ≤ X0 + αY (S0
i + S0

s ) + αB0, ∀t ≥ 0.

Therefore, F (.) is bounded, which implies by the non-negativity of the variables that X(t), Si(t), Ss(t) and B(t)
are bounded.
By integrating the equation (6) between 0 and t, we obtain for all non-negative t,

F (t) = F (0) + (αf1Y − 1)δ

∫ t

0

X(s)ds. (7)
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As F (.) is bounded then ∫ t

0

X(s)ds < +∞. (⋆)

Moreover, from the first equation of (1), we have

X(t) = X(0)− δ

∫ t

0

X(s)ds+ αm

∫ t

0

B(s)ds. (8)

Therefore, with (⋆) we get ∫ t

0

B(s)ds < +∞. (⋆⋆)

Then, from the fourth equation of (1), we obtain:

B(t) = B(0) +

∫ t

0

µ(Ss(s))B(s)ds−m

∫ t

0

B(s)ds. (9)

As B(.) is bounded and with (⋆⋆), we deduce that∫ t

0

µ(Ss(s))B(s)ds < +∞. (⋆ ⋆ ⋆)

In addition, the integration of the last two equations of the system (1) between 0 and t leads to the following
formulas

CO2(t) = CO2(0)+(1−f1)δ

∫ t

0

X(s)ds+(1−f2)
1− Y

Y

∫ t

0

µ(Ss(s))B(s)ds+(1−α)m

∫ t

0

B(s)ds (10)

CH4(t) = CH4(0) + f2
1− Y

Y

∫ t

0

µ(Ss(s))B(s)ds. (11)

Then we get the boundedness of the variables CO2(t) and CH4(t) taking into account (⋆), (⋆⋆) and (⋆ ⋆ ⋆).
Let us show the convergence of X(.), Si(.), Ss(.) and B(.).
The function F : [0,+∞[→ [0,+∞[ is differentiable, non-increasing and bounded by 0, therefore, F (.) converges
to a limit denoted by Flim when t tends to +∞.
Moreover, one has:

F̈ (t) = (αf1Y − 1)δ(−δX(t) + αmB(t)). (12)

From (12) and since X(.) and B(.) are bounded, therefore, F̈ is bounded and thus Ḟ is uniformly continuous on
R+. We get by Barbalat’s Lemma [9], limt→+∞ Ḟ (t) = 0. Then from (6), we obtain

lim
t→+∞

X(t) = 0.

In the same way, as X(.), B(.) and µ(.) are bounded, then Ẍ is bounded and thus Ẋ is uniformly continuous on
R+ and by Barbalat’s Lemma, one has

lim
t→+∞

B(t) = 0.

Similarly, S̈i is bounded wich implies that Ṡi is uniformly continuous on ]0,+∞[, and by Barbalat’s lemma, we
get

lim
t→+∞

Si(t) = 0.

In addition, as F (t) converges to Flim, we deduce that

∃S⋆
s ∈ R+, lim

t→+∞
Ss(t) = S⋆

s =
Flim

αy
.
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Moreover, from (5) and as F (.) is non increasing, by tending t to ∞, we conclude that

S⋆
s ≤ X0

αY
+ (S0

i + S0
s ) +

B0

Y
.

Now let us show that S⋆
s ̸= 0, when X0, S0

i or S0
s is non null.

Assuming that S⋆
s = 0, as µ(.) is continuous, one has limt→+∞ µ(Ss(t)) = 0.

For η = (f1i + f1s)αmY > 0, one has

∃T > 0,∀t > T : |µ(Ss(t))| ≤ η

therefore, from the equations of the system (1), we obtain:

(f1i + f1s)Ẋ(t) + Ṡi(t) + Ṡs(t) ≥ 0,∀t > T.

When (f1i + f1s)X(0) + Si(0) + Ss(0) > 0, the variables X(.), Si(.) or Ss(.) cannot reaches 0 in finite time.
Then

(f1i + f1s)X(t) + Si(t) + Ss(t) ≥ (f1i + f1s)X(T ) + Si(T ) + Ss(T ) > 0,∀t > T

wich is in contradiction with the fact that limt→+∞(f1i + f1s)X(t) + Si(t) + Ss(t) = 0.

C ANNEX 2. PROOFS OF PROPOSITION 2 AND PROPOSITION 3

If S⋆
s /∈ E , one has limt→+∞ µ(Ss(t)) = µ(S⋆

s ), therefore by choosing ϵ =
µ(S⋆

s )−m
2 > 0 one gets

∃T > 0, ∀t > T : (µ(Ss(t))−m) > ϵ.

Consequently, and since B(.) is non negative we obtain

Ḃ(t) > ϵB(t),∀t > T.

Since B(.) is bounded and by a standard comparison theorem [7], we deduce that limt→+∞ B(t) = +∞ wich is
in contradiction with the fact that B(.) converges asmptotically to 0. Therefore, we conclude that Ss(.) converges
to S⋆

s with S⋆
s ∈ E .

Now let us fix e = (0, 0, S⋆
s , 0) with S⋆

s ∈ int E . We consider the variable R(.) defined by:

R(t) =
(f1i + f1s)X(t) + Si(t) + (Ss(t)− S⋆

s )

B(t)
+ c1,∀t ≥ 0

where

c1 =
µ(S⋆

s )/Y − α(f1i + f1s)m
µ(S⋆

s )−m

By a direct computation, we get

Ṙ(t) = −r1(µ(Ss)− µ(S⋆
s ))− (µ(Ss)−m)R(t)

with

r1 =
(1− α(f1i + f1s)Y )m

Y (m− µ(S⋆
s ))

> 0

We consider the domain:

K = {(X,Si, R,B) ∈ R2
+ × R× R⋆

+/S
⋆
s − Si − (f1i + f1s)X + (R− c1)B ≥ 0}

and the application p(.) defined by:

p : R4
+ → K

Z 7→ p(Z) = (X,Si,
(f1i+f1s )X+Si+(Ss−S⋆

s )

B + c1, B)

10



with Z = (X,Si, Ss, B) ∈ R4
+.

p is a homeomorphism from R4
+ to K. Then, the system (1) can be written equivalently on K, as follows:

Ẋ = −δX + αmB

Ṡi = f1iδX − h(u)g(Si)

Ṙ = −r1(k(X,Si, R,B)− µ(S⋆
s ))− (k(X,Si, R,B)−m)R

Ḃ = (k(X,Si, R,B)−m)B

(13)

with

k(X,Si, R,B) = µ(S⋆
s − (f1i + f1s)X + (R− c1)B)

The systems (1) and (13) are locally topologically equivalent. However, trajectories with B(t) = 0,∀t ≥ 0 are not
considered by the homeomorphism p, therefore, we consider the domain K0 defined by:

K0 = K ∪ I × R× {0}

with
I = {(X,Si) ∈ R2

+/S
⋆
s − Si − (f1i + f1s)X ≥ 0}

Since S⋆
s ∈ int E , the origin (0, 0, 0, 0) is the unique equilibrium point of (13) in K0.

The linearization of (13) near the origin is based on the following jacobian matrix:

J(0, 0, 0, 0) =


−δ 0 0 δm
f1iδ −h(u)g′(0) 0 0

r1(f1i + f1s)µ
′(S⋆

s ) r1µ
′(S⋆

s ) m− µ(S⋆
s ) r1c1µ

′(S⋆
s )

0 0 0 µ(S⋆
s )−m


Its eigenvalues are λ1 = −δ < 0, λ2 = −h(u)g′(0) < 0, λ3 = −(µ(S⋆

s )−m) > 0 and λ4 = (µ(S⋆
s )−m) < 0.

Since the origin is an hyperbolic equilibrium of (13) in K0, by the Stable Manifold Theorem [8], there exists a
stable manifold W s(0) and an instable manifold Wu(0), such that:

dim(W s(0)) = 3
dim(Wu(0)) = 1

It’s clear that Wu(0) = {0} × {0} × R× {0}.
Now let us show that any point (X,Si, R,B) ∈ W s(0) \ (0, 0, 0, 0) has to be such that B ̸= 0.
If B0 = 0, any solution of (13) verifies B(t) = 0, ∀t > 0, since limt→+∞ X(t) = 0 and limt→+∞ Si(t) = 0,
then, as µ(.) is C1 on R+, one has

lim
t→+∞

k(X(t), Si(t), R(t), B(t)) = lim
t→+∞

µ(S⋆
s − S1(t)− (f1 + f2)X(t)) = µ(S⋆

s ),

For η =
m−µ(S⋆

s )
2 > 0, one has

∃T > 0 : ∀t > T : m− µ(S⋆
s − Si(t)− (f1i + f1s)X(t)) > η

From the equation of the system (13), one has

Ṙ(t) > ηR(t)− r1(µ(S
⋆
s − Si(t)− (f1i + f1s)X(t))− µ(S⋆

s )) , ∀t > T.

Then limt−→+∞ R(t) = +∞.
K is positively invariant by the dynamics (13), therefore, any trajectory (X(t), Si(t), R(t), B(t)) in
S = W s(0) ∩K is homeomorphic to a trajectory (X(t), Si(t), Ss(t), B(t)) of (1) and converges asymptotically
to (0, 0, S⋆

s , 0). Finally and with the results of proposition 2 and proposition 3, we conclude that the set A :=
{0} × {0} × E × {0} is a forward attractor of (1).
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D ANNEX 3. PROOF OF PROPOSITION 4
From the formulas (8) and (9) and by tending t to ∞, one has:

δ

∫ ∞

0

X(s)ds = X0 +B0 + (α− 1)m

∫ ∞

0

B(s)ds+

∫ ∞

0

µ(Ss(s))B(s)ds (14)

Moreover, by integrating the second and third equation of the system (1) between t = 0 and t = +∞ we obtain∫ ∞

0

µ(Ss(s))B(s)ds = f1Y δ

∫ ∞

0

X(s)ds+ Y (S0
i + (S0

s − S⋆
s )). (15)

From a simple calculus, we get the following expressions∫ ∞

0

X(s)ds =
A+ 1

δαC
X0 +

(A+ 1)

δC
B0 +

A

δf1C
(S0

i + (S0
s − S⋆

s )) (16)

∫ ∞

0

B(s)ds =
(A+ 1)− αC

α2mC
X0 +

A+ 1

αmC
B0 +

A

αmf1C
(S0

i + (S0
s − S⋆

s )) (17)

∫ ∞

0

µ(Ss(s))B(s)ds = D(X0 + δB0) + F (S0
i + (S0

s − S⋆
s )) (18)

where A = f1Y
(1−f1)Y

, C = α−(A+1)(α−1)
α , D = f1Y (A+1)

αC and F = Y (A+C)
C .

Therefore, from the formulas (16), (17) and (18) we deduce the asymptotic value of the total biogas G(t) provided
in Proposition 4.
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