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Abstract
Centrality measures are important in network analysis and mining. The correlation structures
between the centrality measures are subject of the structural network analysis to improve the un-
derstanding of the process in that network. The aim of this paper is to extract useful hidden
structural information about the structural correlations between centrality measures study. With
Data Science analysis and visualization technics, we propose a structural analysis and visualiza-
tion of the Pearson correlation between centrality measures. Overall experimentations, the same
results are shown in 31 social networks with different topologies. The results show the existence
of a strong positive and structural correlation between degree and closeness centrality, degree and
betweenness centrality, degree and eigenvector centrality. However, we observed a strong positive
and non-structural correlation between eigenvector and betweenness centrality, betweenness and
closeness centrality, closeness and eigenvector centrality. Furthermore, we suggest some structural
implications of these centrality measures in a network. Finally, we identify influential nodes and
their state of evolution that build an effective minimization policy for an infectious disease spread.
With the strong positive and structural correlations observed, in large networks, high complexity
centrality measure can be approximated by low complexity such as degree centrality.

Keywords
Social Network Analysis and Mining ; Network structures ; Structural analysis ; Centrality Mea-
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I INTRODUCTION

Networks are ubiquitous and network science has revolutionized research in the complex sys-
tem. They are flexible tools for the modeling and studying complex systems Pellis et al. (2014).
In the network, various explicit/local or implicit/global links connect the nodes at different struc-
tural levels. Thus the centrality measures have interest in the network where the understanding
network structure allows to improve a better control of the micro and macro propagation Keel-
ing and Rohani (2008), Danon et al. (2011) and even improve predictions. In public health,
the infectious diseases spread through nodes in a contacts network. Some nodes have a high-
spreading capacity than others. Thus, the Social Network Analysis and Mining (SNAM) is useful
for the modelling and the study of the network by typical analysis based on centrality measures.
This in order to identifying influencer and structural nodes to build a policy to mitigation the
propagation, Enright and Kao (2018), Pellis et al. (2014), Keeling and Rohani (2008).
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The basis centrality measures like degree centrality, closeness centrality, betweenness centrality,
and eigenvector centrality have been studied in SNAM. Analysis, modeling, and interpretation
of these centrality measures and their correlation has a great interest. In this study Newman-
Watts-Strogatz and other social networks have been used to emphasize this interest.

The aim of this paper is to extract useful hidden structural information from social networks to
maximize insight. For the degree, betweenness, closeness, and eigenvector centrality measures,
the following are proposed: (i) An analysis and interpretation with an emphasis in the context of
an infectious disease spread; (ii) A structural analysis and visualization of the Pearson correla-
tion to emphasize the existence of a strong positive and structural or non-structural correlation;
(iii) Some structural implications of centrality measures in a network.

The rest of this paper is organized as follows: the section 2 reviews the previous works, the
section 3 presents the centrality measures study with interpretations and limits in area of SNAM.
The methodology used is presented in the section 4, while the section 5 presents the empirical
experimentations, results and discussion. We conclude in the section 6.

II RELATED WORK

The correlation between centrality measures and interpretation is studied from different per-
spectives in the literature. In Valente et al. (2008), the authors have shown the existence of a
strong correlation between eigenvector centrality and degree centrality, with a mean correlation
of 0.92 over 58 networks.

Moreover, the correlation between centrality metrics and their application to the opinion model
is studied in Li et al. (2014). Authors have shown that betweenness, closeness centrality, and the
components of the principal eigenvector of the adjacency matrix are strongly correlated with the
degree, the 1st-order degree mass, and the 2nd-order degree mass, respectively, in both network
models and real-world networks.

In Meghanathan (2016), author has examined the correlation analysis between maximal clique
size and centrality measures for random networks and scale-free networks. Furthermore, He and
Meghanathan (2016) have investigated the correlations between eigenvector centrality and five
centrality measures including degree, betweenness, cluster coefficient, closeness and distance
centrality in various types of networks. Their analysis shown that there was strong correlation
between the degree centrality and the eigenvector centrality.

The rank correlation between centrality metrics in complex networks is studied in Shao et al.
(2018). Authors have investigated the correlation between centrality metrics in real networks,
and find that the betweenness occupies the highest coefficient, closeness is at the middle level,
and eigenvector fluctuates dramatically.

However, with Data Science analysis and visualization technics, by extracting useful hidden
information, we propose a structural analysis and visualization of the Pearson correlation to
emphasize the existence of a strong positive structural or non-structural correlation between
centrality measures study. Moreover, we show the limits of centrality measures, the stakes, and
interpretation of these centrality measures in the context of infectious disease spread. Structural
implications of these centrality measures on the network structure have been suggested.
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III THE CENTRALITY MEASURES, INTERPRETATIONS AND LIMITS IN AREA
OF SOCIAL NETWORK ANALYSIS

In network structural analysis, centrality measures are widely used to determine which nodes
are important in a network. They constitute the structural importance of nodes in the network
Wasserman and Faust (1994). The connectedness network is decisive for the usefulness of an
centrality measure that is useful in the context of an infectious disease spread where the network
is generally connected. In our application case of infectious disease spread, we are interested
in the case of the non-oriented network. In the following definitions, we consider G = (V,E) a
graph/network by its adjacency matrix A, with n nodes and m links.

3.1 The degree centrality

The importance of a node is determined and increases with the number of its neighbors. For a
node vi ∈ V it is defined by Freeman (1977): Cd(vi) =

∑n
j=1(aij);

C∗
d(vi) = 1

n-1

∑n
j=1(aij). Here Cd

*(vi) represents the standard notation. The degree centrality
provides information only in the local popularity. This determines which nodes can quickly and
directly propagated the virus in a strictly local area. Regarding time complexity analysis of the
degree centrality, with A, we obtain θ(n2). However, degree centrality becomes limited in a
global vision of the network analysis.

3.2 The closeness centrality

This measure defines the global "close" distance of a node to other nodes Freeman (1977). For
a node v ∈ V it is defined by: Cc(vi) = 1∑

t∈V dG(vi,t)
; C∗

c (vi) = n−1∑
t∈V dG(vi,t)

. Here Cc
*(vi)

represents the standard notation, and dG(v,t) = dG(t,v) the distance between two nodes v and t.
This is important to further understand information dissemination or propagation. In a social
network, this measure means that an node is important if he can easily reach a large number of
person with a minimum size in the paths. However, some values the closeness centrality would
be undefined since geodetic distances between some nodes would not exist. Regarding time
complexity analysis of the closeness centrality, with the Dijkstra algorithm, we obtain θ(n2).
This complexity can be reduced to θ(n+m).

3.3 The betweenness centrality

In this concept a node is most important or influential since it is necessary to cross it and go
from one node to another. For a node v ∈ V it is defined by Freeman (1977):
Cb(vi) =

∑
s ̸=vi ̸=t∈V

σst(vi)
σst

;C∗
b (vi) =

2
(n−1)(n−2)

∑
s ̸=vi ̸=t∈V

σst(vi)
σst

.
Here Cb

*(vi) is the standard notation σst(v) is the total of shortest paths between nodes s,t
that pass through nodes v, and σst is the total of shortest paths between nodes s and t. Nodes
with higher score control the flow of transmission to impact the robustness in the network.
These nodes play the role of bridges, hubs, critical links as well as cohesion between other
nodes. Therefore, nodes with very high often join cohesive regions of the network, called
communities. However, zero values of betweenness centrality can be observed in the case of a
weakly connected network. Concerning time complexity analysis, it takes θ(n3) time with the
Floyd-Warshall algorithm. On a sparse graph, Johnson’s algorithm taking θ(n2log(n)+n∗m),
and even better, to θ(n ∗m) for unweighted graphs.
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3.4 The eigenvector centrality

The eigenvector centrality provides global information that an influential node is connected to
others well-connected nodes in a network Bonacich (2007). For a node vi ∈ V it is define
by: λCe(vi) =

∑n
j=1,i ̸=j ajiCe(vj), where λ denotes an eigenvalue, aji is an entry of A, Ce

is the eigenvector centrality. Assuming x = (Ce(v1), ... , Ce(vn)); formal expression of the
eigenvector centrality becomes: Ax = λx where computation implies to solve: ACe = λCe.
This measure presumes that not all connections have the same importance by taking into account
not only the quantity but specifically the quality of these connections. Therefore, it represents
the state towards which each node vi evolves in the network. For j from 1 to n, each element
aij is the state of the links or the evolution of interactions of one node with other nodes in
the network. The eigenvector is a preferred direction unchanged by A, while λ represents the
stretch or compression factor in that direction. However, the eigenvalues and eigenvectors of an
antisymmetric matrix can be complex. The eigenvector centrality takes time complexity at least
in polynomial time.

IV METHODOLOGY

We used the classical SNAM methodology in a process of six main orderly generic steps Kazienko
(2018): (i) Problem definition; (ii) Data gathering and preparation; (iii) Social network mod-
elling; (iv) Knowledge extraction; (v) Evaluation; (vi) Interpretation and deployment. We have
enriched this with the use of descriptive, diagnostic, predictive, and prescriptive analysis. A
specific DataFrame has been built.

The introduction of this DataFrame facilitates extraction of hidden useful information from
networks in our dataset by structural analysis, representation, and interpretation. After around
100 simulations, cross-interpretation of data visualization results has been made to be able to
focus on the structural correlation and interpretation between centrality measures studied.

V EXPERIMENTATIONS, RESULTS AND DISCUSSION

5.1 Empirical assumptions and experimental configurations

(i) Nodes and links are weakly organized at the global level; (ii) By definition, degree central-
ity is considered as an independent variable at the local level, while closeness, betweenness,
and eigenvector centrality are dependent variables at the global level. An Intel core i7, 8GB
RAM; the Anaconda 3 software with the open-source NetworkX library was used and other
data scientist libraries like Numpy, Pandas, Scipy, MatplotLib, and Seaborn.

5.2 Results and discussion

This study has been experimented on 31 social networks with different structural characteristics
show in the figure 1 where we applied specific data analysis and visualization technics in the
dataset over around 100 experimentation series. Therefore, with the main Newman Watts Stro-
gatz network, the figure 2 shows the front portrait and the figure 3 shows the heatmap diagram.

In the figure 3 "dec" means degree centrality, "bsc" betweenness centrality, "clc" closeness
centrality and "evc" eigenvector centrality. In the figure 2 and figure 3 we observe a quantitative
and qualitative values of very strong positive structural correlation between the four centrality
measures study. In fact, betweenness, closeness, and eigenvector centrality depend to the degree
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Figure 1: The synthesis of the structural information about the networks in the dataset

Figure 2: The front portray with linear regression between degree, closeness, betweenness and eigenvec-
tor centrality

centrality. Hence the local structure influence the global structures. These observations are
similar to those in the literature He and Meghanathan (2016), Li et al. (2014), Meghanathan
(2016).

5



Figure 3: The heatmap diagram of the Pearson correlation between degree, closeness, betweenness and
eigenvector centrality

Figure 4: The scatter plot of centrality measures with linear regression for (a) degree and betweenness,
(b) degree and closeness, (c) degree and eigenvector, (d) betweenness and closeness, (e) betweenness
and eigenvector, (f) closeness and eigenvector

Overall the couples of centrality measure, the insight of the figure 4 show the existence of a very
strong positive and structural correlation between degree and closeness centrality, degree and
betweenness centrality, degree and eigenvector centrality. However, there is the existence of a
strong positive and non-structural correlation between eigenvector and betweenness centrality,
betweenness and closeness centrality, closeness and eigenvector centrality. The quality of the
strong positive correlation between the pairs of centrality measures studied shows a strong pos-
itive structural dependence between these centrality measures. This correlation also reflects a
similarity of relationships between centrality measures at the latent factors at structural levels
ranging from local to global. However, the structure of correlations between centrality measures
is not always orderly. These results confirm the hypothesis that the local structure strongly in-
fluence the global structures so that the global structures depend and emerge from the local
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structures. With the same experimentation protocol, overall the 31 social networks at differ-
ent topologies, the same results were observed. Moreover, in the figure 5 we propose that the
Venn diagram can be used to understand the implication of the strong positive and structural
correlation between centrality measures studied.

Figure 5: The implication of the correlation centrality measures in the network structure

With the works in Daokun et al. (2017), by the strong positive structural or non-structural cor-
relation between degree, closeness, betweenness, and eigenvector centrality; we propose the
figure 5 to categorize the structural implications of the centrality measures studies in the net-
work structure. Therefore, it is argued that: the degree centrality influences the microscopic
structure at the local proximity; closeness and betweenness centrality influence the mesoscopic
structure as the structural role proximity and intracommunity proximity; eigenvector centrality
influences the macroscopic structure at the network whole properties. Hence, we observed that
the local structure has a great influence on the network global structure.

Identify influential nodes insight to the critical nodes from which a virus spreads with a high-
spreading capacity in the network. This is useful to build an effective policy that mitigates
infectious disease spread such as the priority vaccination, quarantine.

VI CONCLUSION

In this paper, we address the network structural correlation analysis problem using centrality
measures in the context of the infectious disease spread. We focus on the correlation structures
between centrality measures in the context of an infectious disease spread. We have studied the
structural correlation between degree, closeness, betweenness, and eigenvector centrality. Here,
network connectedness limits were established for these centrality measures, we suggest their
issues, specific interpretations, and limits in the context of infectious disease spread. By ex-
tracting useful hidden structural information, we propose a structural analysis and visualization
of the Pearson correlation between centrality measures study. The results show the existence
of a strong positive and structural correlation between degree and closeness centrality, degree
and betweenness centrality, degree and eigenvector centrality. However, a strong positive and
non-structural correlation was observed between eigenvector and betweenness centrality, be-
tweenness and closeness centrality, closeness and eigenvector centrality. This correlation shows
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a strong positive structural dependence between these centrality measures that reflects a simi-
larity of relationships between centrality measures study. However, the structure of correlations
between centrality measures is not always orderly. For any node in the network, whatever the
centrality measure, the higher is its score, the more important or structural influencer it becomes,
the more it occupied a strategic propagation position on the network; and the more it increases
the likelihood or risk of propagation. This can be used to build an effective policy that miti-
gates infectious disease spread. For the structural implications of these centrality measures, the
degree centrality is related to the microscopic structure, closeness centrality and betweenness
centrality to the mesoscopic structure, and eigenvector centrality to the macroscopic structure of
the network. Further research attempts can be carried out to explore other structural properties
in network distribution and segmentation. Also, we can experiment the gain insight with the
use of the systemic approach to improving the general and the whole causal interpretation of
the positive and structural correlation.
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