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A B S T R A C T

In the open literature, sound transmission through cylindrical structures is often considered
for infinitely long cylinders for which full analytical solutions can be derived. However, when
dealing with finite cylinders subjected to arbitrary boundary conditions, establishing a general
analytical solution is more complex to achieve and appropriate resolution techniques should be
used. In the present study, a consistent semi-analytical model of sound transmission through
such finite length and multilayered cylinders is presented. The orthotropic shell is modeled with
2D first order shear deformation theory and the poroelastic core is modeled with full 3D Biot’s
theory in u-p format. Analytical expressions are used for the acoustic domains while closed form
Rayleigh–Ritz expansion and 1D finite element method are used for the structural domains.
Results are validated with those of literature and those given by full numerical simulations.
Furthermore, the effect of structural and acoustical resonances on noise transmission are
discussed through finite/infinite cylinders superposition and with respect to angle of incidence
and porous layer thickness. The contribution of internal resonances demonstrates the importance
of the cylinder finiteness for oblique incidences.

. Introduction

Acoustic isolation is of a great importance in aeronautic and aerospace industries. In fact, structures are designed to be lightweight
nd composite materials are widely used in order to increase payload capacities and decrease launch costs. However, such designs
ake these structures acoustically transparent and hence it deteriorates sound transmission loss (STL) performances. One passive
ay to improve acoustic performances and reduce noise transmission is the use of poroelastic materials as an acoustic protection.
oroelastic materials are known to be efficient in absorbing acoustic waves while having low mass density. This research work
ocuses on sound transmission through cylindrical structures incorporating porous layers.

Studies on STL through cylindrical structures have been using two main approaches to model the porous liners : equivalent
luid models and full 3D Biot’s theory [1,2]. Equivalent fluid models consider the porous medium as a fluid medium modified by
he presence of the skeleton. In this approach, there are two classical models : rigid frame model and limp model. The former
onsiders rigid and motionless skeleton while the latter considers the inertial effect of a rigid skeleton. Another fluid equivalent
odel is the simplified method proposed by Lee et al. [3]. Based on the work of Bolton et al. [4] who developed a method (known

s the full method) for the analysis of the sound transmission through flat panels with porous material using Biot’s theory, the
implified method [3] consists of comparing the energies of the three waves propagating in a poroelastic material, two longitudinal
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waves and one rotational wave, and then keeping the strongest one between them as the only wave propagating in an equivalent
fluid medium. Many authors [5–8] used this simplified model in their STL investigations. Biot’s theory [1,2] is a more complete
framework to model sound propagation through porous media. It considers an elastic frame fully saturated with a fluid and their
mutual physical interactions. Biot’s theory has been used in STL studies through infinite cylinders [9–13].

Literature review on STL through cylindrical structures shows that most of the published works consist of models established for
nfinitely long cylinders while only fewer works consider finite cylinders, see for example the review given by Zarastvand et al. [14].
his gap can be mainly explained by an easier access to the exact and full analytical solutions when considering infinite cylinders.
or instance, see the works of Magniez et al. [13,15] where the layers of the cylinder are modeled with 2D shell theory, 3D elastic
heory and 3D Biot’s theory and where the analytical solution is derived using the Transfer Matrix Method. However, when dealing
ith finite cylinders subjected to arbitrary boundary conditions, establishing a general analytical solution is more complex to achieve
nd approximation techniques are used such as power series expansion, trigonometric Rayleigh–Ritz or Fourier expansions [16–20].

Numerical resolution methods such as Finite Element Method (FEM) and Boundary Element Method (BEM) represent an
lternative to analytical approaches. The main advantage of these methods is their capacity to adapt to complex geometries and
onsider arbitrary boundary conditions. Works such in [21,22] investigated cylindrical structures lined with porous materials
odeled with Biot’s theory using FEM. Other techniques such as Wave and Finite Element Methods were used in Ref [23] to

nalyze sound transmission and sound radiation of infinitely long cylinder subjected to arbitrary internal or external excitation, and
ecently the Generalized Differential Quadrature Method was used in [24] to study the vibrational response of porous truncated
onical shells.. Nonetheless, in order to ensure an acceptable accuracy in full numerical methods, the use of a minimum number of
lements per wavelength is mandatory. Due to this high computational cost when it comes to higher frequency range, analytical
odels remain more convenient for lighter and faster parametric studies at the design stages.

Statistical Energy Analysis (SEA) is an energy-based method where analytical approaches are used. In contrast to deterministic
nalysis, SEA is a probabilistic way to study the dynamic response where the structure is decomposed into subsystems characterized
y its modal energy densities and the principle of conservation of energy flow is satisfied. These assumptions make the SEA approach
alid in high frequency domain where the modal densities are high enough [25]. One can cite among the early works those of
hite [26] and Pope [27] who considered STL through finite cylinders. White [26] presented an energy averaging approach based on

ross quantities such as modal density, joint acceptance and cylinder and cavity resistances to estimate sound transmission through
thin cylindrical shell and compared the analytical results in frequency band with the experimental measurements. Pope [27]

nvestigated sound transmission into a closed cylinder and a rectangular parallelepiped enclosure under reverberant acoustic fields
sing SEA. The effects of resonant and non-resonant shell modes on sound transmission are examined and results are compared to
xperimental measurements. Yuan et al. [28] compared STL of a fuselage modeled as a finite length cylindrical shell using FE, SEA
nd hybrid FE-SEA methods. It is found that the cylinder length has little influence on the sound insulation. Oliazadeh et al. [29]
eveloped an analytical model of the vibro-acoustic response of a finite length cylindrical shell based on SEA and carried out STL
easurements (from the inside to the outside of the shell) based on two experimental methods. Noise Reduction and Transmission

oss factors are calculated and the effects of the presence of fiberglass material are investigated. The comparison between the
heoretical and experimental results shows good agreements. Recently, Gupta and Parey [30] developed a SEA-based analytical
odel of sound transmission of cylindrical acoustic enclosures. The model includes the resonant as well as the non-resonant wave

esponses. The results are compared to experimental ones and a good agreement is observed.
The dynamic behavior of infinitely long cylinders differ from those of finite cylinders and hence their vibro-acoustic responses

nd STL performances should differ as well, particularly in the low frequency range (long wavelengths) in which the boundary
onditions become more significant as portrayed in Ref. [31] for example. In facts, the nature of waves changes whether the medium
s unbounded or bounded. In the former, the elastic cylinder is subjected to axial traveling waves while in the latter it is subjected to
tanding waves, and so is the case of the acoustic waves in the internal fluid as well. It appears that the main difference between the
inite and infinite STL modelings consists in the contribution of the structural and acoustical resonances, namely the axial resonances.
ote that the effects of radial resonances have been studied by Koval [32] for infinitely long cylindrical shell and it has been found

hat for a non-resonant cavity the Noise Reduction (NR) index follows the same pattern as the Transmission Loss (TL) index, and
or a resonant cavity the NR index exhibits wide fluctuations and a general level decrease.

Considering STL through finite length cylinders, Lesueur presented in his book [33] two vibro-acoustic models for finite thin
sotropic simply-supported shell : the first model is based on strong fluid–structure coupling conditions while the second model
ses weak coupling conditions and modal projection. It is shown that for light fluid both models are in a good agreement. Li and
ipperman [34] developed an analytical model for sound transmission through finite thin cylinder. The external pressure field

s approximated using the infinite cylinder expression for plane wave excitation while the interior pressure field is approximated
sing rigid-wall acoustic cavity modal projection. Cylinder motion is modeled with Donnel-Mushtari and Flugge’s theories and the
ibro-acoustic problem is derived using modal-interaction approach. A revised NR index expression for finite length cylinder similar
o TL index expression for infinite cylinder is proposed. Results are compared with experimental data for a Chamber Core and effects
f acoustic damping are investigated. Hosseini-Toudeshky et al. [35] presented a semi-analytical model for STL through finite thick
sotropic cylinder. Using the solution developed in [36], the cylinder displacement field is obtained through Helmoltz decomposition
n conjunction with separation of variables; and the boundary conditions are split into two parts : one part is satisfied exactly while
he other part is satisfied using orthogonalization technique. Noise reduction of the cylinder is evaluated for plane wave excitation
nd for monopole and dipole radiations with different positions. Effects of boundary conditions and cylinder length are investigated.
hou et al. [37] extended their previous work and considered sound transmission through double cylindrical thin shells with finite
2

ength and lined with porous material under turbulent boundary layer excitation. The solution is expanded into a double series using
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Fig. 1. Problem geometry and physical domains : a finite length elastic cylinder mounted on infinite length cylindrical baffles.

cylindrical harmonics and Rayleigh–Ritz approximation; and the turbulent boundary layer is modeled using both Corcos model and
Efimtsov model. The sound level inside the cylinder is therefore evaluated using the power spectral density of the kinetic energy of
the inner shell and the power spectral density of the pressure fluctuation due to the excitation. Results are compared for different
boundary configurations of the core and the effects of air gaps and porous material are also investigated. Recently, Darvish Gohari
et al. [20] proposed an analytical model for STL through simply-supported double walled cylinder sandwiching a porous core. The
shells are modeled with first order shear deformation theory and the core is modeled with Biot’s theory using u-U formulation. In
this work, it is declared that the solution is expanded into double Fourier series in the circumferential and longitudinal directions.
Moreover, the wave propagation through the porous layer is described with Helmoltz decomposition of the displacement fields. The
inner shell is assumed to be totally absorbent, hence the transmitted pressure in the finite acoustic cavity consists of inward traveling
waves in the radial direction and the sound level in the cavity is evaluated with TL index. The effect of geometrical parameters are
investigated and results are compared with those given by infinite cylinder. Golzari and Jafari [19] presented an analytical model
of STL through truncated circular conical shell subjected to arbitrary boundary conditions and impinged by an incident plane wave.
Love’s theory is used to model the isotropic conical shell and a convergent power series solution is used to obtain the analytical
expression of shell displacement. Thus, recurrence relations are obtained for the power series coefficients and the convergence is
demonstrated. Moreover, the acoustic fields interacting on the conical shell are locally approximated with the expressions of sound
pressures interacting with cylindrical shell. Assuming a non-resonant cavity, the STL is evaluated using the TL index. In [38], Golzari
and Jafari used the same resolution techniques as in [19] and extended their works by incorporating a porous liner and using a
double-walled truncated conical shell. The simplified method [3] is used to describe the wave propagation within the poroelastic
material. The proposed model is first validated with analytical and experimental results in the special case of cylindrical shell and it
is observed that by increasing the shell length, the STL tends to those of infinite shell. Then, the influence of the problem parameters
on STL such as shell geometrical and physical properties, shell axial boundary condition and porous liner boundary conditions and
thickness, angle of incidence and surrounding fluid properties are investigated. It is found that the boundary constraints are more
important in the low frequency region rather than high frequency region, and the position of the first ring frequency is affected
by the boundary condition type. The STL in the stiffness controlled region can be enhanced either by increasing shell thickness,
reducing shell radius or shell length. Using a heavier fluid (from air to water), the STL decreases at low and middle frequencies
whereas it increases at high frequencies; besides the acoustic resonances are eliminated. The poroelastic liner improves the STL in
all frequency ranges except at low frequencies, and this improvement increases with the thickness of the liner. Moreover, an air gap
separating the liner and the facing shell improves the STL above the first ring frequency.

The present study proposes a consistent semi-analytical model of sound transmission through finite length multilayered cylinders
impinged by incident plane waves. The orthotropic shell is modeled with 2D First-order Shear Deformation Theory (FSDT) and the
poroelastic core is modeled with full 3D Biot’s theory expressed in u-p format. Analytical expressions are used for the acoustic
pressures in the internal and external fluid domains and closed form Rayleigh–Ritz expansion is used to ensure the structural
boundary conditions. Furthermore, 1D finite element method is used to describe the wave propagation through the porous core
thickness. The global vibro-acoustic problem is solved in a weak form and an analytical expression of Noise Reduction index is
presented. After results validation with those of literature and those given by full numerical simulations, the contribution of the
internal resonances in the noise insulation at low and mid frequency regions are discussed through finite/infinite superposition
regarding to angle of incidence and porous layer thickness. Results show that the proposed model can be effectively used to compute
sound transmission through cylindrical structures coupled with external lightweight fluids.

2. Modeling and assumptions of the vibro-acoustic problem

Consider a hollow cylinder with finite length 𝐿 mounted on two rigid semi-infinite cylindrical baffles as depicted in Fig. 1.
The cylinder is composed of an orthotropic shell lined with an isotropic poroelastic coating. The cylinder is surrounded by two
fluids media in the exterior domain 𝛺 and interior domain 𝛺 . A plane sound wave impinges the cylinder obliquely. It is worth
3
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Fig. 2. Incident plane wave vector.

mentioning here that this configuration is not a limitation of the model and it has been considered for convenience and clarity of
the presentation. The proposed methodology remains valid for other multilayered cylinder configurations such as double or triple
walled structures lined with different materials.

For the study of sound transmission through the cylinder, the following assumptions are made:

• The study is under the classical linear vibroacoustics framework: linear elastic structures surrounded by ideal inviscid
barotropic fluids;

• Variable separation technique is used;
• Time-dependent variables are assumed to be harmonic with 𝑒−j𝜔𝑡 time convention, where j2 = −1 is the imaginary number, 𝜔

the excitation angular frequency and 𝑡 the time. In the rest of the article, time-dependence notation will be omitted;
• The pressure radiated by the vibrating elastic cylinder in the external fluid domain 𝛺1 is neglected and hence the total external

acoustic pressure is reduced to the incident and the diffracted waves. This assumption is valid for lightweight external fluid
coupled with stiff cylinder.

3. Pressure fields in fluid domains

3.1. Pressure field in the external domain

The fluid properties in the exterior domain 𝛺1 are the density and the speed of sound denoted by 𝜌1 and 𝑐1 respectively. The
external pressure 𝑝1 is assumed to be the sum of the incident plane wave pressure 𝑝𝑖 and the wave pressure scattered by the rigid
infinite cylinder noted 𝑝𝑠∞, while neglecting the radiated pressure, such that:

𝑝1 = 𝑝𝑖 + 𝑝𝑠∞ (1)

The plane wave is incident at angles
(

𝜙𝑖, 𝜃𝑖
)

and the corresponding wave vector 𝒌1 is given in the Cartesian coordinate system
as shown in figure Fig. 2 (vectors and matrices are noted with bold symbols):

𝑘1𝑥 = 𝜔
𝑐1

sin
(

𝜙𝑖
)

cos
(

𝜃𝑖
)

(2a)

𝑘1𝑦 =
𝜔
𝑐1

sin
(

𝜙𝑖
)

sin
(

𝜃𝑖
)

(2b)

𝑘1𝑧 =
𝜔
𝑐1

cos
(

𝜙𝑖
)

(2c)

Using cylindrical coordinate system, one can show that expanding the incident plane wave in cylindrical harmonics gives:

𝑝𝑖 (𝑟, 𝜃, 𝑧) = 𝐴𝑖
∞
∑

𝜀𝑛 j𝑛𝐽𝑛
(

𝑘1𝑟𝑟
)

cos
(

𝑛
(

𝜃 − 𝜃𝑖
))

𝑒j𝑘1𝑧𝑧 (3)
4

𝑛=0
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where 𝐴𝑖 is the magnitude of the incident wave (and generally it is equal to unity), 𝜀𝑛 =
{

1 if 𝑛 = 0
2 if 𝑛 ≥ 1

the Neumann factor, 𝐽𝑛 the

essel function of first kind and order 𝑛 and 𝑘1𝑟 =
𝜔
𝑐1

sin
(

𝜙𝑖
)

the radial wave number in the exterior domain 𝛺1. Note the azimuthal
argument in the cylindrical expansion (𝜃 − 𝜃𝑖) is determined from the incident angle 𝜃𝑖.

The scattered field by a rigid cylinder with infinite length 𝑝𝑠∞ corresponds to outward traveling cylindrical waves and satisfying
Sommerfeld radiation condition. These waves are expanded in cylindrical harmonics as follows:

𝑝𝑠∞ (𝑟, 𝜃, 𝑧) =
∞
∑

𝑛=0
𝑆𝑛𝐻𝑛

(

𝑘1𝑟𝑟
)

cos
(

𝑛
(

𝜃 − 𝜃𝑖
))

𝑒j𝑘1𝑧𝑧 (4)

here 𝑆𝑛 is the magnitude of order 𝑛 and 𝐻𝑛 is the Hankel function of first kind and order 𝑛 defined by 𝐻𝑛 = 𝐽𝑛 + j𝑌𝑛 with 𝑌𝑛 the
Bessel function of second kind and order 𝑛. A reminder here about the temporal convention 𝑒−j𝜔𝑡 is given to highlight the expression
f the scattered field 𝑝𝑠∞ in terms of Hankel function of first kind.

For the rigid body problem, the radial component of the fluid displacement vector should vanish at the outer surface of the rigid
ylinder:

1
𝜌1𝜔2

∇𝑝1.𝒆⃗𝑟 = 0 on 𝑟 = 𝑅3 (5)

where ∇ is the gradient operator, 1
𝜌1𝜔2

∇𝑝1 the fluid displacement vector according to Euler relation and
(

𝒆⃗𝑟, 𝒆⃗𝜃 , 𝒆⃗𝑧
)

the cylindrical
asis vectors.

Using the expressions in Eqs. (1), (3), (4) and satisfying the boundary condition Eq. (5) yield to the expression of the scattered
agnitude 𝑆𝑛:

𝑆𝑛 = −𝐴𝑖 𝜀𝑛 j𝑛
𝐽 ′
𝑛
(

𝑘1𝑟𝑅3
)

𝐻 ′
𝑛
(

𝑘1𝑟𝑅3
) (6)

where ( )′ denotes the first derivative of the function with respect to the argument.
Finally, the assumed total external pressure field can be written as:

𝑝1 (𝑟, 𝜃, 𝑧) = 𝐴𝑖
∞
∑

𝑛=0
𝜀𝑛 j𝑛

[

𝐽𝑛
(

𝑘1𝑟𝑟
)

−
𝐽 ′
𝑛
(

𝑘1𝑟𝑅3
)

𝐻 ′
𝑛
(

𝑘1𝑟𝑅3
)𝐻𝑛

(

𝑘1𝑟𝑟
)

]

cos
(

𝑛
(

𝜃 − 𝜃𝑖
))

𝑒j𝑘1𝑧𝑧 (7)

Using the Wronski determinant 𝐽𝑛 (𝑟)𝐻 ′
𝑛 (𝑟) − 𝐽

′
𝑛 (𝑟)𝐻𝑛 (𝑟) =

2j
𝜋𝑟 and evaluating Eq. (7) at the cylinder surface 𝑟 = 𝑅3 yield to the

expression of the blocked-wall pressure:

𝑝1 (𝑟, 𝜃, 𝑧)||𝑟=𝑅3
=

2j𝐴𝑖
𝜋𝑘1𝑟𝑅3

∞
∑

𝑛=0
𝜀𝑛 j𝑛

1
𝐻 ′
𝑛
(

𝑘1𝑟𝑅3
) cos

(

𝑛
(

𝜃 − 𝜃𝑖
))

𝑒j𝑘1𝑧𝑧 (8)

In this study, it must be noted that the excitation is supposed to be the blocked pressure of the cylinder as derived in Eq. (8),
owever the added impedance on the structure due to the external fluid is not taken into account.

.2. Pressure field in the acoustic cavity

The fluid properties in the acoustic cavity 𝛺2 are the density 𝜌2 and the speed of sound 𝑐2. The transmitted pressure 𝑝2 in the
losed cavity satisfies the Helmoltz equation and the axial boundary condition:

𝛥𝑝2 + 𝑘22 𝑝2 = 0 in 𝛺2 (9a)
1

𝜌2𝜔2
∇𝑝2.𝒆⃗𝑧 = 0 on 𝑧 = 0, 𝐿 (9b)

where 𝛥 is the Laplacian operator and 𝑘2 =
𝜔
𝑐2

the wave number in the cavity.
The pressure field 𝑝2 satisfying Eq. (9) is given by:

𝑝2 (𝑟, 𝜃, 𝑧) =
∞
∑

𝑛=0

∞
∑

𝑚=0
𝑃 𝑛𝑚𝐽𝑛

(

𝑘2𝑟𝑚𝑟
)

cos
(𝑚𝜋
𝐿
𝑧
)

cos
(

𝑛
(

𝜃 − 𝜃𝑖
))

(10)

here 𝑘2𝑟𝑚 =
√

(

𝜔
𝑐2

)2
−
(

𝑚 𝜋
𝐿

)2
is the radial wave number of order 𝑚 and 𝑃 𝑛𝑚 are the unknown magnitudes of (𝑛, 𝑚) order.

Note that for a given mode 𝑚 and angular frequency 𝜔 where 𝜔
𝑐2
< 𝑚 𝜋

𝐿 , the radial wavenumber is a pure imaginary number

𝑘2𝑟𝑚 = j
√

(

𝑚 𝜋
𝐿

)2
−
(

𝜔
𝑐2

)2
. Using the identity between the Bessel function of first kind and order 𝑛 𝐽𝑛 and the modified Bessel

unction 𝐼𝑛 of first kind and order 𝑛 for a pure imaginary argument 𝐽𝑛(j𝑘2𝑟𝑚𝑟) = j𝑛𝐼𝑛(𝑘2𝑟𝑚𝑟), the transmitted pressure Eq. (10) is
expressed accordingly to the dispersion relation:
5
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f
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• For 𝜔
𝑐2
> 𝑚 𝜋

𝐿 :

𝑘2𝑟𝑚 =

√

(

𝜔
𝑐2

)2
−
(

𝑚 𝜋
𝐿

)2
(11a)

𝑝2 (𝑟, 𝜃, 𝑧) =
∞
∑

𝑛=0

∞
∑

𝑚=0
𝑃 𝑛𝑚𝐽𝑛

(

𝑘2𝑟𝑚𝑟
)

cos
(𝑚𝜋
𝐿
𝑧
)

cos
(

𝑛
(

𝜃 − 𝜃𝑖
))

(11b)

• For 𝜔
𝑐2
< 𝑚 𝜋

𝐿 :

𝑘2𝑟𝑚 =

√

(

𝑚 𝜋
𝐿

)2
−
(

𝜔
𝑐2

)2
(12a)

𝑝2 (𝑟, 𝜃, 𝑧) =
𝑁
∑

𝑛=0

𝑀
∑

𝑚=0
𝑃 𝑛𝑚𝐼𝑛

(

𝑘2𝑟𝑚𝑟
)

cos
(𝑚𝜋
𝐿
𝑧
)

cos
(

𝑛
(

𝜃 − 𝜃𝑖
))

(12b)

here 𝑘2𝑟𝑚 is the radial wave number satisfying the dispersion relations Eqs. (11a) and (12a). The decomposition of the cavity
ressure expression has been made for numerical implementation reasons.

. Motion of the laminated composite shell

First-order Shear Deformation Theory (FSDT) is used to describe the motion of the laminated composite cylindrical shell where
he contribution of shear and rotational inertia effects are taken into account. As one can refer to Refs. [39,40], the displacement
ield of the skin 𝑼 𝑠 is given by:

⎡

⎢

⎢

⎣

𝑢 (𝑟, 𝜃, 𝑧)
𝑣 (𝑟, 𝜃, 𝑧)
𝑤 (𝑟, 𝜃, 𝑧)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑢0 (𝜃, 𝑧) + 𝜉𝜓𝑧 (𝜃, 𝑧)
𝑣0 (𝜃, 𝑧) + 𝜉𝜓𝜃 (𝜃, 𝑧)

𝑤0 (𝜃, 𝑧)

⎤

⎥

⎥

⎦

(13)

where (𝑢, 𝑣,𝑤) are the displacement components in (𝑧, 𝜃, 𝑟) directions respectively;
(

𝑢0, 𝑣0, 𝑤0
)

are the midsurface normal line
translations in (𝑧, 𝜃, 𝑟) directions respectively and

(

𝜓𝑧, 𝜓𝜃
)

are the midsurface normal line rotations in (𝑧, 𝑟) plane and (𝜃, 𝑟) plane
respectively; and 𝜉 = 𝑟 − 𝑅𝑚 is the height from the shell mid-surface with 𝑅𝑚 being the shell midsurface radius.

The governing shell equations are expressed for a harmonic motion:
𝜕𝑁𝑧
𝜕𝑧

+ 1
𝑅𝑚

𝜕𝑁𝜃𝑧
𝜕𝜃

+ 𝐹𝑢 = −𝜔2 (𝐼1𝑢0 + 𝐼2𝜓𝑧
)

(14a)

1
𝑅𝑚

𝜕𝑁𝜃
𝜕𝜃

+
𝜕𝑁𝑧𝜃
𝜕𝑧

+
𝑄𝜃
𝑅𝑚

+ 𝐹𝑣 = −𝜔2 (𝐼1𝑣0 + 𝐼2𝜓𝜃
)

(14b)

𝜕𝑄𝑧
𝜕𝑧

+ 1
𝑅𝑚

𝜕𝑄𝜃
𝜕𝜃

−
𝑁𝜃
𝑅𝑚

+ 𝐹𝑤 = −𝜔2𝐼1𝑤0 (14c)

𝜕𝑀𝑧
𝜕𝑧

+ 1
𝑅𝑚

𝜕𝑀𝜃𝑧
𝜕𝜃

−𝑄𝑧 +𝑀𝜓𝑧 = −𝜔2 (𝐼2𝑢0 + 𝐼3𝜓𝑧
)

(14d)

1
𝑅𝑚

𝜕𝑀𝜃
𝜕𝜃

+
𝜕𝑀𝑧𝜃
𝜕𝑧

−𝑄𝜃 +𝑀𝜓𝜃 = −𝜔2 (𝐼2𝑣0 + 𝐼3𝜓𝜃
)

(14e)

where the generalized stresses
(

𝑁𝑧, 𝑁𝜃 , 𝑁𝑧𝜃 , 𝑁𝜃𝑧
)

are the membrane force resultants,
(

𝑀𝑧,𝑀𝜃 ,𝑀𝑧𝜃 ,𝑀𝜃𝑧
)

the moment resultants,
𝑄𝑧, 𝑄𝜃

)

the shear force resultants,
(

𝐼1, 𝐼2, 𝐼3
)

the inertial coefficients and
(

𝐹𝑢, 𝐹𝑣, 𝐹𝑤
)

and
(

𝑀𝜓𝑧 ,𝑀𝜓𝜃

)

are the external resultant
orces and momentum (per unit area) respectively. The first three equations in Eq. (14) describe the balance of resultant forces,
hile the last two equations describe the balance of momentum.

The constitutive equations relating the generalized stresses to the generalized strains and curvature changes of the middle surface
re given in matrix forms:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑁𝑧
𝑁𝜃
𝑁𝑧𝜃
𝑁𝜃𝑧
𝑀𝑧
𝑀𝜃
𝑀𝑧𝜃
𝑀𝜃𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐴̄11 𝐴12 0 0 𝐵̄11 𝐵12 0 0
𝐴12 𝐴̂22 0 0 𝐵12 𝐵̂22 0 0
0 0 𝐴̄66 𝐴66 0 0 𝐵̄66 𝐵66
0 0 𝐴66 𝐴̂66 0 0 𝐵66 𝐵̂66
𝐵̄11 𝐵12 0 0 𝐷̄11 𝐷12 0 0
𝐵12 𝐵̂22 0 0 𝐷12 𝐷̂22 0 0
0 0 𝐵̄66 𝐵66 0 0 𝐷̄66 𝐷66
0 0 𝐵66 𝐵̂66 0 0 𝐷66 𝐷̂66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜀0𝑧
𝜀0𝜃
𝜀0𝑧𝜃
𝜀0𝜃𝑧
𝜅𝑧
𝜅𝜃
𝜅𝑧𝜃
𝜅𝜃𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(15a)

[

𝑄𝑧
𝑄𝜃

]

=
[

𝐴̄55 0
0 𝐴̂44

] [

𝛾0𝑧𝑟
𝛾0𝜃𝑟

]

(15b)
6
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where
(

𝜀0𝑧, 𝜀0𝜃 , 𝜀0𝑧𝜃 , 𝜀0𝜃𝑧, 𝛾0𝑧𝑟, 𝛾0𝜃𝑟
)

are the midsurface strains and
(

𝜅𝑧, 𝜅𝜃 , 𝜅𝑧𝜃 , 𝜅𝜃𝑧
)

are the curvature and twist changes formulated
as:

𝜀0𝑧 =
𝜕𝑢0
𝜕𝑧

(16a)

𝜀0𝜃 =
𝜕𝑣0
𝑅𝑚𝜕𝜃

+
𝑤0
𝑅𝑚

(16b)

𝜀0𝑧𝜃 =
𝜕𝑣0
𝜕𝑧

(16c)

𝜀0𝜃𝑧 =
𝜕𝑢0
𝑅𝑚𝜕𝜃

(16d)

𝜅𝑧 =
𝜕𝜓𝑧
𝜕𝑧

(16e)

𝜅𝜃 =
𝜕𝜓𝜃
𝑅𝑚𝜕𝜃

(16f)

𝜅𝑧𝜃 =
𝜕𝜓𝜃
𝜕𝑧

(16g)

𝜅𝜃𝑧 =
𝜕𝑧

𝑅𝑚𝜕𝜓𝜃
(16h)

𝛾0𝑧𝑟 =
𝜕𝑤0
𝜕𝑧

+ 𝜓𝑧 (16i)

𝛾0𝜃𝑟 =
𝜕𝑤0
𝑅𝑚𝜕𝜃

−
𝑣0
𝑅𝑚

+ 𝜓𝜃 (16j)

The shell inertial coefficients
(

𝐼1, 𝐼2, 𝐼3
)

as well as the shell constitutive constants Eq. (15) can be found in Appendix A in terms
f shell properties.

Using Eqs. (15), (16) in Eq. (14), the governing shell equations expressed in terms of displacement variables are written in a
oncise matrix form:

[

𝑲cq
]

.
{

𝑼 𝑐𝑞
}

− 𝜔2 [𝑴cq
]

.
{

𝑼 𝑐𝑞
}

+
{

𝒒−
}

+
{

𝒒+
}

= 0 (17)

here 𝑲cq and 𝑴cq denote the generalized stiffness and inertial operators respectively and 𝒒− and 𝒒+ the generalized external
orces and moments vectors applied on the inner and outer surfaces respectively. The coefficients of the stiffness operator 𝑲cq and
he inertial operator 𝑴cq can be found in Ref. [39] while the expression of the external forces will be detailed in Section 6.

Considering a clamped–clamped shell to the rigid baffles, the axial boundary conditions in terms of shell midsurface displace-
ents write:

𝑢0 (𝜃, 𝑧) = 0 on 𝑧 = 0, 𝐿 (18a)

𝑣0 (𝜃, 𝑧) = 0 on 𝑧 = 0, 𝐿 (18b)

𝑤0 (𝜃, 𝑧) = 0 on 𝑧 = 0, 𝐿 (18c)

𝜓𝑧 (𝜃, 𝑧) = 0 on 𝑧 = 0, 𝐿 (18d)

𝜓𝜃 (𝜃, 𝑧) = 0 on 𝑧 = 0, 𝐿 (18e)

Using cylindrical harmonic decomposition for the azimuthal dependence, and Rayleigh–Ritz trigonometric expansion for the
xial dependence while satisfying the boundary conditions Eq. (18), the expression of shell variables are given by:

𝑢0 (𝜃, 𝑧) =
∞
∑

𝑛=0

∞
∑

𝑚=1
𝑢𝑛𝑚0 cos

(

𝑛
(

𝜃 − 𝜃𝑖
))

sin
(𝑚𝜋
𝐿
𝑧
)

(19a)

𝑣0 (𝜃, 𝑧) =
∞
∑

𝑛=0

∞
∑

𝑚=1
𝑣𝑛𝑚0 sin

(

𝑛
(

𝜃 − 𝜃𝑖
))

sin
(𝑚𝜋
𝐿
𝑧
)

(19b)

𝑤0 (𝜃, 𝑧) =
∞
∑

𝑛=0

∞
∑

𝑚=1
𝑤𝑛𝑚0 cos

(

𝑛
(

𝜃 − 𝜃𝑖
))

sin
(𝑚𝜋
𝐿
𝑧
)

(19c)

𝜓𝑧 (𝜃, 𝑧) =
∞
∑

𝑛=0

∞
∑

𝑚=1
𝜓𝑛𝑚𝑧 cos

(

𝑛
(

𝜃 − 𝜃𝑖
))

sin
(𝑚𝜋
𝐿
𝑧
)

(19d)

𝜓𝜃 (𝜃, 𝑧) =
∞
∑

𝑛=0

∞
∑

𝑚=1
𝜓𝑛𝑚𝜃 sin

(

𝑛
(

𝜃 − 𝜃𝑖
))

sin
(𝑚𝜋
𝐿
𝑧
)

(19e)

where
(

𝑢𝑛𝑚, 𝑣𝑛𝑚 𝑛𝑚 𝑛𝑚 𝑛𝑚)
7

0 0 , 𝑤0 , 𝜓𝑧 , 𝜓𝜃 are the unknown magnitudes of (𝑛, 𝑚) order.
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Other than clamped–clamped conditions Eq. (18), the proposed model can also consider different shell boundary conditions such
s simply-supported, free–free or clamped–free conditions, and hence the displacement solution should differ from the expression
q. (19) accordingly in terms of circular functions (sine and cosine) and axial wave number.

. Motion of the poroelastic core

The wave propagation through the poroelastic core is described with full 3D Biot’s theory for homogeneous and isotropic
aterials [1,41]. The model considers elastic frame fully saturated with fluid phase and takes into account their different physical

ouplings. Using the mixed u-p formulation [42,43], the skeleton displacement vector 𝑼 𝑠 =
{

𝑈𝑟, 𝑈𝜃 , 𝑈𝑧
}𝑡 and acoustic pressure in

the interstitial fluid 𝑃𝑓 satisfy the modified Biot equations:

∇.
(

𝝈̂𝑠 − 𝛼𝜙𝑃𝑓 𝐈
)

+ 𝜌̃𝜔2𝑼 𝑠 + 𝛽∇
(

𝜙𝑃𝑓
)

= 0 (20a)

∇.
(

1
𝜌̃22𝜔2

∇
(

𝜙𝑃𝑓
)

− 𝛽𝑼 𝒔
)

+
𝜙𝑃𝑓
𝑅̃

+ 𝛼∇.𝑼 𝑠 = 0 (20b)

where 𝐈 is the identity operator, 𝜙 the material porosity, 𝝈̂𝑠 the in vacuo skeleton stress tensor; 𝑅̃ the fluid effective bulk modulus; 𝜌̃,
̃22 are the effective skeleton and fluid densities respectively; and 𝛼, 𝛽 the dimensionless elastic and inertial skeleton–fluid couplings
espectively. In addition to elastic and inertial couplings, the adopted model includes the viscous and thermal dissipation using the
ohnson–Champoux–Allard model [41,44,45]. The expression of model parameters in terms of poroelastic properties are given in
ppendix B and more details can be found in Ref. [41].

The in vacuo skeleton stress tensor is related to the skeleton displacement with Hooke’s law:

𝝈̂𝑠 = 𝜆 (∇.𝑼 𝑠) 𝑰 − 𝜇
(

∇𝑼 𝑠 + (∇𝑼 𝑠)𝑡
)

(21)

here 𝜆 and 𝜇 are the Lamé coefficients. And the interstitial fluid displacement is related to the acoustic pressure and skeleton
isplacement by the following formula:

𝑼𝑓 = 1
𝜌̃22𝜔2

∇
(

𝜙𝑃𝑓
)

−
𝜌̃12
𝜌̃22

𝑼 𝑠 (22)

Assuming the core is axially clamped–clamped to rigid baffles on its edges, the boundary condition writes:

𝑼 𝑠 = 0 on 𝑧 = 0, 𝐿 (23a)

𝑼𝑓 .𝒆⃗𝑧 = 0 on 𝑧 = 0, 𝐿 (23b)

The first equation Eq. (23a) refer to the nullity of the skeleton displacement vector, while the second equation Eq. (23b) describes
the nullity of the normal component of the fluid displacement vector.

In the same way as previously exposed for the shell motion, using cylindrical harmonics decomposition for azimuthal dependence
and Rayleigh–Ritz trigonometric expansion for axial dependence while satisfying clamped–clamped boundary condition Eq. (23),
the poroelastic variables are given by:

𝑈𝑟 (𝑟, 𝜃, 𝑧) =
∞
∑

𝑛=0

∞
∑

𝑚=1
𝑈𝑛𝑚
𝑟 (𝑟) cos

(

𝑛
(

𝜃 − 𝜃𝑖
))

sin
(𝑚𝜋
𝐿
𝑧
)

(24a)

𝑈𝜃 (𝑟, 𝜃, 𝑧) =
∞
∑

𝑛=0

∞
∑

𝑚=1
𝑈𝑛𝑚
𝜃 (𝑟) sin

(

𝑛
(

𝜃 − 𝜃𝑖
))

sin
(𝑚𝜋
𝐿
𝑧
)

(24b)

𝑈𝑧 (𝑟, 𝜃, 𝑧) =
∞
∑

𝑛=0

∞
∑

𝑚=1
𝑈𝑛𝑚
𝑧 (𝑟) cos

(

𝑛
(

𝜃 − 𝜃𝑖
))

sin
(𝑚𝜋
𝐿
𝑧
)

(24c)

𝑃𝑓 (𝑟, 𝜃, 𝑧) =
∞
∑

𝑛=0

∞
∑

𝑚=0
𝑃 𝑛𝑚𝑓 (𝑟) cos

(

𝑛
(

𝜃 − 𝜃𝑖
))

cos
(𝑚𝜋
𝐿
𝑧
)

(24d)

where
(

𝑈𝑛𝑚
𝑟 , 𝑈𝑛𝑚

𝜃 , 𝑈𝑛𝑚
𝑧 , 𝑃 𝑛𝑚𝑓

)

are unknown functions of order (𝑛, 𝑚) and depending on the radius 𝑟.
At this point, the wave propagation dependence in the poroelastic material described by the variables

(

𝑈𝑟, 𝑈𝜃 , 𝑈𝑧, 𝑃𝑓
)

is known
with respect to azimuthal and longitudinal spatial coordinates 𝜃 and 𝑧, while the radial dependence 𝑟 is still unknown. Since
there is no a priori closed form to describe the wave propagation through the core thickness with Rayleigh–Ritz expansion, FEM
approximation will be used instead.

For this purpose, the poroelastic thickness domain
[

𝑅1, 𝑅2
]

is divided into elements and the unknown functions
(

𝑈𝑛𝑚
𝑟 , 𝑈𝑛𝑚

𝜃 , 𝑈𝑛𝑚
𝑧 , 𝑃 𝑛𝑚𝑓

)

are interpolated with a combination of shape functions:

[

𝑈𝑛𝑚
𝑟 , 𝑈𝑛𝑚

𝜃 , 𝑈𝑛𝑚
𝑧 , 𝑃 𝑛𝑚𝑓

]

(𝑟) =
𝐼
∑

𝑖=1
𝜓𝑖 (𝑟)

[

𝑈𝑛𝑚𝑖
𝑟 , 𝑈𝑛𝑚𝑖

𝜃 , 𝑈𝑛𝑚𝑖
𝑧 , 𝑃 𝑛𝑚𝑖𝑓

]

(25)

where
(

𝑈𝑛𝑚𝑖, 𝑈𝑛𝑚𝑖, 𝑈𝑛𝑚𝑖, 𝑃 𝑛𝑚𝑖
)

are the 𝑖th nodal values of (𝑛, 𝑚) order and 𝜓 the shape function associated to the FEM expansion.
8
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Using Eq. (25) in Eq. (24) yields to the expressions of poroelastic skeleton displacement
(

𝑈𝑟, 𝑈𝜃 , 𝑈𝑧
)

and fluid pressure 𝑃𝑓 given
s follows:

𝑈𝑟 (𝑟, 𝜃, 𝑧) =
∞
∑

𝑛=0

∞
∑

𝑚=1

𝐼
∑

𝑖=1
𝑈𝑛𝑚𝑖
𝑟 𝜓𝑖 (𝑟) cos

(

𝑛
(

𝜃 − 𝜃𝑖
))

sin
(𝑚𝜋
𝐿
𝑧
)

(26a)

𝑈𝜃 (𝑟, 𝜃, 𝑧) =
∞
∑

𝑛=0

∞
∑

𝑚=1

𝐼
∑

𝑖=1
𝑈𝑛𝑚𝑖
𝜃 𝜓𝑖 (𝑟) sin

(

𝑛
(

𝜃 − 𝜃𝑖
))

sin
(𝑚𝜋
𝐿
𝑧
)

(26b)

𝑈𝑧 (𝑟, 𝜃, 𝑧) =
∞
∑

𝑛=0

∞
∑

𝑚=1

𝐼
∑

𝑖=1
𝑈𝑛𝑚𝑖
𝑧 𝜓𝑖 (𝑟) cos

(

𝑛
(

𝜃 − 𝜃𝑖
))

sin
(𝑚𝜋
𝐿
𝑧
)

(26c)

𝑃𝑓 (𝑟, 𝜃, 𝑧) =
∞
∑

𝑛=0

∞
∑

𝑚=0

𝐼
∑

𝑖=1
𝑃 𝑛𝑚𝑖𝑓 𝜓𝑖 (𝑟) cos

(

𝑛
(

𝜃 − 𝜃𝑖
))

cos
(𝑚𝜋
𝐿
𝑧
)

(26d)

where
(

𝑈𝑛𝑚𝑖
𝑟 , 𝑈𝑛𝑚𝑖

𝜃 , 𝑈𝑛𝑚𝑖
𝑧 , 𝑃 𝑛𝑚𝑖𝑓

)

are the unknown magnitudes of porous media of (𝑛, 𝑚, 𝑖) order. Note that for the skeleton
isplacement 𝑼 𝑠, the first longitudinal order starts from 𝑚 = 1; while for the pressure field 𝑃𝑓 , the first longitudinal order starts
rom 𝑚 = 0.

. Coupling conditions

.1. Shell and external fluid coupling

The external generalized force vector 𝒒+ applied by the external fluid on the outer surface of the shell 𝑆3 is given by:
{

𝒒+
}

=
{

0, 0, −𝑝1||𝑟=𝑅3
, 0, 0

}𝑡
(27)

.2. Poroelastic core and shell coupling

The poroelastic core is bounded to the shell and the coupling conditions are given by:

𝑈𝑟 = 𝑤 on 𝑟 = 𝑅2 (28a)

𝑈𝜃 = 𝑣 on 𝑟 = 𝑅2 (28b)

𝑈𝑧 = 𝑢 on 𝑟 = 𝑅2 (28c)
(

𝑼 𝑠 − 𝑼𝑓 ) .𝒆⃗𝑟 = 0 on 𝑟 = 𝑅2 (28d)

The first three equations of Eq. (28) expresses the solid–solid displacement continuity while the last equation expresses the nullity
of the relative displacement between the skeleton and the interstitial fluid normally to the interface.

Let us denote by 𝑻 =
{

𝑇𝑟, 𝑇𝜃 , 𝑇𝑧
}𝑡 the transmitted stress vector at the shell and poroelastic interface 𝑆2. One can show that the

cylindrical expansion of the transmitted stress vector 𝑻 is given by:

𝑇𝑟 =
∞
∑

𝑛=0
𝑇𝑟𝑛 cos

(

𝑛
(

𝜃 − 𝜃𝑖
))

(29a)

𝑇𝜃 =
∞
∑

𝑛=0
𝑇𝜃𝑛 sin

(

𝑛
(

𝜃 − 𝜃𝑖
))

(29b)

𝑇𝑧 =
∞
∑

𝑛=0
𝑇𝑧𝑛 cos

(

𝑛
(

𝜃 − 𝜃𝑖
))

(29c)

Hence, the generalized forces and moments applied on the inner surface of the shell are given by:
{

𝒒−
}

=
{

𝑇𝑧, 𝑇𝜃 , 𝑇𝑧, − ℎ
2 𝑇𝑧, − ℎ

2 𝑇𝜃
}𝑡

(30)

with ℎ = 𝑅3 − 𝑅2 being the total shell thickness.

6.3. Acoustic cavity and poroelastic core coupling

On the interface of the acoustic cavity and the poroelastic core 𝑆1, the continuity of the normal displacement can be written as:

1
𝜌2𝜔2

∇𝑝2.𝒆⃗𝑟 = 𝑼 𝑠.𝒆⃗𝑟 + 𝜙
(

𝑼 𝑠 − 𝑼𝑓 ) .𝒆⃗𝑟 on 𝑟 = 𝑅1 (31)

Reciprocally, the continuity of the stress vector is given by:
( 𝑠 )

(32)
9

𝝈̂ − 𝛼𝜙𝑃𝑓 𝐈 .𝒆⃗𝑟 = −𝑝2𝒆⃗𝑟 on 𝑟 = 𝑅1
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Considering closed pores at the interface 𝑆1 (the interstitial fluid is isolated from the cavity), the nullity of the normal relative
displacement between the skeleton and interstitial fluid writes:

(

𝑼 𝑠 − 𝑼𝑓 ) .𝒆⃗𝑟 = 0 on 𝑟 = 𝑅1 (33)

Using Eq. (33), the acoustic cavity and poroelastic core coupling condition Eq. (31) is simplified into:
1

𝜌2𝜔2
∇𝑝2.𝒆⃗𝑟 = 𝑼 𝑠.𝒆⃗𝑟 on 𝑟 = 𝑅1 (34)

. Assembled global vibro-acoustic problem

In order to assemble the vibro-acoustic problem, one has to derive the weak formulation of the governing equations and boundary
onditions based on Galerkin method:

1. In the acoustic cavity:

∫𝛺1

[

1
𝜌2𝜔2

∇
(

𝛿𝑝2
)

.∇
(

𝑝2
)

− 1
𝜌2𝑐22

𝛿𝑝2.𝑝2

]

𝑑𝑣 − ∫𝑆1
𝛿𝑝2.

⎡

⎢

⎢

⎢

⎣

𝑼 𝑠.𝒆⃗𝑟 + 𝜙
(

𝑼 𝑠 − 𝑼𝑓 ) .𝒆⃗𝑟
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

0

⎤

⎥

⎥

⎥

⎦

𝑑𝑠 = 0 (35a)

2. In the poroelastic domain:

∫𝛺𝑝

[

𝜺
(

𝛿𝑼 𝒔)𝑡 ∶ 𝑲pe ∶ 𝜺
(

𝑼 𝒔) − 𝜔2𝜌̃ 𝛿𝑼 𝑠.𝑼 𝑠
]

𝑑𝑣 + ∫𝛺𝑝

[

𝛼𝜙∇ (𝛿.𝑼 𝑠) .𝑃𝑓 + 𝛽𝜙 𝛿𝑼 𝑠.∇
(

𝑃𝑓
)]

𝑑𝑣

− ∫𝑆1

(

𝛿𝑼 𝑠.𝒆⃗𝑟
)

.𝑝2 𝑑𝑠 − ∫𝑆2
𝛿𝑼 𝑐𝑞 .𝑻 𝑑𝑠 = 0 (35b)

∫𝛺𝑝

[

𝜙2

𝜔2𝜌̃22
∇
(

𝛿𝑃𝑓
)

.∇
(

𝑃𝑓
)

−
𝜙2

𝑅̃
𝛿𝑃𝑓 .𝑃𝑓

]

𝑑𝑣 − ∫𝛺𝑝

[

𝛼𝜙 𝛿𝑃𝑓∇. (𝑼 𝑠) + 𝛽𝜙∇
(

𝛿𝑃𝑓
)

.𝑼 𝑠] 𝑑𝑣 = 0 (35c)

3. At shell midsurface:

∫𝑆𝑚
𝛿𝑼 𝑐𝑞 .

[

𝑲cq − 𝜔2𝑴cq
]

.𝑼 𝑐𝑞 𝑑𝑠 + ∫𝑆2
𝛿𝑼 𝑐𝑞 .𝑻 𝑑𝑠 = −∫𝑆3

𝛿𝑤0.𝑝1 𝑑𝑠 (35d)

4. At the interface between the shell and poroelastic domain:

∫𝑆2
𝛿𝑻 .

(

𝑼 𝑠 − 𝑼 𝑠) 𝑑𝑠 = 0 (35e)

where the test functions are spotted with 𝛿 symbol and 𝑲pe is the Hooke operator of the poroelastic skeleton. The main advantages
of the mixed u-p formulation are the use of a reduced number of variables compared to the u-U formulation and the use of natural
and symmetric coupling conditions at the poroelastic boundaries.

Note that, since the 𝜃 and 𝑧 dependencies are explicitly written in terms of circular functions and the radial dependence
is known as well (Bessel functions for acoustic cavity and using polynomial interpolation for 1D-FEM in the poroelastic core
thickness), all the volume and surface integrals can be evaluated analytically. Moreover, one should notice that the functions set
{cos (𝑛𝜃) , sin (𝑛𝜃) ∕𝑛 ∈ N} are orthogonal along the cylinder circumference

[

𝜃𝑖, 𝜃𝑖 + 2𝜋
]

which describes a full period (or a multiple
of a period). However, the functions

{

cos
(

𝑚 𝜋
𝐿 𝑧

)

, sin
(

𝑚 𝜋
𝐿 𝑧

)

∕𝑚 ∈ N
}

are not orthogonal along the cylinder length [0, 𝐿] since it
escribes a multiple of half wavelength. Therefore, the system Eq. (37) is written for each circumferential order 𝑛 separately, and
he state variables are solved for all longitudinal orders 𝑚 = 0,… ,𝑀 ‘‘at the same time’’ since they are coupled. The longitudinal
oupling terms are given by:

∫

𝐿

0
cos

(

𝑚1
𝜋
𝐿
𝑧
)

cos
(

𝑚2
𝜋
𝐿
𝑧
)

𝑑𝑧 = 𝛿𝑚1𝑚2

(

1 + 𝛿0𝑚1

) 𝐿
2

(36a)

∫

𝐿

0
sin

(

𝑚1
𝜋
𝐿
𝑧
)

sin
(

𝑚2
𝜋
𝐿
𝑧
)

𝑑𝑧 = 𝛿𝑚1𝑚2

(

1 − 𝛿0𝑚1

) 𝐿
2

(36b)

∫

𝐿

0
sin

(

𝑚1
𝜋
𝐿
𝑧
)

cos
(

𝑚2
𝜋
𝐿
𝑧
)

𝑑𝑧 =

{

0 if 𝑚1 = 𝑚2
𝐿
𝜋

𝑚1
𝑚2
1−𝑚

2
2

[

1 − (−1)𝑚1+𝑚2
]

if 𝑚1 ≠ 𝑚2
(36c)

where 𝛿𝑚1𝑚2
=

{

1 if 𝑚1 = 𝑚2
0 if 𝑚1 ≠ 𝑚2

is the Kronecker symbol. The last expression can also be written in terms of whether the sum

𝑚1 + 𝑚2 is an odd or even number.
Finally, the global vibro-acoustic problem can be written and arranged in the following matrix form:

⎡

⎢

⎢

⎢

⎢

⎣

𝒁𝑐𝑞 0 0 𝑪 𝑡
𝑐𝑞

0 𝒁𝑝 −𝑪 𝑡
𝑎 −𝑪 𝑡

𝑝
0 −𝑪𝑎 𝑨𝑎 0

𝑪𝑐𝑞 −𝑪𝑝 0 0

⎤

⎥

⎥

⎥

⎥

⎦

.

⎧

⎪

⎪

⎨

⎪

⎪

𝑼 𝑐𝑞
𝑼 𝑝
𝑷 2
𝑻

⎫

⎪

⎪

⎬

⎪

⎪

=

⎧

⎪

⎪

⎨

⎪

⎪

𝑭 𝑒𝑥
0
0
0

⎫

⎪

⎪

⎬

⎪

⎪

(37)
10

⎩ ⎭ ⎩ ⎭
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where 𝑼 𝑐𝑞 ,𝑼 𝑝 and 𝑷 2 denote now the vectors of degrees of freedom associated to the shell, the poroelastic medium and the acoustic
cavity respectively, 𝒁𝑐𝑞 and 𝒁𝑝 denote shell dynamic stiffness (or impedance) and poroelastic mixed dynamic stiffness respectively,
𝑨𝑎 acoustic cavity receptance (or admittance), 𝑻 the Lagrange multiplier vector accounting for transmitted forces between shell and
poroelastic material, 𝑭 𝑒𝑥 the excitation pressure and 𝑪𝑐𝑞 ,𝑪𝑝,𝑪𝑎 the couplings operators; according to the variational expression Eq.
(35).

A special attention should be carried while assembling the poroelastic operator 𝒁𝑝 since there is a combination of three different
types of couplings between the degrees of freedom : (1) physical coupling which is given by the governing Biot equations Eq. (20)
and constitutive law Eq. (21), (2) FEM couplings for nodes belonging to the same elements and (3) Rayleigh–Ritz coupling expressed
in the equation Eq. (36) here above. This yields to assemble non-classical hybrid matrices which combines Rayleigh–Ritz and FEM
expansions.

8. Noise reduction

In the internal acoustic cavity 𝛺2, the transmitted pressure 𝑝2 consists on standing-waves. Hence, for an enclosed acoustic cavity
where the internal resonances play a major role, the sound insulation is evaluated through the Noise Reduction factor (NR). As
proposed by Lesueur [33], the adopted NR expression is given by:

NR
(

𝑓, 𝜙𝑖
)

= 10 log10

(⟨

𝑝21
⟩

𝑆
⟨

𝑝22
⟩

𝑉

)

(38)

where 𝑓 = 𝜔
2𝜋 is the frequency and

⟨

𝑝21
⟩

𝑆 and
⟨

𝑝22
⟩

𝑉 denote respectively the external time-surface-averaged and internal
time-volume-averaged mean-square pressures given by:

⟨

𝑝21
⟩

𝑆 = 1
𝑇

1
𝑆3 ∫

𝑇

0 ∫𝑆3
𝑝1 . 𝑝

∗
1 𝑑𝑠 𝑑𝑡 (39a)

⟨

𝑝22
⟩

𝑉 = 1
𝑇

1
𝛺1 ∫

𝑇

0 ∫𝛺1

𝑝2 . 𝑝
∗
2 𝑑𝑣 𝑑𝑡 (39b)

with (.)∗ being the complex conjugate operator and the time-period 𝑇 = 2𝜋
𝜔 .

Using the expressions of blocked pressure Eq. (8) and transmitted pressure Eqs. (11), (12), one can show that the averaged
ean-square pressures yield to the following expressions:

⟨

𝑝21
⟩

𝑆 =
(

2𝐴𝑖
𝜋𝑘1𝑟𝑅3

)2 ∞
∑

𝑛=0
𝜀𝑛

|

|

|

|

|

1
𝐻 ′
𝑛
(

𝑘1𝑟𝑅3
)

|

|

|

|

|

2

(40a)

⟨

𝑝22
⟩

𝑉 =
1
4

𝑁
∑

𝑛=0

𝑀
∑

𝑚=0
|𝑃 𝑛𝑚|2

(

1 + 𝛿0𝑛
) (

1 + 𝛿0𝑚
)

I𝑅1
(40b)

where the I𝑅1
coefficient is given by:

I𝑅1
=

{

𝐽 2
𝑛
(

𝑘2𝑟𝑚𝑅1
)

− 𝐽𝑛−1
(

𝑘2𝑟𝑚𝑅1
)

𝐽𝑛+1
(

𝑘2𝑟𝑚𝑅1
)

if 𝜔
𝑐2
> 𝑚 𝜋

𝐿
𝐼2𝑛

(

𝑘2𝑟𝑚𝑅1
)

− 𝐼𝑛−1
(

𝑘2𝑟𝑚𝑅1
)

𝐼𝑛+1
(

𝑘2𝑟𝑚𝑅1
)

if 𝜔
𝑐2
< 𝑚 𝜋

𝐿
(41)

We note here that the noise reduction factor Eq. (38) depends on the excitation frequency 𝑓 and on the angle of incidence 𝜙𝑖,
owever it is independent from the azimuthal incidence angle 𝜃𝑖 which can be well understood when considering the axisymmetric
roperty of the problem.

. Numerical results

.1. Computational parameters

In the present model, the unknowns are expanded into three types of expansions : harmonic expansion for the azimuthal
oordinates (𝜃) in all media, Rayleigh–Ritz trigonometric expansion for the longitudinal coordinates (𝑧), and Finite Element Method
xpansion for the radial coordinates (𝑟) in the poroelastic core thickness. For the FEM expansion, a quadratic Lagrange polynomial
nterpolation is used for the poroelastic variables

(

𝑈𝑛𝑚
𝑟 (𝑟), 𝑈𝑛𝑚

𝜃 (𝑟), 𝑈𝑛𝑚
𝑧 (𝑟), 𝑃 𝑛𝑚𝑓 (𝑟)

)

for each (𝑛, 𝑚) order.
In order to compute noise transmission, a sufficient expansion orders of cylindrical harmonics 𝑁 and Rayleigh–Ritz approxima-

ion 𝑀 have to be determined. A priori criterion based on in vacuo eigen frequencies of the structure and rigid wall eigen frequencies
f the acoustic cavity can be formulated. The maximum orders (𝑁,𝑀) are determined in such a way that all resonant eigen modes
n the studied frequency range are included. Henceforth solving the in vacuo shell eigen problem and the rigid wall acoustic eigen
roblem is the first step before solving the vibro-acoustic problem of sound transmission. Usually, for large cylinders (which is the
ase for aircraft or payload fairings of space launchers), the maximum orders (𝑁,𝑀) are fully determined by the structural eigen
requencies and not by the acoustical eigen frequencies. Furthermore, since the eigenvalue problem has already been solved, a modal
rojection for shell displacement 𝑼 𝑐𝑞 can be exploited to improve computational time costs. This projection reduces the size of the
11

hell related matrices 𝒁𝑐𝑞 ,𝑪𝑐𝑞 and the excitation vector 𝑭 𝑒𝑥 while diagonalizing the dynamic stiffness operator 𝒁𝑐𝑞 .
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Table 1
Naked isotropic cylinders properties (based on [33]).

Properties Small shell Large shell

Mid-plane radius 𝑅𝑚 [m] 0.221 2.162
Length 𝐿 [m] 1.026 5.715
Shell thickness [mm] 2 2

Shell Mass density 𝜌 [kg/m3] 7 800 2 768
Shell Young modulus 𝐸𝑧 = 𝐸𝜃 [GPa] 200 69
Shell Poisson ratio 𝜈𝑧𝜃 = 𝜈𝜃𝑧 0.3 0.3
Shell damping ratio 𝜂 [%] 5 5

Fluid Mass densities 𝜌1 = 𝜌2 [kg/m3] 1.293 1.284
Fluid speeds of sound 𝑐1 = 𝑐2 [m/s] 340 340

In a research phase, expansions orders (𝑁,𝑀) could be overestimated; nonetheless a compromise between accuracy and
computational cost should be found. Some adaptive schemes, as the one proposed in [20], could be useful in finding the optimal
discretization parameters.

9.2. Sound transmission through naked cylinders

9.2.1. Comparison with full numerical model: small shell
The first example consists of a small isotropic cylinder made of steel and whose properties are presented in Table 1. The structural

damping model is considered and the shell damping ratio 𝜂 is introduced through complex elastic moduli such that:

𝐸̃𝛼 = 𝐸𝛼(1 − j 𝜂) 𝛼 = 𝜃, 𝑧 (42a)

𝐺̃𝛼𝛽 = 𝐺𝛼𝛽 (1 − j 𝜂) 𝛼𝛽 = 𝑧𝜃, 𝑧𝑟, 𝜃𝑟 (42b)

The results are compared to those obtained by full numerical FEM–BEM computation using Rayon Solver [42].1 Some
discrepancies between the two models should be mentioned first : contrary to the proposed semi-analytical model, in the numerical
model the rigid baffle has a sufficiently but finite length and the impedance added by the external fluid is taken into account.
Moreover, and exclusively for this example, the Noise Reduction index is evaluated using the following formula:

ÑR = −10 log10
(⟨

𝑝22
⟩

𝑉

)

(43)

Fig. 3 shows the sound level for an incidence angle 𝜙𝑖 = 45𝑜 in the frequency range [1, 400] Hz. Despite the little differences
previously mentioned between the proposed semi-analytical model and full numerical FEM–BEM model, both results are in an
excellent agreement. This demonstrates the validity of the assumption that the shell sound radiation in the external fluid domain
is negligible in the case of a stiff cylinder coupled with a lightweight fluid. According to Fig. 3, Noise Reduction dips occur at
the structural and acoustical eigen frequencies where the structural dynamic stiffness operator and acoustical receptance operator
are singular respectively. It should be mentioned here that the computational effort required for the proposed semi-analytical
methodology is smaller when compared to full FEM–BEM approaches. Moreover, the model does not require any FEM-type meshing
of the shell and the cavity nor a BEM-type meshing of the surrounding fluid domain. This overcomes some compatibility issues
sometimes encountered at the FEM–BEM coupling interface.

9.2.2. Comparison with semi-analytical model : large shell
The second example consists of an isotropic cylinder with large dimensions made of aluminum and whose properties are

presented in Table 1. For large cylinder, structural and acoustical modal densities are higher and hence it requires higher
discretization parameters (𝑁,𝑀). The NR results as defined in Eq. (38) are compared to those of Lesueur [33]. Lesueur’s STL
model used the Donnel-Mushtari theory to describe the shell motion and the added external impedance is included using the closed
form expression of an infinitely long cylinder but integrated over the length 𝐿. Moreover, boundary conditions consist of a simply
supported shell. For this purpose, the proposed model was adapted to take into account this boundary condition.

Fig. 4, Fig. 5, Fig. 6 show Noise Reduction comparisons for incidence angles 𝜙𝑖 = [90◦, 45◦, 15◦] respectively. NR curves are
highly fluctuating and these sharp dips represent the effects of both structural and cavity resonances. Describing the NR curves in
average terms, for normal incidence 𝜙𝑖 = 90◦ the sound level inside the cavity increases with respect to the frequency. However
for oblique incidence 𝜙𝑖 = 45◦, three different frequency ranges can be distinguished : in the [1, 150] Hz frequency range, the NR
index exhibits a decreasing tendency; in the [150, 385] Hz frequency range, the NR tendency seems to be constant; above the ring
frequency 𝑓𝑎 = 385 Hz, the NR tends to increase. It is useful to remind here that the ring frequency corresponds to the frequency
of the first breathing mode of vibration of the shell (𝑛 = 0) and it occurs when the longitudinal wavelength is equal to the shell
circumference [26]. The ring frequency 𝑓𝑎 separates the stiffness controlled region 𝑓 < 𝑓𝑎 from the mass controlled region 𝑓 > 𝑓𝑎

1 Rayon Solver was early developed by STRACO company and now is developed and distributed by ESI-Group in the VA-One software.
12
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Fig. 3. Comparison of Noise Reduction ÑR for a small dimensions shell impinged by a plane wave with incidence angle 𝜙𝑖 = 45◦.

Fig. 4. Comparison of Noise Reduction for Shell A impinged by a plane wave with incidence angle 𝜙𝑖 = 90◦ (Based on [33]).

where the STL is increasing. Moreover, and according to Ref. [46] the ring frequency can be seen as the threshold of the ‘‘resonance
controlled region’’ which is a transition region between the stiffness controlled region and the mass controlled region. The ring
frequency expression for an orthotropic infinite shell is given by Blaise et al. [47]: 𝑓𝑎 = 1

2𝜋𝑅𝑚

√

𝐸𝜃𝜁

𝜌
(

𝜁−𝜈2𝜃𝑧
) where 𝜁 = 𝐸𝜃

𝐸𝑧
is the

orthotropic ratio. Note that for 𝜁 = 1, the ring frequency expression for isotropic shell is found.
For oblique incidence 𝜙𝑖 = 15◦, same pattern happens and the three different frequency regions can be distinguished. However,

the first frequency range is extended and covers [1, 320] Hz while the second range is limited to [320, 385] Hz. Above the ring frequency
𝑓𝑎, the NR factor increases in the mass controlled region. The proposed semi-analytical model is in a good agreement with Lesueur’s
results. This is in accordance with the very close structural responses given by Donnel-Mushtari shell theory and FSDT for thin
isotropic cylindrical shells with a ratio ℎ

𝑅𝑚
≈ 1

1000 . As it was described in the early works of Smith [48] and White [26], the
minimum of noise reduction under oblique incidence is obtained at the ring frequency.
13
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Fig. 5. Comparison of Noise Reduction for Shell A impinged by a plane wave with incidence angle 𝜙𝑖 = 45◦ (Based on [33]).

Fig. 6. Comparison of Noise Reduction for Shell A impinged by a plane wave with incidence angle 𝜙𝑖 = 15◦ (Based on [33]).

9.2.3. Finite/infinite superposition : large shell
Results obtained previously for the large isotropic cylinder case (Table. 1) are now illustrated along with those obtained by the

infinitely long cylinder model established by Magniez et al. [13,15]. In these last references, the shell motion is modeled with FSDT
and, unlike the presented model, the pressure radiated by the elastic cylinder in the external fluid is included. Noise Reduction
juxtaposition for plane wave incidence angles 𝜙𝑖 = [90◦, 45◦, 15◦] are shown in Fig. 7, Fig. 8 and Fig. 9 respectively. Results show
that the finite and infinite cylinders responses present globally the same NR trends in the studied frequency range. However, huge
discrepancies are observed between the two models at very low frequencies where the incident wavelengths are the largest. This
is due to the effects of boundary conditions which constrain the finite shell and hence it increases its apparent stiffness. These
end effects have also been observed in Refs. [19,37,38] for finite cylindrical structures as well as in Refs. [49,50] for finite flat
panel structures. Despite these boundary condition effects at very low frequencies, the finite and infinite cylinders NR curves are
in a good agreement globally. This is specially shown for normal incidence in Fig. 7 where both NR fluctuations match well. This
NR overlapping can be partially explained by the fact that at 𝜙𝑖 = 90◦, the incident pressure 𝑝1 is 𝑧-constant and it impinges the
cylinder uniformly. For oblique incidence 𝜙 = 45◦, the infinite cylinder shows higher NR levels relatively to the finite cylinder and
14
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Fig. 7. Noise reduction superposition of finite length cylinder (proposed model) and infinite length cylinder (Ref. [13]) for a normal plane wave with incidence
ngle 𝜙𝑖 = 90◦ .

Fig. 8. Noise reduction superposition of finite length cylinder (proposed model) and infinite length cylinder (Ref. [13]) for a plane wave with incidence angle
𝑖 = 45◦ .

his leads to somehow overestimating the sound insulation. For small incidence angle 𝜙𝑖 = 15◦, the contrast between the finite and
infinite cylinders responses is more visible where the NR index for the finite cylinder is still highly fluctuating while the NR index
for infinite cylinder describes a more regular curve with fewer dips (see Fig. 9). It is also observed that the number of these dips
decreases along with the decrease of angle of incidence 𝜙𝑖. The effects of the angle of incidence on sound insulation can be explained
through the examination of the acoustic waves in the internal cavity. For the finite cylinder, the transmitted pressure consists always
on stationary waves in the radial and axial directions, while for the infinite cylinder the transmitted pressure consists on standing
waves in the radial direction and traveling waves in the axial direction. The radial and longitudinal wave resonances involved in
the finite cylinder make the NR highly fluctuating all over the frequency region regardless of the incidence angle and this tends to
lower the global NR level. Besides, the radial standing waves involved in the infinite cylinder are more excited by normal incident
wave than by oblique waves. This explains why the NR is more oscillating at 𝜙 = 90◦ compared to 𝜙 = 45◦ and 15◦.
15
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Fig. 9. Noise reduction superposition of finite length cylinder (proposed model) and infinite length cylinder (Ref. [13]) for a plane wave with incidence angle
𝑖 = 15◦ .

Fig. 10. Noise reduction comparison between finite length naked cylinder and finite length cylinder lined with poroelastic coating excited by a plane wave with
ncidence 𝜙𝑖 = 45◦ .

.3. Sound transmission through laminated shell lined with poroelastic coating

In this section, the studied example consists of (an aerospace structure comprising) a cylinder of length 𝐿 = 12 m and exterior
radius 𝑅3 = 2.71 m composed by a sandwich shell lined with a poroelastic coating. Two poroelastic coating thicknesses are studied

10 cm and 15 cm thicknesses. The properties of the surrounding fluids are 𝜌1 = 𝜌2 = 1.284 kg∕m3 and 𝑐1 = 𝑐2 = 340 m∕s. Shell
properties, poroelastic material and interstitial fluid properties are given in Table 2 and Table 3 respectively. The poroelastic skeleton
damping ratio 𝜂𝑠 is introduced through complex elastic moduli such that:

𝜆̃ = 𝜆(1 − j 𝜂𝑠) (44a)
16

𝜇̃ = 𝜇(1 − j 𝜂𝑠) (44b)
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Fig. 11. Radial displacement of poroelastic coating at cross-section 𝑧 = 𝐿
2

in the stiffness controlled region for a cylinder excited by a plane wave with incidence
𝜙𝑖 = 45◦ . (a) Shell lined with 10 cm thickness of poroelastic coating (b) Shell lined with 15 cm thickness of poroelastic coating.

Fig. 10 shows Noise Reduction index for naked and coated finite shell under plane wave excitation with angle of incidence
𝜙𝑖 = 45◦. The NR index is decreasing with respect to frequency reaching its minimum around the ring frequency 𝑓𝑎 ≈ 113 Hz and
increasing above it. Below the ring frequency, no significant difference in NR level is observed between naked and coated cylinders
regardless of coating thickness. In fact as stated earlier, this region corresponds to the stiffness controlled region and due to the
high flexibility of the poroelastic core, the noise insulation level is not improved. In this low frequency region dominated by the
stiffness of the shell, the poroelastic core follows the shell displacement with almost no radial deformation and hence no significant
additional amount of acoustic energy dissipation is observed compared to naked cylinder. This is illustrated in Fig. 11 where it is
observed that the radial displacement of the upper and lower interfaces of the poroelastic core are almost coincident. The upper
interface corresponds to the interface with the shell and the lower interface corresponds the one with the acoustic cavity.

Just above the ring frequency, the NR level tends to increase rapidly for the three configurations and the effect of the poroelastic
coating is clearly demonstrated in Fig. 10 at higher frequencies wherein the wavelengths are short enough to interact with the liner.
While remaining globally constant for naked shell in the major frequency region right after the first increase, the NR factors of
coated shells continue to increase and experience two rises at two different frequency locations. This point will be discussed later.
Moreover, it should be noticed that the effects of internal resonances are muffled by the presence of the poroelastic coating and
this is illustrated by the absence of sharp dips and less fluctuations in the NR curves. Above the ring frequency, the noise insulation
is improved by the porous liner and as shown in Fig. 12 there are relative radial displacements between the poroelastic upper and
lower interfaces. These relative radial vibrations cause acoustic energy dissipation and result in a higher NR level compared to naked
cylinders. As pointed out earlier, NR level exhibits two peaks at around 230 Hz and 650 Hz for 10 cm coating thickness, while for
15 cm coating thickness these peaks are shifted around 150 Hz and 430 Hz respectively. The effect of a more massive coating shifts
these peaks to lower frequencies. The first local NR maxima are due to skeleton resonances, and the second NR maxima are due to
the classical quarter wavelength effects. These peaks can also be observed for planar structures and it is concluded that these peaks
in the NR level are pure effects of the poroelastic layer resonances.
17
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Fig. 12. Radial displacement of poroelastic coating at cross-section 𝑧 = 𝐿
2

in the mass controlled region for a cylinder excited by a plane wave with incidence
𝜙𝑖 = 45◦ . (a) Sandwich shell lined with 10 cm thickness of poroelastic coating (b) Sandwich shell lined with 15 cm thickness of poroelastic coating.

Fig. 13, Fig. 14 and Fig. 15 show Noise Reduction superposition for coated finite and infinite length cylinder excited by a plane
wave with incidence angle 𝜙𝑖 = [90◦, 45◦, 15◦] respectively. For normal incidence, NR index is increasing in the frequency range and
oth models give very close results except at very low frequencies where the effect of boundary condition are significant. For oblique
ngles of incidence 𝜙𝑖 = 45◦ and 15◦, just below the ring frequency, the infinite model is overestimating the NR level compared to
he present finite model. Beyond the ring frequency, the discrepancies in the NR level are reduced and both models are in a good
greement. However for highly oblique incidence 𝜙𝑖 = 15◦, the NR levels are close until 600 Hz where a gap between the two models
s initiated. The infinite length cylinder model shows a Noise Reduction level increase starting from around 700 Hz while the finite
ength cylinder model shows a Noise Reduction level increase starting from around 800 Hz for the two core thicknesses. This lag
as also observed for the case of naked shell, but it is not shown here. It is concluded that the gap observed for naked shell could
ot be recovered with the presence of the porous liner. Moreover, the NR fluctuations intensity is higher in the stiffness controlled
egion rather than the mass controlled region and despite the muffling effect of the porous liner the finite internal resonances are
till quite noticeable in the whole frequency region for incidence angle 𝜙𝑖 = 15◦ rather than 𝜙𝑖 = 45◦.

10. Summary and conclusion

A consistent semi-analytical model is developed to compute sound transmission through finite length multilayered cylinders
impinged by incident plane waves. The cylinder is made of a laminated shell modeled with first order shear deformation theory and
lined with a poroelastic core modeled by full 3D Biot’s theory using u-p format. The solution is expanded into cylindrical harmonics
for the azimuthal direction and, while obtaining analytical expressions of the sound pressures in the fluid domains, Rayleigh–Ritz
trigonometric approximation is used to ensure the axial boundary condition of the structure. Furthermore, a quadratic finite element
approximation is used to describe the radial wave propagation through the poroelastic core thickness. A weak formulation is hence
derived and evaluated analytically to solve the coupled vibro-acoustic problem and an analytical expression of the Noise Reduction
index is established.
18
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n

Fig. 13. Noise reduction superposition of finite length cylinder (proposed model) and infinite length cylinder (reference [13]) excited by a plane wave with
ormal incidence 𝜙𝑖 = 90◦ . (a) Shell lined with 10 cm thickness of poroelastic coating (b) Shell lined with 15 cm thickness of poroelastic coating.

Table 2
Sandwich shell properties.
Properties Skin Core

Thickness [mm] 0.858 18.2
Mass density [kg/m3] 3 288.5 136.153 8
Young modulus 𝐸𝑧 [GPa] 53.877 0
Young modulus 𝐸𝜃 [GPa] 17.475 0
Shear modulus 𝐺𝑧𝜃 [GPa] 7.8 0
Shear modulus 𝐺𝑧𝑟 [GPa] 0 0.186 2
Shear modulus 𝐺𝜃𝑟 [GPa] 0 0.089 6
Poisson ratio 𝜈𝑧𝜃 0.594 0
Structural damping 𝜂 [%] 1 1
19
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Fig. 14. Noise reduction superposition of finite length cylinder (proposed model) and infinite length cylinder (reference [13]) excited by a plane wave with
ncidence 𝜙𝑖 = 45◦ . (a) Shell lined with 10 cm thickness of poroelastic coating (b) Shell lined with 15 cm thickness of poroelastic coating.

Results obtained for naked cylinders are compared and validated with results from literature and those obtained with full
umerical FEM–BEM approach. Besides, the present model is put into perspective through finite/infinite results juxtaposition and
he internal resonances brought by the finitude of the cylinder are discussed with respect to angle of incidence and poroelastic
oating thickness in the low and mid frequency ranges. The main observations are summarized hereafter. It is found that the
ffects of the boundary conditions are limited to the very first low frequency range where there are large discrepancies between
inite and infinite Noise Reduction (NR) levels for both naked and coated cylinder configurations. Despite this difference, the finite
nd infinite cylinder results are in a very good agreement for normal incidence where the NR fluctuations are matching well.
20
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Fig. 15. Noise reduction superposition of finite length cylinder (proposed model) and infinite length cylinder (reference [13]) excited by a plane wave with
ncidence 𝜙𝑖 = 15◦ . (a) Shell lined with 10 cm thickness of poroelastic coating (b) Shell lined with 15 cm thickness of poroelastic coating.

owever, for oblique incidence and for naked cylinders, the NR curve obtained by the infinite model is more regular with less
luctuations while the NR curve obtained by the proposed model is still fluctuating due to the effects of the internal resonances.
lobally speaking, both models are in a good agreement with a general relative NR level overestimation observed for infinite
ylinder.

For coated cylinders, it is found that the poroelastic liner does not improve sound insulation in the stiffness controlled region and
his is explained by its high flexibility. However, in the mass controlled region, the sound insulation is greatly improved thanks to
he viscous and thermal dissipation and the effects of finite cylinder internal resonances are muffled. For highly oblique incidences,
gap between finite and infinite is found. Finally, unlike infinite length cylinder model, the proposed finite length cylinder model
21

resents all the structural and acoustical resonances for a more accurate sound level transmission prediction.
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Table 3
Properties of the poroelastic material and the interstitial fluid.
Properties Value

Porosity 𝜙 0.994
Tortuosity 𝛼∞ 1.02
Flow resistivity 𝜎 [N s m−4] 9 045
Viscous characteristic length 𝛬 [μm] 103
Thermal characteristic length 𝛬′ [μm] 197

Skeleton mass density 𝜌1𝑠 [kg/m3] 8.43
Skeleton first Lamé parameter 𝜆 [kPa] 360.2905
Skeleton second Lamé parameter 𝜇 [kPa] 68.6268
Skeleton structural damping 𝜂𝑠 [%] 5

Fluid mass density 𝜌𝑓 [kg/m3] 1.284
Fluid dynamic viscosity 𝜂𝑓 [μPa s] 18.4
Fluid heat capacity ratio 𝛾𝑓 1.4
Prandtl number Pr 0.71
Atmospheric pressure P0 [Pa] 101 325
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Appendix A. Shell properties

For an K-layered laminated shell made of transversely isotropic materials, the generalized stiffness coefficients
(

𝐴𝑖𝑗 , 𝐴̄𝑖𝑗 , 𝐴̂𝑖𝑗
)

,
𝐷𝑖𝑗 , 𝐷̄𝑖𝑗 , 𝐷̂𝑖𝑗

)

and
(

𝐵𝑖𝑗 , 𝐵̄𝑖𝑗 , 𝐵̂𝑖𝑗
)

represent respectively the extensional, bending and extensional-bending coupling stiffness coeffi-
ients and are evaluated as follows:

𝐴𝑖𝑗 =
𝐾
∑

𝑘=1
𝑄(𝑘)
𝑖𝑗

(

ℎ𝑘 − ℎ𝑘−1
)

𝑖, 𝑗 = 1, 2, 6 (A.1a)

𝐵𝑖𝑗 =
1
2

𝐾
∑

𝑘=1
𝑄(𝑘)
𝑖𝑗

(

ℎ2𝑘 − ℎ
2
𝑘−1

)

𝑖, 𝑗 = 1, 2, 6 (A.1b)

𝐷𝑖𝑗 =
1
3

𝐾
∑

𝑘=1
𝑄(𝑘)
𝑖𝑗

(

ℎ3𝑘 − ℎ
3
𝑘−1

)

𝑖, 𝑗 = 1, 2, 6 (A.1c)

𝐸𝑖𝑗 =
1
4

𝐾
∑

𝑘=1
𝑄(𝑘)
𝑖𝑗

(

ℎ4𝑘 − ℎ
4
𝑘−1

)

𝑖, 𝑗 = 1, 2, 6 (A.1d)

𝐴𝑖𝑗 = 𝐶
𝐾
∑

𝑘=1
𝑄(𝑘)
𝑖𝑗

(

ℎ𝑘 − ℎ𝑘−1
)

𝑖, 𝑗 = 4, 5 (A.1e)

𝐵𝑖𝑗 = 𝐶 1
2

𝐾
∑

𝑘=1
𝑄(𝑘)
𝑖𝑗

(

ℎ2𝑘 − ℎ
2
𝑘−1

)

𝑖, 𝑗 = 4, 5 (A.1f)

𝐴̄𝑖𝑗 = 𝐴𝑖𝑗 +
𝐵𝑖𝑗 𝐴̂𝑖𝑗 = 𝐴𝑖𝑗 −

𝐵𝑖𝑗 (A.1g)
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𝜌

𝐵̄𝑖𝑗 = 𝐵𝑖𝑗 +
𝐷𝑖𝑗

𝑅𝑚
𝐵̂𝑖𝑗 = 𝐵𝑖𝑗 −

𝐷𝑖𝑗

𝑅𝑚
(A.1h)

𝐷̄𝑖𝑗 = 𝐷𝑖𝑗 +
𝐸𝑖𝑗
𝑅𝑚

𝐷̂𝑖𝑗 = 𝐷𝑖𝑗 −
𝐸𝑖𝑗
𝑅𝑚

(A.1i)

where ℎ𝑘, ℎ𝑘−1 are the distance from the midsurface to the outer and inner surfaces of the 𝑘th layer respectively, 𝑄̄(𝑘)
𝑖𝑗 are the

lane-stress reduced stiffness coefficients of the 𝑘th cross-ply lamina and given in terms of elastic properties and 𝐶 = 5
6 the shear

correction factor.
For each lamina layer 𝑘, the reduced Hooke law for transversely isotropic materials is given by:

𝑄(𝑘)
11 =

𝐸(𝑘)
𝑧

1 − 𝜈(𝑘)𝑧𝜃 𝜈
(𝑘)
𝜃𝑧

𝑄(𝑘)
22 =

𝐸(𝑘)
𝜃

1 − 𝜈(𝑘)𝑧𝜃 𝜈
(𝑘)
𝑧𝜃

(A.2a)

𝑄(𝑘)
12 =

𝜈(𝑘)𝜃𝑧 𝐸
(𝑘)
𝑧

1 − 𝜈(𝑘)𝑧𝜃 𝜈
(𝑘)
𝜃𝑧

𝑄(𝑘)
21 =

𝜈(𝑘)𝑧𝜃 𝐸
(𝑘)
𝜃

1 − 𝜈(𝑘)𝑧𝜃 𝜈
(𝑘)
𝜃𝑧

(A.2b)

𝑄(𝑘)
44 = 𝐺(𝑘)

𝑟𝜃 𝑄(𝑘)
55 = 𝐺(𝑘)

𝑧𝑟 𝑄(𝑘)
66 = 𝐺(𝑘)

𝜃𝑧 (A.2c)

with
(

𝐸𝑧, 𝐸𝜃
)

the Young moduli in longitudinal and transverse fiber directions respectively,
(

𝜈𝑧𝜃 , 𝜈𝜃𝑧
)

the Poisson coefficients and
(

𝐺𝑟𝜃 , 𝐺𝑧𝑟, 𝐺𝜃𝑧
)

the shear moduli. These relationships are valid when the lamina principle axes coincide with the cylindrical axes.
The inertial coefficients are given by:

𝐼𝑖 = 𝐼𝑖 +
𝐼𝑖+1
𝑅𝑚

𝑖 = 1, 2, 3 (A.3a)

[

𝐼1, 𝐼2, 𝐼3, 𝐼4
]

=
𝐾
∑

𝑘=1
∫

ℎ𝑘

ℎ𝑘−1
𝜌(𝑘)

[

1, 𝑟, 𝑟2, 𝑟3
]

𝑟𝑑𝑟 (A.3b)

where 𝜌(𝑘) denotes the density of the 𝑘th laminated layer.

Appendix B. Biot’s parameters

For harmonic motion
(

𝑒−j𝜔𝑡
)

, the effective densities introduced in the mixed displacement–pressure Biot formulation Eq. (20)
nd Eq. (22) are defined as follows:

𝜌̃11 = 𝜌11 −
𝑏̃
j𝜔

(B.1a)

𝜌̃22 = 𝜌22 −
𝑏̃
j𝜔

(B.1b)

𝜌̃12 = 𝜌12 +
𝑏̃
j𝜔

(B.1c)

𝜌̃ = 𝜌̃11 −
𝜌̃212
𝜌̃22

(B.1d)

where 𝜌11 and 𝜌22 are skeleton and fluid mass coefficients respectively, 𝜌12 mass coefficient accounting for inertial interaction
etween solid and fluid phases. These coefficients are expressed in terms of skeleton mass density 𝜌𝑠 and interstitial fluid density
𝑓 :

𝜌11 = (1 − 𝜙) 𝜌𝑠 − 𝜌12 (B.2a)

𝜌22 = 𝛼∞𝜙𝜌𝑓 (B.2b)

𝜌12 =
(

1 − 𝛼∞
)

𝜙𝜌𝑓 (B.2c)

The viscous damping coefficient 𝑏̃ is dependent on the frequency and it is expressed using the Johnson and al.[44] model.
The elastic and inertial coupling coefficients 𝛼 and 𝛽 between solid and fluid phases are given by [41]:

𝛼 = 1 + 𝑄̃
𝑅̃

(B.3a)

𝛽 = 1 +
𝜌̃12
𝜌̃22

(B.3b)

where 𝑄̃ and 𝑅̃ are elastic coefficient related to the bulk moduli of skeleton and interstitial fluid.
23



Journal of Sound and Vibration 535 (2022) 117102F. Naccache et al.
References

[1] M. Biot, Theory of elastic waves in a fluid-saturated porous solid. 1. Low frequency range, J. Acoust. Soc. Am. 28 (1956) 168–178, http://dx.doi.org/10.
1121/1.1908239.

[2] M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. 2. Higher frequency range, J. Acoust. Soc. Am. 28 (2) (1956) 179–191,
http://dx.doi.org/10.1121/1.1908241.

[3] J.-H. Lee, J. Kim, H.-J. Kim, Simplified method to solve sound transmission through structures lined with elastic porous material, J. Acoust. Soc. Am. 110
(5) (2001) 2282–2294, http://dx.doi.org/10.1121/1.1410967.

[4] J. Bolton, N.-M. Shiau, Y. Kang, Sound transmission through multi-panel structures lined with elastic porous materials, J. Sound Vib. 191 (3) (1996)
317–347, http://dx.doi.org/10.1006/jsvi.1996.0125.

[5] J. Zhou, A. Bhaskar, X. Zhang, The effect of external mean flow on sound transmission through double-walled cylindrical shells lined with poroelastic
material, J. Sound Vib. 333 (7) (2014) 1972–1990, http://dx.doi.org/10.1016/j.jsv.2013.11.038.

[6] Y. Liu, C. He, Diffuse field sound transmission through sandwich composite cylindrical shells with poroelastic core and external mean flow, Compos.
Struct. 135 (2016) 383–396, http://dx.doi.org/10.1016/j.compstruct.2015.09.025.

[7] M. Golzari, A.A. Jafari, Sound transmission loss through triple-walled cylindrical shells with porous layers, J. Acoust. Soc. Am. 143 (6) (2018) 3529–3544,
http://dx.doi.org/10.1121/1.5041270.

[8] K. Daneshjou, H. Ramezani, R. Talebitooti, Wave transmission through laminated composite double-walled cylindrical shell lined with porous materials,
Appl. Math. Mech. 32 (6) (2011) 701–718, http://dx.doi.org/10.1007/s10483-011-1450-9.

[9] J. Zhou, A. Bhaskar, X. Zhang, Sound transmission through a double-panel construction lined with poroelastic material in the presence of mean flow, J.
Sound Vib. 332 (16) (2013) 3724–3734, http://dx.doi.org/10.1016/j.jsv.2013.02.020.

[10] K. Daneshjou, R. Talebitooti, M. Kornokar, Vibroacoustic study on a multilayered functionally graded cylindrical shell with poroelastic core and
bonded-unbonded configuration, J. Sound Vib. 393 (2017) 157–175, http://dx.doi.org/10.1016/j.jsv.2017.01.001.

[11] R. Talebitooti, M. Zarastvand, The effect of nature of porous material on diffuse field acoustic transmission of the sandwich aerospace composite doubly
curved shell, Aerosp. Sci. Technol. 78 (2018) 157–170, http://dx.doi.org/10.1016/j.ast.2018.03.010.

[12] R. Talebitooti, A. Choudari Khameneh, M. Zarastvand, M. Kornokar, Investigation of three-dimensional theory on sound transmission through compressed
poroelastic sandwich cylindrical shell in various boundary configurations, J. Sandw. Struct. Mater. 21 (7) (2019) 2313–2357, http://dx.doi.org/10.1177/
1099636217751562.

[13] J. Magniez, M.A. Hamdi, J.-D. Chazot, B. Troclet, A mixed ‘‘Biot-shell’’ analytical model for the prediction of sound transmission through a sandwich
cylinder with a poroelastic core, J. Sound Vib. 360 (2016) 203–223, http://dx.doi.org/10.1016/j.jsv.2015.09.012.

[14] M. Zarastvand, M. Ghassabi, R. Talebitooti, Acoustic insulation characteristics of shell structures: a review, Arch. Comput. Methods Eng. 28 (2) (2021)
505–523, http://dx.doi.org/10.1177/1099636221993891.

[15] J. Magniez, J.-D. Chazot, M.A. Hamdi, B. Troclet, A mixed 3D-shell analytical model for the prediction of sound transmission through sandwich cylinders,
J. Sound Vib. 333 (19) (2014) 4750–4770, http://dx.doi.org/10.1016/j.jsv.2014.04.040.

[16] L. Tong, Free vibration of orthotropic conical shells, Int. J. Eng. Sci. 31 (5) (1993) 719–733, http://dx.doi.org/10.1016/0020-7225(93)90120-J.
[17] M. Caresta, N.J. Kessissoglou, Free vibrational characteristics of isotropic coupled cylindrical–conical shells, J. Sound Vib. 329 (6) (2010) 733–751,

http://dx.doi.org/10.1016/j.jsv.2009.10.003.
[18] M. Caresta, N.J. Kessissoglou, Acoustic signature of a submarine hull under harmonic excitation, Appl. Acoust. 71 (1) (2010) 17–31, http://dx.doi.org/10.

1016/j.apacoust.2009.07.008.
[19] M. Golzari, A.A. Jafari, Sound transmission through truncated conical shells, Appl. Acoust. 156 (2019) 186–207, http://dx.doi.org/10.1016/j.apacoust.

2019.07.008.
[20] H. Darvish Gohari, M. Zarastvand, R. Talebitooti, Acoustic performance prediction of a multilayered finite cylinder equipped with porous foam media, J.

Vib. Control 26 (11–12) (2020) 899–912, http://dx.doi.org/10.1177/1077546319890025.
[21] V. Easwaran, W. Lauriks, J. Coyette, Displacement-based finite element method for guided wave propagation problems: Application to poroelastic media,

J. Acoust. Soc. Am. 100 (5) (1996) 2989–3002, http://dx.doi.org/10.1121/1.417111.
[22] Y.J. Kang, B.K. Gardner, J.S. Bolton, An axisymmetric poroelastic finite element formulation, J. Acoust. Soc. Am. 106 (2) (1999) 565–574, http:

//dx.doi.org/10.1121/1.428041.
[23] M.J. Kingan, Y. Yang, B.R. Mace, Sound transmission through cylindrical structures using a wave and finite element method, Wave Motion 87 (2019)

58–74, http://dx.doi.org/10.1016/j.wavemoti.2018.07.009.
[24] H. Li, Y. Hao, W. Zhang, L. Liu, S. Yang, D. Wang, Vibration analysis of porous metal foam truncated conical shells with general boundary conditions

using GDQ, Comput. Struct. 269 (2021) 114036, http://dx.doi.org/10.1016/j.compstruct.2021.114036.
[25] F.J. Fahy, Statistical energy analysis: A critical overview, Philos. Trans. R. Soc. Lond. Ser. A: Phys. Eng. Sci. 346 (1681) (1994) 431–447, http:

//dx.doi.org/10.1098/rsta.1994.0027.
[26] P.H. White, Sound transmission through a finite, closed, cylindrical shell, J. Acoust. Soc. Am. 40 (5) (1966) 1124–1130, http://dx.doi.org/10.1121/1.

1910197.
[27] L.D. Pope, On the transmission of sound through finite closed shells: Statistical energy analysis, modal coupling, and nonresonant transmission, J. Acoust.

Soc. Am. 50 (3B) (1971) 1004–1018, http://dx.doi.org/10.1121/1.1912694.
[28] C. Yuan, O. Bergsma, A. Beukers, Sound transmission loss prediction of the composite fuselage with different methods, Appl. Comp. Mater. 19 (6) (2012)

865–883, http://dx.doi.org/10.1007/s10443-011-9199-6.
[29] P. Oliazadeh, A. Farshidianfar, M.J. Crocker, Experimental and analytical investigation on sound transmission loss of cylindrical shells with absorbing

material, J. Sound Vib. 434 (2018) 28–43, http://dx.doi.org/10.1016/j.jsv.2018.07.017.
[30] P. Gupta, A. Parey, Prediction of sound transmission loss of cylindrical acoustic enclosure using statistical energy analysis and its experimental validation,

J. Acoust. Soc. Am. 151 (1) (2022) 544–560, http://dx.doi.org/10.1121/10.0009358.
[31] J.-H. Lee, J. Kim, Study on sound transmission characteristics of a cylindrical shell using analytical and experimental models, Appl. Acoust. 64 (6) (2003)

611–632, http://dx.doi.org/10.1016/S0003-682X(02)00138-X.
[32] L.R. Koval, Effects of cavity resonances on sound transmission into a thin cylindrical shell, J. Sound Vib. 59 (1) (1978) 23–33, http://dx.doi.org/10.1016/

0022-460X(78)90475-3.
[33] C. Lesueur, Rayonnement Acoustique Des Structures: Vibroacoustique, Interaction Fluide-Structure (in French) [Sound Radiation of Structures :

Vibroacoustics, Fluid-Structure Interaction], Eyrolles, 1988.
[34] D. Li, J.S. Vipperman, Mathematical model for characterizing noise transmission into finite cylindrical structures, J. Acoust. Soc. Am. 117 (2) (2005)

679–689, http://dx.doi.org/10.1121/1.1828652.
[35] H. Hosseini-Toudeshky, M. Mofakhami, S.H. Hashemi, Sound transmission into a thick hollow cylinder with the fixed-end boundary condition, Appl. Math.

Model. 33 (3) (2009) 1656–1673, http://dx.doi.org/10.1016/j.apm.2008.03.002.
[36] M. Mofakhami, H.H. Toudeshky, S.H. Hashemi, Finite cylinder vibrations with different end boundary conditions, J. Sound Vib. 297 (1–2) (2006) 293–314,

http://dx.doi.org/10.1016/j.jsv.2006.03.041.
24



Journal of Sound and Vibration 535 (2022) 117102F. Naccache et al.
[37] J. Zhou, A. Bhaskar, X. Zhang, Sound transmission through double cylindrical shells lined with porous material under turbulent boundary layer excitation,
J. Sound Vib. 357 (2015) 253–268, http://dx.doi.org/10.1016/j.jsv.2015.07.014.

[38] M. Golzari, A.A. Jafari, Effect of poroelastic material on vibroacoustic behavior of truncated conical shells, Aerosp. Sci. Technol. 118 (2021) 106982,
http://dx.doi.org/10.1016/j.ast.2021.106982.

[39] M.S. Qatu, Vibration of Laminated Shells and Plates, Elsevier, 2004.
[40] J.N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, 2003.
[41] J. Allard, N. Atalla, Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials 2e, John Wiley & Sons, 2009.
[42] M. Hamdi, L. Mebarek, A. Omrani, N. Atalla, An efficient formulation for the analysis of acoustic and elastic waves propagation in porous-elastic

materials, in: Proceedings of the International Seminar on Modal Analysis, Vol. 3, Katholieke Universiteit Leuven, Belgium, 2001, pp. 1443–1448,
https://www.jstor.org/stable/44731003.

[43] N. Atalla, M.A. Hamdi, R. Panneton, Enhanced weak integral formulation for the mixed (u_, p_) poroelastic equations, J. Acoust. Soc. Am. 109 (6) (2001)
3065–3068, http://dx.doi.org/10.1121/1.1365423.

[44] D.L. Johnson, J. Koplik, R. Dashen, Theory of dynamic permeability and tortuosity in fluid-saturated porous media, J. Fluid Mech. 176 (1987) 379–402,
http://dx.doi.org/10.1017/S0022112087000727.

[45] Y. Champoux, J.-F. Allard, Dynamic tortuosity and bulk modulus in air-saturated porous media, J. Appl. Phys. 70 (4) (1991) 1975–1979, http:
//dx.doi.org/10.1063/1.349482.

[46] P. Oliazadeh, A. Farshidianfar, Analysis of different techniques to improve sound transmission loss in cylindrical shells, J. Sound Vib. 389 (2017) 276–291,
http://dx.doi.org/10.1016/j.jsv.2016.11.016.

[47] A. Blaise, C. Lesueur, M. Gotteland, M. Barbe, On sound transmission into an orthotropic infinite shell: Comparison with Koval’s results and understanding
of phenomena, J. Sound Vib. 150 (2) (1991) 233–243, http://dx.doi.org/10.1016/0022-460X(91)90618-T.

[48] P. Smith Jr., Sound transmission through thin cylindrical shells, J. Acoust. Soc. Am. 29 (6) (1957) 721–729, http://dx.doi.org/10.1121/1.1909025.
[49] F. Xin, T. Lu, C. Chen, Vibroacoustic behavior of clamp mounted double-panel partition with enclosure air cavity, J. Acoust. Soc. Am. 124 (6) (2008)

3604–3612, http://dx.doi.org/10.1121/1.3006956.
[50] F. Xin, T. Lu, Analytical modeling of sound transmission through clamped triple-panel partition separated by enclosed air cavities, Europ. J. Mech.-A/Solids

30 (6) (2011) 770–782, http://dx.doi.org/10.1016/j.euromechsol.2011.04.013.
25




