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Abstract
The epidemiological modelling and epidemic threshold analysis in the networks are widely used
in the control and prediction of infectious disease spread. Therefore, the prediction of the epi-
demic threshold in networks is a challenge in epidemiology where the contact network structure
fundamentally influences the dynamics of the spread. In this paper, we design and experiment
a new general structural and spectral epidemic threshold approach of prediction that more cap-
tures the full network structure by using the number of nodes, the spectral radius, and the energy
of graph. We drive the simulations overall on 31 different networks types and topologies. The
simulations show similar results of the epidemic threshold values compared to the MF, HMF and
QMF widely used theoretical benchmarks approaches. With data analytic and data visualization
technics, the results show that the new approach is similar to the earlier, further captures the full
network structure, and is more accurate than the earlier approaches. The new approach offers a
new general and spectral approach to analyse the spreading processes in a network. The results
are both fundamental and practical interest in improving the control and prediction of spreading
processes in networks. Particularly meaningful to decision-makers in public health.

Keywords
Epidemic threshold ; Energy of graph ; Eigenvalues ; Network structures ; Complex networks ;
Infectious disease.

I INTRODUCTION

Networks are ubiquitous in life. However, several real phenomena such as disease spreading,
behavior contagion, rumor propagation are described as a spreading process in the complex
system Pastor-Satorras and Vespignani. (2001), Kresge (2021). These processes are widely
modeled using networks or graphs. Therefore, networks are a great interesting, constitute a
fertile, and flexible tools for scientific modeling and analysis of complex systems Pellis et al.
(2014) such as an infectious disease spread.

In the study of infectious disease spread, the basic reproduction number R0 is the average of the
expected secondary infections number caused by a primary infectious individual introduced in
a fully susceptible host population. R0 is strongly correlated to the likelihood and extent of an
epidemic. Critically R0 depends not only on the disease but also on the host population struc-
ture Keeling and Rohani (2008). Therefore, the network-based models of the epidemiological
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contact have emerged as an important tool in understanding and predicting the spread of infec-
tious disease Bogachev and Smolyanov (2020). Understanding the network structure allows for
better control of the micro and macro propagation Keeling and Rohani (2008), Alshahrani et al.
(2020), and even improves the predictions. Thus, we need more sophisticated tools for analysis
and visualization of the network structure: one of these tools is the spectral theory of graph
Biggs (1993), Bogachev and Smolyanov (2020). Hence, predicting whether a disease will die
out or become an epidemic within a population is known as the epidemic threshold.

However, the Epidemic threshold τ is the incidence of a disease at which it can be considered as
an epidemic. An epidemic threshold τ is the critical β/γ ratio value beyond which an infection
becomes an epidemic Wang et al. (2003). Nevertheless, τ is commonly linked to the R0 that
allows to define the concept of the epidemic threshold Diekmann et al. (2012). τ depends not
only on the transmission and recovery rates of a disease but also fundamentally on the network
structure Wang et al. (2003). Therefore, the accuracy of the prediction, and understanding of
epidemic thresholds on the complex networks is a challenge in the field of network science. To
clarify some basic concepts of this work, the table 1 summarises the symbols used in this work.

Symbol Short description
A The adjacency matrix of the network.
⟨k⟩, ⟨k2⟩ The first (average connectivity) and second moments (connectivity divergence)

of the degree distribution.
λmax The spectral radius (largest eigenvalue) of the matrix A.
β The infection rate: rate of infection or transmission from an infected individual

to a susceptible individual per effective contact.
γ The recovery rate: rate that an infected individual will recover per unit time (in

continuous-time models) or per time step (in discrete time models).
λ The transmissibility: the infection rate scaled by γ−1 so that λ = β/γ.
λc The epidemic threshold, critical infection rate.
G A connected network G = (V,E) with n nodes in V and m edges or links in E.

Table 1: The table of the used symbols

The aim of this paper is to design and experiment a new general structural and spectral epidemic
threshold approach of prediction that is similar to those in the literature and more accurately
capture the full network structure but not limited by it. Therefore, we propose a new general
and spectral approach to analyse the propagation processes in a network.

The layout of this paper is organised as follows: Section 2 reviews the previous approaches and
their limitations. Section 3 presents the issue of the epidemic threshold, energy of graph, and
the spectral theory of graph. Section 4 describes the proposed new approach, while the section
5 presents the experimentations, results, and discussions. We conclude in section 6.

II THE PREVIOUS APPROACHES AND THEIR LIMITATIONS

There are many successful theoretical approaches of the epidemic threshold in the literature. We
denote various benchmark that is generally used to provide an approximation of the epidemic
threshold for spreading dynamics in real networks: Mean-field (MF), Degree-based mean-field
(DBMF) or Heterogeneous mean-field (HMF) and Quenched (QMF) also called Individual-
based mean-field (IBMF).
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2.1 The Mean-field (MF) approach

The Mean-field (MF) approach is based on the works of Kephart and White who adopted a
modified homogeneous approach in which the communication among persons is modeled with
directed graphs Kephart and White (1991). In a homogeneous network, the epidemic threshold
is: λMF

c = 1
⟨k⟩ , where ⟨k⟩ is the first moment of the degree distribution. The MF assumes

that all nodes in the network are statistically equivalent: the interaction probabilities between
any two nodes are the same. Therefore, the structure of the contact network is not considered.
However, the MF approach can be inaccurate when networks degree distribution is asymmetric,
heterogenous.

2.2 The Heterogeneous mean-field (HMF) approach

To more capture network structure, Pastor-Satorras and Vespignani (2001) improved the homo-
geneous MF approach to obtain the Heterogeneous mean-field (HMF) approach by assumption
that the inability for a node or person to infect the node that infected it. Here, the epidemic
threshold is: λHMF

c = ⟨k⟩
⟨k2⟩−⟨k⟩ , where ⟨k2⟩ is the second moments of the degree distribution.

The HMF is more used for uncorrelated networks Ferreira et al. (2012). The HMF approach is
more useful under the mean field assumption of independence between nodes infectious states.
However, due to its parameters and assumptions, the HMF approach can be inaccurate for the
quenched connections among the nodes. The HMF neglects the dynamic correlations among
the states of neighbours.

2.3 The Quenched mean-field (QMF) approach

Because neither the MF nor the HMF approach can capture enough the contact network struc-
ture: the Quench mean-field (QMF) approach is developed using the adjacency matrix A. This
approach is widely used to study the spreading dynamics Wang et al. (2016). In Wang et al.
(2003), authors proposed a discrete-time formulation to predict the epidemic threshold prob-
lem with any assumption of homogeneous connectivity. However the epidemic threshold is:
λQMF
c = 1

λmax
, where λmax is the largest eigenvalue of the adjacency matrix A. The QMF ap-

proach of the epidemic threshold is dependent only on the network structures. The QMF is an
advanced approach that is more accurate than the MF and HMF.

The QMF approach has many variants such as: the N-intertwined approach Prasse and Mieghem
(2020); the Dynamical Message-Passing (DMP) using the non-backtracking matrix; the Simpli-
fied DMP (SDMP). Nevertheless, in some specific situations, some researches doubt the accu-
racy of the epidemic threshold value predicted by the QMF approach Ferreira et al. (2012).

In the literature, there are many approaches to predict the epidemic threshold. However, we
are interested to develop a new general structural and spectral approach of prediction that more
captures the full network structure using structural and spectral properties of a network such as
the adjacency matrix, eigenvalue, and the energy of graph. This new approach is similar and
more accurate to the earlier approaches. It offers a general and spectral approach to analyse the
spreading processes in a network.

III THE EPIDEMIC THRESHOLD AND THE SPECTRAL THEORY OF GRAPH

The spectral theory of graph and the network science are used to understand how network topol-
ogy can predict the dynamic processes Gutman and Ramane (2020) like an epidemic threshold
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in a complex systems. It analyse the relationships between the graph structure and its eigenval-
ues. The spectral theory of graph plays a central role in the fundamental understanding of the
network Cvetkovic et al. (1980); Chung (1994); Bogachev and Smolyanov (2020). However, a
large literature on algebraic aspects of spectral graph theory and these applications is in several
surveys, books or monograph such as Chung (1994), Cvetkovic et al. (1980).

3.1 The eigenvalue of graph

Analysis of the eigenvalues allows to get useful information about a graph that might otherwise
be difficult to obtain Chung (1994). Eigenvalues have a strong relationship with the structures
of graphs. The largest eigenvalue of graph λ1 or λmax is called the spectral radius.

3.2 The energy of graph

It is a graph-spectrum-based quantity. The original version of graph energy from the year 1978
is based on the eigenvalues of the adjacency matrix Gutman (1978): E(G) =

∑n
i=1 |λi|, where

λi is the ith eigenvalue. However, the energy of graph found unexpected large applications in
areas of science and engineering Gutman and Ramane (2020) such in Mieghem and Bovenkamp
(2015) with the epidemiological applications.

IV THE PROPOSED NEW APPROACH

In the epidemic threshold study, one of the challenges is to capture the essence of the full
network structure with few parameters as possible with accuracy. For any network, we present a
new general structural and spectral approach that predict the epidemic threshold. Our approach
does not assume homogeneous connectivity or any particular topology in the discrete-time. We
assume that during each time interval, an infected node i tries to infect its neighbours with
probability β. At the same time, i may be cured with probability γ. Thus, the new epidemic
threshold approach λc is denoted by Eq. 1.

λKSE

c =
kn

E(G)
e−1/λmax (1)

Here, E(G) is the graph energy of the network, and k is the real parameter. The λKSE
c means

K Spectral Energy approach of the epidemic threshold prediction. In fact, λmax has several
applications in science such as chemistry, computer science Cvetkovic et al. (1980). It is proven
that more highly connected a network is, the larger is λmax Tinkler (1972), and the smaller is
1/λmax as an epidemic threshold, that is strongly related to R0 concept. This can exhibit a
basic exponential decay model ϕ, where ϕ = e

−1
λmax

t, ϕ0 = 1, with the single parameter λmax.
To consider each eigenvalue, we are interesting to the energy of graph concept according to its
definition. Thus, about the fraction of the energy of graph on each node, we define: ∆ = E(G)

n
.

In the epidemic threshold context, according to its salient features like critical or threshold
values: we look at the simple reciprocal model y = k( 1

x
), where x is a variable and k a constant

or scale parameter. Hence, the reciprocal of ∆ is: k( 1
E(G)

n

) = kn
E(G)

. Related to this reciprocal,

we have the intuition to observe the rate of ϕ at t = 1, over there: e−1/λmax × kn
E(G)

= λKSE
c .

Thus, the new approach to predict the epidemic threshold λKSE
c is an application that associates

each adjacency matrix to a specific decay composition of its eigenvalues relating to ∆.
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Figure 1: The synthesis of the structural information about the networks in the dataset

V EXPERIMENTATIONS, RESULTS AND DISCUSSIONS

With data analytic and data visualisation technics, the simulations are driven to answer the
question of how does the new approach is similar and perform in real a good performance than
earlier epidemic threshold approaches including the most used QMF with the experimental
dataset in the figure 1. We have used the real networks of infectious disease spread and other
small-world, random, and regular networks over spreading processes in 31 networks: 17 real
social networks, 9 generated social networks, 3 random networks, and 2 regular random net-
works. With data visualization technics based on numerical and graphical simulations, overall
the 31 different networks types and topology: different sets of values MF, HMF, QMF and the
new KSE epidemic threshold are been computed, analysed, visualised, and discussed.

Figure 2: The scatter dashed line visualization of the MF, HMF, QMF and the proposed KSE epidemic
threshold

5



MF HMF QMF KSE
count 31.000 31.000 31.000 31.000
mean 0.151 0.157 0.110 0.131
std 0.120 0.194 0.091 0.059
min 0.010 0.008 0.006 0.050
25% 0.061 0.034 0.027 0.107
50% 0.125 0.125 0.111 0.122
75% 0.199 0.159 0.149 0.148
max 0.497 0.977 0.333 0.383
IQ 0.138 0.124 0.120 0.040
range 0.487 0.970 0.327 0.332

Table 2: The summary of the descriptive statistic values of the MF, HMF, QMF and the proposed KSE
epidemic threshold

In the figure 2, we can show that the network Id 5, 9, 11, 12, 13, 14, 15, 17, 18, 19, and 21 have
nearest epidemic threshold values. Hence, the new proposed approach of epidemic threshold
KSE have similar common features with the earlier approaches, specifically with the widely
most used accurate QMF. The summary descriptive statistics values of the MF, HMF, QMF and
the proposed KSE epidemic threshold is built in the table 2. In the table 2, for the most used
epidemic threshold in the literature QMF, we observed that the new proposed approach KSE has
the 2nd quantile (Q2) more similar. The new proposed approach KSE is similar for the major
descriptive statistic characteristics like: the mean, std, Q2, Q3 and range related to the QMF.
This means that the new proposed approach of epidemic threshold KSE is similar to the earlier
and have major common features with the earlier approaches, specifically with the most used
accurate QMF. Those results come from the eigenvalues concept at the root of QMF and KSE.

Moreover, the areas, the curve and the shape visualization technic for the values of each epi-
demic threshold computed can be are observed in the figure 2. We can show that the area of
all epidemic thresholds have a similar area, curve and shape over the range of the 31 different
experimental networks in the dataset. They share the same shape, curve and sense of variation.
This means that the new proposed approach of epidemic threshold KSE is similar to the earlier.

The gap or difference between the epidemic threshold values related to the new KSE is analysed.
The summary of its descriptive statistics is shown in the table 3. Here, for any p, q epidemic
threshold, e_p_q means the euclidian gap or difference of p to q: p - q.

In the figure 3, we can show that scatter and curve of the gap between QMF and the new KSE is
lowest, closest to the x-axis where the difference is zero. In the table3, the standard deviation
of the gap or the difference between the QMF and the KSE is 0.078. All the gaps are relatively
low. Relatively low related to the earlier approaches particularly lowest to the most used QMF.
Moreover, the new proposed approach of epidemic threshold KSE is similar and have major
common features with the earlier approaches, specifically with the most used accurate QMF.

e_MF_KSE e_HMF_KSE e_QMF_KSE
count 31.000 31.000 31.000
mean 0.019 0.026 -0.022
std 0.093 0.182 0.078
min -0.068 -0.279 -0.221
25% -0.056 -0.066 -0.074
50% 0.010 -0.022 -0.0350
75% 0.025 0.034 0.007
max 0.308 0.788 0.188
IQ 0.081 0.099 0.081
range 0.375 1.066 0.409

Table 3: The summary of the descriptive statistic values of the gap or difference between MF, HMF, QMF
approach related to the KSE
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Figure 3: The scatter dashed line visualization of the gap or difference between MF, HMF, and QMF
approach epidemic threshold related to the new KSE

Overall, we observed that the new KSE approach of the epidemic threshold prediction is similar
to those existing in the literature. It offers a new approach to predict the epidemic threshold by
using the spectral radius and the energy of the graph: it constitutes a new general and spectral
approach to analyse the spreading processes in a network using structural and spectral properties
of a network. In the new approach, conceptually, the eigenvalues concept is at the core.

VI CONCLUSION

In this paper, we address the accurate understanding and prediction of the epidemic threshold
on complex networks in the context of the spreading process. Network structure fundamentally
influences the dynamics of the spreading processes with a boundary condition for spreading
processes over networks called the epidemic threshold. We have designed and experimented a
new general structural and spectral approach of epidemic threshold prediction that further cap-
tures the full network structure using the nodes number, the spectral radius, and the energy of
graph. We have driven the simulations on 31 networks at different topologies: 17 real social
networks, 9 generated social networks, 3 random networks, and 2 regular random networks.
With data analysis and data visualization techniques, the simulations show that the new KSE
approach of epidemic threshold is similar to the earlier MF, HMF, QMF and shares major com-
mon features with the earlier approaches, specifically with the most used accurate QMF. The
new epidemic threshold approach offers a new general and spectral approach to analyse the
spreading processes in a network. The results are both fundamental and practical interest in
improving the control and prediction of propagation processes in networks. Particularly mean-
ingful to decision-makers in public health. Future research can examine the case where the
epidemic threshold is greater than 1. Also, examine the temporal evolution of a specific infec-
tious disease in a network. As well as to enhance the proposed epidemic threshold approach
with other spectral theory of graph concepts.
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