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ABSTRACT

We apply the concept of approximated common divisors
(ACDs) to estimate the tempo and quantize the durations
of a rhythmic sequence. The ACD models the duration
of the tatum within the sequence, giving its rate in beats
per minute. The rhythm input, a series of timestamps, is
first split into overlapping frames. Then, we compute the
possible ACDs that fit this frame and build a graph with
the candidate ACDs as nodes. By building this graph, we
transform the quantization problem into one of path selec-
tion, where the nodes represent the ACDs and determine
the note values of the transcription and the edges repre-
sent tempo transitions between frames. A path through
the graph thus corresponds to a rhythm transcription. For
path selection, we present both an automated method us-
ing weights for evaluating the transcription and finding the
shortest path, and an interactive approach that gives users
the possibility of influencing the path selection.

1. INTRODUCTION

Many techniques have been proposed for the problem
of rhythm transcription and quantization: some build a
rhythm tree [1, 2], some use probabilistic models and
Monte Carlo pruning [3], and others use signal processing
methods like autocorrelation [4]. Here, we present yet an-
other approach to the problem using the notion of approxi-
mate common divisors (ACDs). This mathematical object,
stemming from cryptography [5], is related to the rhythmic
notion of tatum, which will be used to transcribe a series
of onset times into a musical rhythm. A similar technique
has been used to find the greatest common divisor of an
inter-onset interval histogram [6]. The difference in our
approach is that we consider also common divisors that
are not the greatest, and we build a graph such that each
candidate common divisor maps to a node in the graph.

This approach was first explored in [7] to automate the
transcription of a rhythmic sequence in expressive music
performances and arrhythmic heartbeats into musical nota-
tion in the context of the ERC project COSMOS (http:
//cosmos.ircam.fr). Here, we describe the origi-
nal problem and algorithmic approach, which addresses a
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monophonic rhythm input, then propose an extension that
can handle polyphonic input.

The main observation driving the algorithm design is that
a given rhythmic input may have several transcription pos-
sibilities. We model the options using a graph where each
path corresponds to a possible transcription. The choice
of the path may be automated but it may also be selected
interactively with a human in the loop. We will present
both approaches and consider how they might coexist and
cooperate within the same framework.

This paper is organised as follows: Section 2 gives an
introduction to approximate common divisors, explaining
how they can be used to quantize a rhythm by creating a
temporal grid. After defining ACDs, we first address the
problem of transcribing monophonic rhythms in Section 3,
then broaden the description to the transcription of poly-
phonic rhythms in Section 4. While both cases can be ap-
proached using the same technique, they differ in how the
input is split. Finally, in Section 5, we propose a graphical
user interface that allows a user to select the path and thus
influence the transcription result.

2. APPROXIMATE COMMON DIVISORS

The notion of an approximate common divisor (ACD) has
been studied by Howgrave-Graham in [5], with integral
ACDs in the context of cryptography. In this paper, we will
allow ACDs to take on real values with a slightly different
definition adapted to the purpose of rhythm transcription.
Let us then provide an exposition on the ACD finding prob-
lem, presenting it in a form suitable for the rhythm tran-
scription context, working our way up from the problem of
finding (exact) common divisors.

2.1 The ACD finding problem in R

The common divisor finding problem in N is that of finding
the common divisors of a series of N natural numbers,

D = (d1, d2, ..., dN ) ∈ NN . (1)

This problem is equivalent to finding the numbers a ∈ N
such that ∀n ∈ {1, ..., N}, dn ∈ aN ≜ {am ∈ N : m ∈
N}. This problem, which is well posed in N, can be ex-
tended to R with some adaptations.

First of all, we will allow both a and the durations dn
to be positive real numbers, i.e.: a > 0, dn > 0, ∀n ∈
{1, ..., N}. Then, we define the a-grid as

aZ ≜ {am ∈ R : m ∈ Z} . (2)
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This new framework allows us to extend the problem to a
series of timestamps,

T = (t0, t1, ..., tN ) ∈ RN+1 , (3)

where t0 = 0 and ∀n ∈ {1, ..., N}, tn = tn−1 + dn. Here,
we will work with timestamps, but the definitions work for
both timestamps and durations.

In practice, the timestamps are expressed in some time
unit, typically MIDI ticks or seconds, and we search for
numbers a > 0 such that tn fits into the a-grid ∀n ∈
{1, ..., N}. In musical terms, a is the duration of a cer-
tain note value that functions as the tatum of the rhythmic
sequence and the numbers mn such that

tn − tn−1 = dn = amn

are the multipliers of a to produce the dn’s.

2.2 Definition of approximate common divisors

In practice, unless algorithmically generated, durations are
rarely if ever exact multiples of a non-trivial divisor. We
thus introduce some flexibility into the common divisor
finding problem through a threshold τ > 0.

We now relax the notion of fitting the a-grid by requiring
timestamps to be within the threshold τ of the a-grid, i.e.:

ϵ(tn, aZ) ≜ min
m∈Z

|tn − am| ≤ τ , (4)

∀n ∈ {0, ..., N}, where ϵ(tn, aZ) is the closest distance
between the timestamp tn and the a-grid. Since we require
all the timestamps to be within the threshold, τ , of the a-
grid, Equation 4 thus implies that the maximum distance
between the timestamp series T and the a-grid, ϵT (a), is
also within the threshold τ , i.e.,

ϵT (a) ≜ max
n

ϵ(tn, aZ) ≤ τ . (5)

Figure 1 shows the fit between a timestamp series T =
(0, 0.98, 1.52), given in seconds (s), and the 0.5 s-grid with
a threshold of 0.05 s. We will use the threshold τ = 0.05 s
for all remaining examples.

0.0 0.5 1.0 1.5
Time (s)

timestamps
threshold

Figure 1. The fit between timestamp series T =
(0, 0.98, 1.52) s and a 0.5 s-grid for threshold τ = 0.05 s.

With these definitions in place, we now formally define
ACDs for a timestamp series T .

Definition 1 Let T = (t0, t1, ..., tN ) ∈ RN+1 be a times-
tamp series. a > 0 is an approximate common divisor
(ACD) of T with threshold τ > 0 if

1. ϵT (a) ≤ τ ; and,

2. ϵT has a local minimum at a.

The first condition ensures that the ACD satisfies the
threshold requirement for the timestamp series T . The sec-
ond condition makes the set of ACDs discrete by select-
ing the ACD that minimizes the error within each interval
{a ∈ (0,∞) : ϵT (a) ≤ τ}.

In practice, since a
2 is an upper-bound for ϵT (a), we will

see an increasing number of ACDs as a approaches 0, most
of which are irrelevant since they are too small. This is why
we will choose a lower bound for a, say 0.2 s.

Given a timestamp series T = (0, 0.98, 1.52) s, we plot
the function ϵT for the range a ∈ [0.2, 1.0] as shown in
Figure 2. A horizontal line marks the threshold τ = 0.05 s
and dots the ACDs. We compute ϵT (a) at steps of 1ms.
Since the definition of the ACDs involves local minima, the
resolution of the computations can influence the results; in
this paper, the precision is set to the millisecond.
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Figure 2. Approximate common divisors of the timestamp
series T = (0, 0.98, 1.52) s within the range a ∈ [0.2, 1.0].

The computational complexity of the ACDs is linear with
respect to the length of the timestamp series and the num-
ber of candidate values for a. The code uses Python li-
braries NumPy [8] and SciPy [9] and is available online 1 .

2.3 Vectors associated with an ACD

The point of a number a being an ACD of a timestamp
series T ∈ RN+1 with threshold τ is that there is an asso-
ciated vector

M = (M [0], ...,M [N ]) ∈ ZN+1 (6)

where M [n] = argminm∈Z |tn − am|, that consists of the
integer values of the grid that fit the timestamps. Setting
T̃ = aM ∈ RN+1, we have

||T̃ − T ||∞ = ϵ ≤ τ , (7)

where ϵ = ϵT (a) will be called the approximation error.
We can think of T̃ as the approximated timestamp series,
which will never be more than ϵ off from the original.

Moreover, we can deduce the integer durations

∆ = (M [n]−M [n− 1])Nn=1 ∈ ZN (8)

1 https://github.com/Manza12/TENOR-2022
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that satisfy the inequality

||D̃ −D||∞ ≤ 2τ , (9)

where D̃ = a∆ ∈ RN are the approximated durations.
In the example showed in the Figure 2 we get

a1 = 0.5 s a2 = 0.312 s a3 = 0.25 s

ϵ1 = 0.02 s ϵ2 = 0.044 s ϵ3 = 0.02 s

with ai being the ACDs and ϵi being the corresponding
errors, ϵT (ai). We also retrieve the integer vectors

M1 = (0, 2, 3) M2 = (0, 3, 5) M3 = (0, 4, 6)

∆1 = (2, 1) ∆2 = (3, 2) ∆3 = (4, 2) .

The next section will show how to use ACDs and the re-
sulting vectors to transcribe monophonic rhythms.

3. MONOPHONIC TRANSCRIPTION

Let us first pose the problem of monophonic transcription
in a way adapted to the formalism proposed for ACDs:
when we have a monophonic rhythm, for example one pro-
duced by an instrument playing one note at a time, we can
assume for simplicity that the release of each note occurs
at the same time as the onset of the following note.

Moreover, since two onsets cannot occur at the same
time, integer durations should not be 0. This means that
the ACDs should be small enough to prevent this from oc-
curring, say by requiring that the minimum candidate ACD
be smaller than the smallest duration we wish to transcribe.

Let us consider, for instance, the rhythm

ˇ “ ˇ “=̌“ ˇ “ ‰
==ˇ “ ˇ “

played at a tempo of ˇ “ = 60. The exact timestamp series
and durations will thus be

T = (0, 1, 1.5, 2, 2.75, 3, 4) s (10)
D = (1, 0.5, 0.5, 0.75, 0.25, 1) s , (11)

where we consider the onsets of all notes and the release
of the last note.

If humans were to play this rhythm, they would deviate
slightly from these timestamps. Throughout this section,
we consider a human realisation of this rhythm given by

T = (0, 1.018, 1.531, 2.061, 2.888, 3.179, 4.286) s (12)
D = (0, 1.018, 0.513, 0.53, 0.827, 0.291, 1.107) s . (13)

Let us show how one can transcribe this timestamp series
into note values using ACDs.

3.1 Frames of a timestamp series

As mentioned, the ACD definition can result in many very
small ACDs, which are not very interesting for music tran-
scription because they imply too fine of a time resolution
and make the note values too large. We therefore only con-
sider ACDs above a lower bound of 0.2 s in the example.

Putting a lower bound on ACDs will imply that, if the
threshold is small enough, some timestamp series may

not have any ACD. In the musical context, this can be
thought of as a player that deviates from a metronome, the
metronome playing the role of the grid with the ACD be-
ing the time interval between two beats 2 . But this can
be overcame by splitting the timestamp series into smaller
blocks.

Given a timestamp series T ∈ RN+1 and a frame length
L ∈ N, ∀n ∈ {0, ..., N − L + 1}, the frame Fn of length
L given by the vector

Fn = (tn, tn+1, ..., tn+L−1) ∈ RL . (14)

We now focus on frames of length 3 and on finding their
ACDs. It is important to note that we need to shift our
frame so that one of its timestamps is 0 in order to adapt
the ACDs to that frame. We will then have

Fn = (tn − ti, tn+1 − ti, ..., tn+L−1 − ti) ∈ RL , (15)

where i ∈ {n, ..., n+ L− 1} is the centering index.
For instance, if we take the first frame of the T defined

in (12), F0 = (0, 1.018, 1.531), we have the ACDs and the
integer durations

a00 = 0.51 s a01 = 0.255 s a02 = 0.212 s

∆0
0 = (2, 1) ∆0

1 = (4, 2) ∆0
2 = (5, 2) ,

which give us three ways of transcribing the first two note
values that are

R0
0 = ˇ “ ˇ “( R0

1 = ˘ “ ˇ “ R0
2 = ˘ “ ˇ “( ˇ “ ,

where the unit is ˇ “( .

3.2 Consistency across frames

Using the approach of frame-wise transcription, we need
to impose some consistency across frames. Because of the
way we have defined the frames, consecutive frames have
two overlapping timestamps so one duration is shared be-
tween the two frames. For a coherent transcription, the
common duration should be the same.

For instance, if we take the shifted second frame of T ,
F1 = (1.018, 1.531, 2.061) − 1.018 = (0, 0.513, 1.043),
we have the ACDs and the integer durations

a10 = 0.519 s a11 = 0.259 s

∆1
0 = (1, 1) ∆1

1 = (2, 2) .

Since the frames F0 and F1 share the second and first
duration, respectively, they should satisfy the consistency
condition expressed as the equation

∆0
k0
[1] = ∆1

k1
[0] (16)

for them to be consistent. This equation will be satisfied by
certain pairs (k0, k1) but not by others. This consistency
requirement motivates the construction of the graph that is
presented in the next section.

2 Note that a metronome usually plays the tactus rather than the tatum;
here, the metronome analogy should be thought of in the sense of the
tatum.



3.3 The ACD graph

For each frame, we model each ACD as a node. Then, we
add an edge from an ACD of a frame to an ACD of the next
frame if the integer durations are consistent. If we do this
for the timestamp sequence from (12), we obtain the graph
shown in Figure 3.
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Figure 3. Graph of integer durations ∆.

Figure 3 shows how the consistency condition is fulfilled.
It shows also how we can choose a transcription by select-
ing a path in the graph. Suppose we choose the path

(4, 2) → (2, 2) → (2, 3) → (3, 1) → (1, 4) , (17)

then by merging the common integer durations, we get the
rhythm (4, 2, 2, 3, 1, 4). If we set the unit to be ˇ “) , we will
recover the rhythm ˇ “ ˇ “=̌“ ˇ “ ‰

==ˇ “ ˇ “ .
We can get different transcriptions by selecting different

paths, which allows transcription to be framed as an inter-
active task. However, we may be interested in automatic
transcription and, in this sense, we may assign weights to
the edges in order to have a notion of the shortest path and
the ensuing notion of the best transcription. In the follow-
ing section we will propose a way of assigning weights to
the edges based on the notion of tempo variation.

3.4 Assigning weights to the edges

In the first instance, we may choose to assign weights to the
edges by weighting them by some function of the error ϵ.
This will imply that better transcriptions are the ones that
have ACDs that more closely fit the timestamps. Since
the error is associated to the nodes instead of the edges,
and path finding problems typically have weights assigned
to edges rather than nodes, we must decide if the error is
associated with the incoming or outgoing edge.

Whereas this is a valid approach, we propose another way
of weighting the edges based on tempo variation. To illus-
trate this concept, we will use Figure 4.
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0.255

0.212

0.519

0.259
0.27

0.389

0.278

0.216

0.338

0.281

0.241

Figure 4. Graph of ACDs.

When we go from a node to another via an edge, we are
changing the duration of the ACD and in so doing, we are
varying the tempo. For example, if we go from 0.255 s to
0.259 s we are decreasing the tempo from ˇ “) = 235 to ˇ “)
= 232, thus reducing the speed by 2%. This is not a big

change, whereas if we consider instead the transition from
0.389 s to 0.241 s, the tempo increment is 61%.

The tempo variation between two ACDs, measured in
percent, may be defined as

δ(a1, a2) = 100

(
a1
a2

− 1

)
(18)

and we say that the speed from a1 to a2 has increased by
δ(a1, a2)% if δ(a1, a2) > 0 and decreased by δ(a1, a2)%
if δ(a1, a2) < 0. Notice that we divided a1 by a2 be-
cause we consider speed rather than duration; the two are
inversely proportional.

We can then set the weight associated with an edge as a
function of δ(a1, a2). In this case, we choose the logarith-
mic distance between a1 and a2, which is defined by

dlog(a1, a2) ≜

∣∣∣∣log2 (a1
a2

)∣∣∣∣ = ∣∣∣∣log2 (a2
a1

)∣∣∣∣ . (19)

This has the property that it is symmetric and returns a
value of one for a ratio of 2 : 1.

Figure 5 shows the ACD graph of T weighted by the log-
arithmic distance.
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Figure 5. Weighted ACD graph

3.5 Shortest path problem

As we have a weighted graph, we can consider the shortest
path problem and its corresponding transcription, the best
one according to the parameters. The shortest path prob-
lem is defined by giving two nodes of the graph and finding
the path that links them and has minimal weight. How-
ever, in our case, we may have multiple nodes for the first
and last frames which makes ambiguous which nodes to
choose. This is easily solved by adding an artificial source
at the beginning that connects to all the ACDs of the first
frame and an artificial sink connected to all the ACDs of
the final frame. We may associate the weight 0 to these
edges and then we will have a well posed shortest path
problem. This is illustrated in Figure 6.

0.0
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0.0

Figure 6. Shortest path outlined in red.

Since the graph is directed and acyclic, the shortest path
can be readily computed; indeed, using the topological
sorting of a directed acyclic graph, we have an algorithm



in linear time [10]. We can see that we recover the path
from (17) that gives the rhythm ˇ “ ˇ “=̌“ ˇ “ ‰

==ˇ “ ˇ “ .
As pointed out, the shortest path depends directly on the

weights, and their selection highly influences the outcome.
We have presented weights based on the tempo variation
or on the error ϵ, but there are many other approaches and
combinations thereof, like selecting weights to avoid com-
plex durations that are inelegant to write down, like 5, 11,
13... Conversely, if we value precision above notation clar-
ity or physical reproducibility, we can assign a large weight
to the error and allow very small ACDs. The trade-off be-
tween precision and clarity then arises as a parametrization
problem that could be tuned via statistics or machine learn-
ing given labeled data. The subject of human intervention
will be covered in Section 5.

3.6 The influence of the frame length

Up to this point, we have been working with frames of
length 3. This approach makes sense because we always
have a common duration that constraints the paths to be
consistent from one frame to the next. However, we may
choose a different frame size, for instance if we have very
fast rhythms. In this case, consistency will be required of
all the integer durations that are common to consecutive
frames.

If we have two consecutive frames Fn and Fn+1 of length
L ∈ N, the condition for the integer durations will be

∆n[1 : L− 1] = ∆n+1[0 : L− 2] . (20)

Here, indexing follows the Python convention where the
second index is excluded.

Longer frames enforce the restrictions on ACDs and re-
duce their numbers. For instance, if we set the frame length
to L = 4 for our previous example, we will have the graph
shown in Figure 7, where the virtual initial and final integer
durations are set to the null list.

()

(2, 1, 1)

(4, 2, 2)

(2, 2, 3) (2, 3, 1)

(3, 1, 4)

(4, 1, 5)

()

Figure 7. Graph of T with frame length L = 4.

We see in this case that there is a single valid path that
corresponds to the integer durations we had in (17).

4. POLYPHONIC TRANSCRIPTION

Up to now, we have only considered monophonic rhythms,
i.e., rhythms formed by no more than one note at a time.
This is useful in the case of singing voice, string instru-
ments (in some cases), winds, etc. but it is insufficient in
general and, for instance, for the piano.

When there are several voices playing at the same time,
we must adapt our method so as to have meaningful results.
First, we can no longer conceive of a frame as being a sub-
vector of the time series T of fixed size L; indeed, we may

have L timestamps occurring at almost the same time and
then the integer durations would all be zero.

This leads us to an even deeper question: which times-
tamps should we consider, only onsets or also offsets? This
is a very delicate question in music writing since it ad-
dresses directly the question of rests and articulation; in-
deed, since we no longer consider that the offset occurs
at the subsequent onset, we have not only to quantize the
onset but also the offset.

In order to simplify things, and acknowledging that our
approach to the problem will be incomplete, we will focus
on transcribing only the onsets. Then, we can account for
the offsets in some sense, for instance rounding them to-
ward the closest element in the grid. We will not tackle this
problem, leaving it to future work, since it is affected by
numerous factors such as performance, pedal, clean tran-
scription and articulation.

That being said, let us consider the excerpt showed in
Figure 8 from a Mozart sonata.
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Figure 8. Start of the Mozart’s Piano Sonata No. 8 in A
minor, K. 310 / 300d.

We shall next attempt to transcribe a human performance
of this excerpt, shown as a piano roll in Figure 9, by adapt-
ing the technique developed in the previous section.
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Figure 9. Piano roll of a human performance of the excerpt
from Figure 8.

4.1 Polyphonic frames

For polyphonic transcription, we must first define a no-
tion of a frame that will be adapted for polyphonic rhythm
transcription. Consider, as previously, a timestamp series
T = (t0, t1, ..., tN ) ∈ RN . As several timestamps can
now be separated by a few milliseconds, like in the case



of chords, we will set the duration of the frame to L > 0
in seconds. Then, we will define the frame Ft starting at
t ∈ R of length L as

Ft = (tn ∈ T : t ≤ tn < t+ L) . (21)

In this way, each frame contains the timestamps of T that
are within the time interval [t, t+ L). The duration L may
be tailored to each piece, or even section or segment, and
may be pre-computed. It may even be time-varying ac-
cording to the speed of the piece.

In order to produce a consistent transcription, we shall
overlap frames such that they measure common durations.
This will be done by selecting overlapping frames with a
hop size of H > 0. In our case, we choose

L = 1.5 s H =
L

2
= 0.75 s .

In this way, we arrive at a family of frames

{FmH ⊆ T : m ∈ N} . (22)

Even though the family is formally infinite, as time pro-
gresses, the frames will eventually be empty when the in-
put ends, so we can consider only the subfamily of non-
empty frames.

4.2 Transcribing frames

Now that we have frames, we can apply the same proce-
dure of extracting the ACDs of the frame as in the mono-
phonic case. By default, we will shift the frame by its first
timestamp, that is F ′ = F −F [0]. However, as mentioned
before, we can shift the frame on any of its timestamps,
for instance the middle one, leading to potentially different
results. This approach may give negative numbers in the
vector M , but is completely valid from the perspective of
the ACD computation, which is defined on Z, and from the
transcription paradigm.

As previously, we will recover the vectors M ∈ ZNt and
∆ ∈ ZNt−1 whose size vary for different t = mH . It is
important to emphasise that now there may be several du-
rations in ∆ that are 0, which points to the fact that some
timestamps are concurrent. We should abandon the con-
cept of ∆ being the duration of the notes since we are only
considering onsets; rather, we will think of ∆ as a consis-
tency vector that will be used to check if two overlapping
frames are consistent.

Figure 10 shows MIDI onsets fitting into a 0.218 s-grid
shifted by the first timestamp of the frame.

4.3 The ACD graph

As before, we will recover the ACDs of each frame to build
a graph with ACDs as nodes, linking the nodes if they are
consistent. Depending on the hop size, we may have more
than two overlapping frames, but then we will only connect
ACDs between consecutive frames.

The consistency condition between frames will now in-
volve timestamps that are common to consecutive frames.
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Figure 10. Timestamps of MIDI onsets fitting into a
0.218 s-grid.

For two frames FmH and F(m+1)H , the consistency con-
dition will be:

∆mH [ni − nm] = ∆(m+1)H [ni − nm+1] (23)

∀ni ∈ N such that tni
, tni+1 ∈ FmH ∩ F(m+1)H , where

nm ∈ N and nm+1 ∈ N are the first index belonging to
FmH and F(m+1)H respectively.

Now that we have established the consistency condition,
we can plot the ACD graph of the onsets of the excerpt
presented in Figure 9. We added a source node and a sink
node to complete the path and, as seen in the Figure 11,
there is only one possible path linking them.

Of course, this will not always be the case. The single
path solution was a consequence of the fact that the player
followed the rhythm very strictly, in part due to the genre
of the music. If we take the vector M built by following
this path, we will recover the onsets expected by the score.

We will not repeat all the considerations outlined in the
previous section regarding path weighting and automating
of the transcription model. Rather, in the next section, we
will show how transcribing can be done interactively.

5. INTERACTIVE PATH SELECTION

We have modeled both monophonic and polyphonic tran-
scription as path selection problems. Solving either of
these problems can be done automatically if we assign
weights to the path, but it can be interesting to select the
path interactively by means of a user interface. This trans-
forms the rhythm transcription problem into a multiple out-
put problem, and gives humans the responsibility of select-
ing their preferred transcription from among a set of possi-
bilities.

Figure 12 shows a prospective user interface for select-
ing the path. This interface has not been implemented; it
presents only a possible graphical layout of the essential
functions. It is intended, however, to be implemented in a
future version of OpenMusic [11, 12].

Let us go through an overview of the interface from top
to bottom, then left to right.

5.1 The piano roll panel

In this panel, the user may see the actual MIDI file and
navigate the frames with the arrows. S/he may change the
size of the frame and its position by dragging and dropping
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Figure 11. Graph of the excerpt from the onsets of Figure 9.
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Figure 12. Design of a prospective graphic user interface for interactive path selection.

the limits of the frame. Ideally, the user should also be able
to edit the MIDI file by selecting the notes and stretching
or compressing them; this way, s/he could influence the
transcription by editing the timestamps.

5.2 The full graph panel

This panel shows the full ACD graph and will be related
to the frame selected on the piano roll panel. Its purpose
is to keep track of the path selected and to allow the user
to navigate through frames so that s/he may have a global
view.

5.3 The grid panel

This panel presents information from the part of the piano
roll where the frame is located. However, instead of MIDI
bars, the onsets (and potentially the offsets) will be shown
as timestamps so that we may know exactly where each fits
in the grid. Timestamps about to be transcribed are plotted
in blue and the threshold shown in red. The representa-
tion helps the user understanding the scale and the degree
of freedom. With the two sliders in the bottom, we can
tune which timestamp will be the shift parameter and the
resulting grid if we change the ACD.

5.4 The focused graph

This sub-graph of the full ACD graph serves shows the
ACD selected for each frame. With the cursor, we may
select an ACD. The red line connects the current to the

previous ACD. Options in the previous and next frames
are shown to convey the available paths when choosing an
ACD.

This will be one of the main panels on which to act. In-
deed, changing the ACD will trigger updates on other pan-
els, and it will be by selecting the ACDs one by one that
the transcription will be made. Nevertheless, we can ini-
tialise the graph with some optimal or near optimal path,
but the interactive part of the process will be to adapt the
graph by changing the ACD.

5.5 The parameters panel

The parameters panel will let the user select all the param-
eters needed for the ACDs computation:

1. In order to select the timestamps, the user should
choose the frame duration with a slider. Also, s/he
can select the overlap via a drop-down list. We may
also use a checkbox to determine if the offsets are
used in the computations. If that is the case, they
will also appear in the grid panel.

2. Once the timestamps are selected, the parameters
for the computation of the ACD shall be tuned with
spinners; these parameters are

(a) the error threshold,

(b) the lower bound,

(c) the upper bound, and



(d) the computation resolution.

These parameters will play an important role in
which ACDs are recovered.

5.6 The rhythm panel

In this panel, users can see the outcome of their choice; by
selecting an ACD in the focused graph, both the ACD and
the BPM (beats per minute) will be printed in non editable
text boxes. The ACD corresponds to the tatum, which can
be selected in a drop-down list. The beat, that will usu-
ally consist of several tatums, can also be freely chosen in
another drop-down list.

In addition, when the ACD is selected, the timestamps
will be transcribed into rhythms via a label in the panel.
It should be noted that this rhythm corresponds to onsets
and should be thought of as a musical grid rather than the
durations of the notes, at least when offsets are not taken
into account.

6. CONCLUSIONS AND FUTURE WORK

In this work, we have shown how an extension of the no-
tion of common divisors to a continuous framework leads
valuable contributions to rhythm transcription. Their linear
computational complexity makes them a suitable and effi-
cient tool for quantizing musical rhythms for large amounts
of data.

We have also proposed a flexible framework where we
considered transcription by splitting the timestamp series
into frames and computing ACDs separately. However,
when this is done, adjacent frames need to be consistent,
and we have chosen to model this via a graph in which
ACDs are nodes and edges represent the consistency be-
tween frames.

Once this graph is set up, the transcription problem then
turns into a one of path selection. Using this paradigm,
we proposed two complementary ways of solving the tran-
scription problem: by assigning weights and determining
the shortest path, or by allowing humans to intervene in the
process by selecting a path that results in a more desirable
transcription.

Regarding this last option, we presented a prospective
graphical user interface and gave an exposition of its likely
elements. This interface will allow the user to directly steer
the transcription and may be implemented in musically-
oriented frameworks.

In conclusion, we have proposed a framework that is sim-
ple in essence but highly parameterizable. Indeed, there are
many ways in which we may affect either the ACD com-
putation or the graph creation and weighting, for example
by tuning the weights, limiting the tempo variation or by
allowing only certain integer durations.

A remaining challenge is the organisation of the dura-
tions into groups and measures. By considering the tatum
instead of the tactus, we may enter into a low-level quan-
tization that does not account for how the durations are
grouped together. The grouping of durations to form
rhythm trees has been studied by [2] and is of major im-
portance in OpenMusic [12].

A way to tackle this may be to build a rhythm tree on
top of the ACD graph. How this may be done is out-
side the scope of this paper but several possibilities can be
explored, like choosing different duration groupings and
evaluating if they would form a tactus. A challenge for
both these approaches is the handling of ties, which could
also be broken through the user interface.

In the future, the tool we proposed could be incorporated
into existing frameworks like OpenMusic either as a func-
tion that performs transcription automatically or as a user
interface that allows composers and music editors to inter-
act with the transcription. We would then be able to adapt
criteria for weighting the graph to tune the standalone part
of the algorithm. To that end, we may use several tech-
niques, but one interesting option would be to record data
from musicians transcribing rhythms in order to tap into
their experience so as to make the output of the algorithm
as human friendly and readable as possible.
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