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Abstract

Epidemiological modelling and epidemic threshold analysis in the networks are widely used in
the control and prediction of infectious disease spread. Therefore, the prediction of the epidemic
threshold in networks is a challenge in epidemiology where the contact network structure funda-
mentally influences the dynamics of the spread. In this paper, we design and experiment a new
general structural and spectral prediction approach of the epidemic threshold. This more captures
the full network structure by using the number of nodes, the spectral radius, and the energy of
graph. With data analytic and data visualization technics, we drive the simulations overall on 31
different types and topologies networks. The simulations show similar qualitative and quantitative
results of the epidemic threshold values compared to the MF, HMF and QMF widely used the-
oretical benchmark approaches. The results show that the new approach is similar to the earlier
one, further captures the full network structure, and is more accurate than the earlier approaches.
The new approach offers a new general structural and spectral approach to analyse the spreading
processes in a network. The results are both fundamental and practical interest in improving the
control and prediction of spreading processes in networks. Particularly meaningful to decision-
makers in public health.

Keywords

Epidemic threshold ; Energy of graph ; Eigenvalues ; Network structures ; Complex networks ;
Infectious disease.

I INTRODUCTION

Networks are everywhere. Several real phenomena such as disease spreading, behaviour con-
tagion, and rumour propagation are described as a spreading process in the complex system
[14]. These processes are widely modelled using networks or graphs. Therefore, networks are
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Symbol | Short description

A The adjacency matrix of the network.

(k), (k?) | The first (average connectivity) and second moments (connec-
tivity divergence) of the degree distribution.

Amaz The spectral radius (largest eigenvalue) of the matrix A.

15} The infection rate: rate of infection or transmission from an in-
fected individual to a susceptible individual per effective con-
tact.

v The recovery rate: rate that an infected individual will recover

per unit time (in continuous-time models) or per time step (in
discrete time models).

A The transmissibility: the infection rate scaled by y~! so that
A= B/y.

Ae The epidemic threshold, critical infection rate.

G A connected network G = (V, E') with n nodes in V and m

edges or links in E.

Table 1: Definition of the used symbols

greatly interesting and constitute fertile, and flexible tools for scientific modelling and analysis
of complex systems [17] such as an infectious disease spread.

In the study of infectious disease spread, the basic reproduction number R is the average of
the expected secondary infection number caused by a primary infectious individual introduced
in a fully susceptible host population. R is strongly correlated to the likelihood and extent
of an epidemic. Critically Ry depends not only on the disease but also on the host population
structure [12]. Therefore, the network-based models of epidemiological contact have emerged
as an important tool in understanding and predicting the spread of infectious disease [3]. Un-
derstanding the network structure allows for better control of the micro and macro propagation
[12], [1], and even improves the predictions. Thus, we need more sophisticated tools for analy-
sis and visualization of the network structure: one of these tools is the spectral theory of graph
[2], [3]. Hence, predicting whether a disease will die out or become an epidemic is known as
the epidemic threshold.

The epidemic threshold 7 is the incidence of a disease at which it can be considered as an
epidemic. An epidemic threshold 7 is the critical 3/~ ratio value beyond which an infection
becomes an epidemic [21]. Nevertheless, 7 is commonly linked to the Ry that allows the defi-
nition of the concept of the epidemic threshold [6]. 7 depends not only on the transmission and
recovery rates of a disease but also fundamentally on the network structure [21]. Therefore, the
accuracy of the prediction and understanding of epidemic thresholds on complex networks is a
challenge in the field of network science. To clarify some basic concepts of this work, Table 1
defines the symbols used in this work.

The aim of this paper is to design and experiment a new general structural and spectral pre-
diction approach of the epidemic threshold. This is similar to those in the literature and more
accurately captures the full network structure but is not limited by it. Therefore, we propose a
new general and spectral approach to analyse the propagation processes in a network.

The layout of this paper is organised as follows: Section 2 reviews the previous approaches and
their limitations. Section 3 presents the issue of the epidemic threshold, the energy of graph,
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and the spectral theory of the graph. Section 4 describes the proposed new approach, while
section 5 presents the experimentations, results, and discussions. We conclude in section 6.

II THE PREVIOUS APPROACHES AND THEIR LIMITATIONS

There are many successful theoretical approaches of the epidemic threshold in the literature. We
denote various benchmarks generally used to provide an approximation of the epidemic thresh-
old for spreading dynamics in real networks. This includes the Mean-field (MF), Degree-based
mean-field (DBMF) or Heterogeneous mean-field (HMF) and Quenched (QMF) also called
Individual-based mean-field (IBMF).

2.1 The Mean-field (MF) approach

The Mean-field (MF) approach is based on the works of Kephart and White who adopted
a modified homogeneous approach where directed graphs model the communication among
persons[13]. In a homogeneous network, the epidemic threshold is: AMF = %, where (k)
is the first moment of the degree distribution. The MF assumes that all nodes in the network
are statistically equivalent: the interaction probabilities between any two nodes are the same.
Therefore, the structure of the contact network is not considered. However, the MF approach
can be inaccurate when network degree distribution is asymmetric and heterogeneous.

2.2 The Heterogeneous mean-field (HMF) approach

To more capture network structure, [16] improved the homogeneous MF approach to obtain the
Heterogeneous mean-field (HMF) approach by the assumption that the inability for a node or
person to infect the node that infected it. Here, the epidemic threshold is: AF¥MF = < k2<>k_> L
where (k?) is the second moments of the degree distribution. The HMF is more used for un-
correlated networks [8]. The HMF approach is more useful under the mean-field assumption
of independence between node’s infectious states. Due to its parameters and assumptions, the
HMF approach can be inaccurate for the quenched connections among the nodes. The HMF

neglects the dynamic correlations among the states of neighbours.

2.3 The Quenched mean-field (QMF) approach

Because neither the MF nor the HMF approach can capture enough the contact network struc-
ture: the Quench mean-field (QMF) approach is developed using the adjacency matrix A. This
approach is widely used to study the spreading dynamics [20]. In [21], authors proposed a
discrete-time formulation to predict the epidemic threshold problem with any assumption of
homogeneous connectivity. However the epidemic threshold is: ASMF = L where 4,
is the largest eigenvalue of the adjacency matrix A. The QMF approach of the Tgf)fdemic thresh-
old is dependent only on the network structures. The QMF is an advanced approach that is more
accurate than the MF and HMF.

The QMF approach has many variants such as the N-intertwined approach [19]; the Dynami-
cal Message-Passing (DMP) using the non-backtracking matrix; the Simplified DMP (SDMP).
Nevertheless, in some specific situations, some research doubts the accuracy of the epidemic
threshold value predicted by the QMF approach [8].

In the literature, there are many approaches to predict the epidemic threshold. However, we
are interested to develop a new general structural and spectral approach of prediction that more
captures the full network structure using structural and spectral properties of a network such as
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a node number, adjacency matrix, spectral radius, and the energy of graph. This new approach
is similar and more accurate to the earlier approaches. It offers a general and spectral approach
to analyse the spreading processes in a network.

III THE EPIDEMIC THRESHOLD AND THE SPECTRAL THEORY OF GRAPH

The spectral theory of graph and network science are used to understand how network topology
can predict the dynamic processes [10] like an epidemic threshold in a complex system. It
analyses the relationships between the graph structure and its eigenvalues. The spectral theory
of graph plays a central role in the fundamental understanding of the network [5, 4, 3]. However,
a large literature on algebraic aspects of spectral graph theory and these applications are in
several surveys, books or monographs such as [4], [5].

3.1 The eigenvalue of graph

Analysis of the eigenvalues allows us to get useful information about a graph that might oth-
erwise be difficult to obtain [4]. Eigenvalues have a strong relationship with the structures of
graphs. The largest eigenvalue of graph A\, or A, is called the spectral radius.

3.2 The energy of graph

It is a graph-spectrum-based quantity. The original version of graph energy from the year 1978
is based on the eigenvalues of the adjacency matrix [9]: E(G) = Y ., |\i|, where ); is the
i" eigenvalue. However, the energy of graph found unexpected large applications in areas of
science and engineering [10] such in [15] with the epidemiological applications.

IV THE PROPOSED NEW APPROACH

In the epidemic threshold study, one of the challenges is to capture the essence of the full
network structure with as few parameters as possible with accuracy. For any network, we
present a new general structural and spectral prediction approach of the epidemic threshold. Our
approach does not assume homogeneous connectivity or any particular topology in a discrete
time. We assume that during each time interval, an infected node i try to infect its neighbours
with probability 5. At the same time, i may be cured with probability . Thus, the new epidemic
threshold approach ). is denoted by Eq. 1.

kn
)\KSE — —1/)\mam 1
c© TEGC M

Here, E(G) is the graph energy of the network, and k is the real parameter. The A" means
K Spectral Energy approach of the epidemic threshold prediction. In fact, ., has several
applications in science such as chemistry, and computer science [5]. It is proven that the more
highly connected a network is, the larger is A4, [11], and the smaller is 1/, as an epidemic
threshold, which is strongly related to the Ry concept. This can exhibit a basic exponential

decay model ¢, where ¢ = eﬁiwt, ¢, = 1, with the single parameter \,,,,. To consider each
eigenvalue, we are interested in the energy of graph concept according to its definition. Thus,
about the fraction of the energy of graph on each node, we define A = @ In the epidemic
threshold context, according to its salient features like critical or threshold values: we look at
the simple reciprocal model y = k(%) where x is a variable and k a constant or scale parameter.

Hence, the reciprocal of A is: k(i) = E]?Clv‘) Related to this reciprocal, we have the intuition

n
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MF HMF | QMF | KSE
count | 31.000 | 31.000 | 31.000 | 31.000
mean | 0.151 | 0.157 | 0.110 | 0.131
std 0.120 | 0.194 | 0.091 | 0.059
min | 0.010 | 0.008 | 0.006 | 0.050
25% | 0.061 | 0.034 | 0.027 | 0.107
50% | 0.125 | 0.125 | 0.111 | 0.122
75% | 0.199 | 0.159 | 0.149 | 0.148
max | 0.497 | 0.977 | 0.333 | 0.383
IQ 0.138 | 0.124 | 0.120 | 0.040
range | 0.487 | 0.970 | 0.327 | 0.332

Table 2: The summary of the descriptive statistic values of the MF, HMF, QMF and the proposed KSE
epidemic threshold

to observe the rate of ¢ at t = 1, over there: e~ !/Amaz x % = A¢®%. Thus, the new approach
to predict the epidemic threshold A\*°” is an application that associates each adjacency matrix

to a specific decay relative composition eigenvalues relating to A.

V EXPERIMENTATIONS, RESULTS AND DISCUSSIONS

With data analytic and data visualisation technics on the experimental dataset in Figure 1; the
simulations are driven to answer the question of how the new approach is similar and performs
in real a good performance than earlier epidemic threshold approaches including the most used
OMF.

The used dataset contains real networks of infectious disease spread and other small-world,
random, and regular networks over spreading processes in 31 different types and topologies
networks; 17 real social networks, 9 generated social networks, 3 random networks, and 2
regular random networks. With data visualization technics based on numerical and graphical
simulations overall these networks: different sets of values MF, HMF, OMF and the new KSE
epidemic threshold are been computed, analysed, visualised, and discussed.

In Figure 2, we can show that the network Id 5, 9, 11, 12, 13, 14, 15, 17, 18, 19, and 21
have the nearest epidemic threshold values. Hence, the new proposed approach of epidemic
threshold KSE has similar common features with the earlier approaches, specifically with the
widely most used accurate QMF. The summary descriptive statistics values of the MF, HMF,
OMF and the proposed KSE epidemic threshold are built in Table 2. Here, for the most used
epidemic threshold in the literature QMF, we observed that the new proposed approach KSE has
the 2"¢ quantile (Q») more similar. The new proposed approach KSE is similar for the major
descriptive statistic characteristics like the mean, std, ()2, (J3 and range related to the QMF.
This means that the new proposed approach of epidemic threshold KSE is similar to the earlier
and has major common features with the earlier approaches, specifically with the most used
accurate QMF. Those results come from the eigenvalues concept at the root of QMF and KSE.

Moreover, the area, curve and shape of each epidemic threshold value can be observed in Figure
2. We can show that the area of all epidemic thresholds have a similar area, curve and shape
over the range of the 31 different experimental networks in the dataset. They share the same
shape, curve and sense of variation. This means that the new proposed approach KSE is similar
to the earlier one.
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Id Network Type Nodes Links kmax k k2 den cc
0 Sociopatterns-infectious Real social network 410 2765 50 13.488 252 434 0.032978 0456
1 Alrline Real social network 36 57 20 3167 33.389 0.090476 0.000
2 Internet Real social network 40 61 10 3.050 13.000 0.078205 0.154
3 Karate club Real social network 34 78 17 4.588 35.847 0138037 0571
4 Davis Southern Women Real social network 32 89 14 5.562 39.062 0.179435 0.000
5 Florentine families Real social network 15 20 6 2667 8933 0.190476 0160
6 Les miserables Real social network 77 254 36 6.597 79.532 0.086808 0.573
7 Watts Strogatz 1 Generated social network 1000 2000 10 4.000 17.898 0.004004 0.007
8 Watts Strogatz 2 Generated social network 3000 12000 18 8.000 67.741 0.002668 0.008
9 Connected Watts Strogatz 1 Generated social network 1000 2000 1 4.000 17.776 0.004004 0.008
10 Connected Watts Strogatz 2 Generated social network 3000 12000 16 8.000 68.055 0.002668 0.007
11 MNewman Watts Strogatz 1 Generated social network 1000 3613 12 7.226 54172 0.007233 0157
12 Newman Watts Strogatz 2 Generated social network 5000 36028 23 14411 211.592 0.002883 0.200
13 Newman Watts Strogatz 3  Generated social network 24 84 9 7.000 49867 0.304348 0493
14 Barabasi Albert Generated social network 1000 4975 150  9.950 211.636 0.009960 0.044
15 Barbell Generated social network 1005 1010 5 2010 4.066 0.002002 0.005
16 Random 1 Generated network 1000 3500 17 7.000 56.174 0.007007 0.009
7 Random 2 Generated network 140 6811 111 97.300 9495843 0.700000 0.700
18 Dense gnm Random Generated network 1000 3500 16 7.000 56.016 0.007007 0.009
19 Random regular 1 Generated network 1000 1500 3 3.000 9.000 0.003003 0.003
20 Random regular 2 Generated network 1000 4500 9 9000 81.000 0.008009 0.007
21 Facebook 1 Real social network 52 146 16 5615 48,682 0.110106 0.462
22 Facebook 2 Real social network 61 270 29 8.852 109.705 0.147541 0733
23 Facebook 3 Real social network 168 1656 77 18714 645.321 0.118050 0.534
24 Facebook 4 Real social network 150 1693 57 22.573 680.240 0.15148% 0670
25 Facebook 5 Real social network 333 2519 77 15129 469.526 0.045570 0.508
26 Facebook 6 Real social network 224 3192 99 28.500 1312.554 0.127803 0.544
27 Facebook 7 Real social network 534 4813 107 18.026 539.884 0.033820 0.544
28 Facebook 8 Real social network 786 14024 136 35684 2086.852 0.045458 0476
29 Facebook 9 Real social network 1034 26749 253 51.739 4886.236 0.0530086 0526
30 Facebook 10 Real social network 747 30025 293 80.388 10593.861 0.107759 0635

Figure 1: The synthesis of the structural information about the networks in the dataset

1.01

0.8 1

0.6 1

0.4 1

Epidemic threshold

0.2 1

0.0

15
Network Id

20

Figure 2: The scatter dashed line visualization of the MF, HMF, QMF and the proposed KSE epidemic

threshold
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e_MF_KSE | e HMF_KSE | e QMF_KSE
count | 31.000 31.000 31.000
mean | 0.019 0.026 -0.022
std 0.093 0.182 0.078
min | -0.068 -0.279 -0.221
25% | -0.056 -0.066 -0.074
50% | 0.010 -0.022 -0.0350
75% | 0.025 0.034 0.007
max | 0.308 0.788 0.188
IQ 0.081 0.099 0.081
range | 0.375 1.066 0.409

Table 3: The summary of the descriptive statistic values of the gap or difference between MF, HMF, OMF
approach related to the KSE

The gap or difference between the epidemic threshold values related to the new KSE is analysed.
The summary of its descriptive statistics is shown in Table 3. Here, for any p, g epidemic
threshold, e_p_g means the Euclidian gap or difference of p to ¢g: p - g. In Table 3, the standard
deviation of the gap or the difference between the QMF and the KSE is 0.078. All the gaps are
relatively low. Relatively low is related to the earlier approaches particularly lowest to the most
used QMF. Moreover, the new KSE approach shares major common features with the earlier,
specifically with the most used accurately QMF..

In addition, in Figure 3, we can show that scatter and curve of the gap between QMF and the
new KSE is low; relatively close to the x-axis where the difference is zero. The observation is
the same as the previous one.

Furthermore, to analyse the statistical difference among those experimental sets of epidemic
threshold values, we have used the univariate ANOVA test using the Ordinary Least Squares
(OLS) model, or the Bioinfokit Python package. We obtain the summarized output of ANOVA F
and p-value in Table 4. Here, the p-value 0.44 > 0.10. Hence, the null hypothesis is accepted.
Thus, there is "not significant" statistical difference between different sets of epidemic threshold

08 © e QMF_KSE
e MF_KSE
o e HMF_KSE

0.6

0.4

0.2

Epidemic threshold

0.0

0 5 10 15 20 25 30
Network Id

Figure 3: The scatter dashed line visualization of the gap or difference between MF, HMF, and OMF
approach epidemic threshold related to the new KSE
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SUMsq df F PR(>F)
C'(epidemic_treshold) | 0.043670 | 3.0 0.913627 | 0.436623
Residual 1.911935 | 120.0 | NaN NaN
Table 4: The ANOVA F and p-value using the Ordinary Least Squares to the MF, HMF, QMF approach
related to the KSE
Model | Accuracy Transparency Flexibility Parameter
MF Poor fit: network | Easy: single parame- | Poor: due to its as- | The use of a single pa-

structure isn’t con-
sidered.

ter (k).

sumptions.

rameter (k).

HMF | Poor fit: due toits pa- | Medium: can assess | Medium: due to its | The use of 2 parameters
rameters can be inac- | the role of (k), (k?). | assumptions. (k), (k?).
curate.

QMF | Medium fit: captures | Easy: due to it single | Good: due to its as- | The use of a single pa-
network structure us- | parameter A, q,. sumptions. rameter \,,qz-
ing only A\pqz

KSE High fit: captures the | Medium: parameter | Better: due to its | The wuse of {Anax,
full network structure | assessment in rela- | assumptions, using | E(G),n,k}  structural

using {Amaz, E(G),
n k}.

tionship can be com-
plex.

{Anaz, E(G),n}
and a scale k.

and spectral parameters
in relationship.

Table 5: The advantages and benefits of the new approach over the earlier: a qualitative comparison
between MF, HMF, QMF and the new KSE epidemic threshold prediction

values. So, once again, ANOVA shows that the new proposal KSE epidemic threshold is similar
to the earlier generally used in the literature.

Overall, we observed that the new KSE approach of the epidemic threshold prediction is similar
to those existing in the literature. It offers a new approach to predicting the epidemic threshold
using the number of nodes, spectral radius and the energy of the graph. Hence it constitutes a
new general and spectral approach to analyse the spreading processes in a network using the
structural and spectral properties of a network.

The advantages and benefits of the KSE new approach compared to the earlier
We established an analytical comparative study in Table 5. However, no model or approach is
perfect; the new KSE has an appropriate balance of accuracy, transparency, and flexibility.

Furthermore, according to the relationship between the epidemic threshold and R, we have
driven some real case studies related to the previous work in the literature about the R:

* the dataset used in [18]: small-world networks of the Newman Watts Strogatz model for
24 nodes, each of which is connected to 6 nearby nodes, where the probability of an extra
link is 1/6.

* the dataset used in [7]: 8 = 0.005, = 0.9, = 0.9. Authors have used these parameters
for the simulations, and their differential equations.

Table 6 shows the structural information of the used datasets. However, under the assumption

m | (k) | (k%)
83 | 6.916 | 48.583

Table 6: The summary of structural information from the dataset

Id | Network
1 | Newman Watts Strogatz

den
0.301

Type n
small-world | 24

cc
0.536

of a density-dependent transmission, by definitions: Ry = (n/v, yet A\. = [3/v; thus Ry =
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Ac X . So, we obtain the following results in the Table 7. As it happens, the structural R

QMF KSE . .
MF KSE A A Original
1d | Aa | AQMF | AKSE | g7 [ M7 | R

1 | 7.116 | 0.140 | 0.133 | 3.360 3.192 | 3.268

Table 7: The results of the different A., Ry by structural approach in comparison

estimation based on A\?*¥ both \X5F are near related to the R using differential equations in
[7, 18]. These results highlight the similar accuracy of the KSE related to the earlier approach,
specifically to the most used QMF'. Besides, these results bring nearer the network-based model
for the structural approach of 7y and the mathematical modelling approaches of 7y using a
system of differential equations. This emphasises the usefulness of the network-based structural
approach for the prediction of the key epidemiological parameters such as A\, Ry.

VI CONCLUSION

In this paper, we address the accurate understanding and prediction of the epidemic threshold
on complex networks in the context of the spreading process. Network structure fundamentally
influences the dynamics of the spreading processes with a boundary condition for spreading
processes over networks called the epidemic threshold. We have designed and experimented a
new general structural and spectral prediction approach of the epidemic threshold that further
captures the full network structure using the nodes number, the spectral radius, and the energy
of graph. We have driven the simulations on 31 networks at different structures and topolo-
gies: 17 real social networks, 9 generated social networks, 3 random networks, and 2 regular
random networks. With data analysis and data visualization techniques, the simulations show
that the new KSE approach of epidemic threshold is similar to the earlier MF, HMF, QMF and
shares major common features with the earlier approaches, specifically with the most used ac-
curate QMF. The new epidemic threshold approach offers a new general and spectral approach
to analyse the spreading processes in a network. The results are both fundamental and practical
interest in improving the control and prediction of propagation processes in networks. Partic-
ularly meaningful to decision-makers in public health who can use these results to improve
the control of an infectious disease spread, and also to inform policy for the most successful
mitigation and eradication strategies. Future research can examine the temporal evolution of a
specific infectious disease in a network. As well as to enhance the proposed epidemic threshold
approach with other spectral theory of graph concepts.
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