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Disordered dielectric materials with short-range spatial correlations on length scales comparable to the
wavelength of light display a rich variety of optical phenomena: photonic band gaps, structural coloring, strong
scattering, and whiteness. However, a lack of reliable and straightforward analytical models complicates the
rationale design of optical materials for specific applications. Here, we demonstrate how to accurately introduce
collective scattering and define the effective medium in single scattering from heterogeneous dielectrics with
a substantial refractive index contrast, starting from fundamental principles. Our model captures the effective
medium’s role in the momentum transfer definition for the particle form and structure factor in the forward
scattering regime. We support our claims through transfer matrix calculations scattering from particle clusters.

DOI: 10.1103/PhysRevResearch.4.023235

I. INTRODUCTION

Research on nanostructured and correlated dielectric ma-
terials is flourishing and generates a demand for efficient
modeling of their optical properties. Applications for these
materials are found as filters and switches, structural color-
ing in packing, solar cells, cosmetics and sensing, optical
forces, whiteness for optical diffusers and screens, as well as
increased transparency in multicomponent composite materi-
als [1–18]. Selective forward scattering dielectric metamateri-
als and surfaces provide high transmission and subwavelength
spatial wave control [19,20]. For ordered crystalline struc-
tures, the periodicity allows for an efficient and fast numerical
computation of the optical properties even for a high index
contrast [21]. The disordered nature of amorphous photonic
materials, however, strongly limits the system size that can be
handled within a reasonable computation time using conven-
tional numerical techniques [1].

Analytical models that describe scattering from disordered
dielectric materials, such as dense suspensions, colloidal
clusters, or dielectric networks usually start from the weak
scattering limit, also known as Rayleigh-Gans-Debye (RGD)
theory. Unfortunately, the RGD approximation has a very
limited range of validity: It requires both low refractive in-
dex contrast |m − 1| � 1 and characteristic particle size |m −
1|kR � 1 [22], where k = 2π/λ denotes the wavenumber,
R the particle radius, and m = np/nh is the ratio of the re-
fractive indices of the scatter np and the host medium nh.
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Most strikingly, the RGD theory cannot make any predic-
tions about the effective medium correction that is required
to account for deviations between spectral model predictions
and experimental or numerical data [15,23–25]. Common
electromagnetic mixing formulas, such as Bruggeman or
Maxwell-Garnett, homogenize a medium in the limit kR �
1. Still, they are a priori not applicable to scattering from
systems composed of building blocks with sizes compara-
ble to the wavelength [26–29]. Due to these limitations of
the RGD theory and the lack of alternative approaches, the
role of the effective medium on scattering and propagation
of light in “optically soft” disordered dielectrics—meaning
materials with a moderate index contrast—is essentially un-
resolved. In multiple light scattering and photon diffusion,
successive single scattering events occur over distances of the
scattering mean free path �s. A better understanding of the
single scattering function is thus vital for the description of
light propagation in such dense media. However, the existing
knowledge gap makes it possible that contradictory results
remain unchallenged and cannot be resolved. For example, in
a recent article, Rezvani Naraghi et al. [30] claim that near-
field coupling, a phenomenon expected for high index and
resonant scatterers [31,32], enhances the optical transmission
already for dense aqueous silica particle suspensions with
R ∼ λ and |m − 1| = 0.13, although previous work on
polystyrene scatterers (|m − 1| = 0.2) of similar size has
shown no such effect [33].

A substantial refractive index contrast can influence the
scattering process in dense dielectrics locally and globally.
Locally, near-field coupling between building blocks may play
an important role [34], as well as Mie resonances [22] and
internal reflections, leading to phenomena like whispering
gallery modes [35]. Globally, a finite index contrast |m − 1|
increases the optical path length or, equivalently, creates a
delay of the wave’s phase. Consequently, the momentum
transfer q, defined in the RGD theory, as the vectorial differ-
ence between the incoming kin and the scattered wave vector
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FIG. 1. Phase maps in light scattering from soft dielectrics. (a) Scattering geometry with an incoming plane wave kin propagating in z
direction and a scattered wave kout. (b) Phase map calculated using Mie theory (equatorial cross section, incoming field perpendicular to
the plane) inside a sphere illuminated with a plane wave, kR = 19.8, m = 1.2. (c) Phase map calculated using the T-matrix approach inside a
spherical cluster containing N = 435 dielectric spheres illuminated with a plane wave, kR = 2.2, m = 1.2. The coloured bars show the distance
(wavelength) between the wave fronts having the same phase (φ = 0) in different materials.

kout, is influenced by the effective medium. Previous studies
of scattering from dense particle assemblies define an effec-
tive scattering momentum transfer qeff ≡ q0neff, where q0 is
the vacuum’s momentum transfer and neff is an effective
refractive index. neff has been obtained by either using the
homogenized effective index [24,36], the host-medium in-
dex [33], or something in between [37]; for example, using
the coherent potential approximation (CPA) [23,38,39]. The
choice of the effective index, however, is often uncontrolled
and merely provides an additional parameter to fit the ex-
perimental or numerical data [37]. In the present paper, we
systematically derive a correction to RGD for heterogeneous,
optically soft dielectrics, leading to a rigorous definition of the
effective momentum transfer qeff. To this end, we show how
to introduce the effective medium in a controlled way via the
phase delay [40,41].

II. ELECTROMAGNETIC THEORY

We base our discussion on the integral formulation of
the scattering problem, which can be expressed in an exact
form for any dielectric scattering material embedded in a host
medium [16,22]. Consider a material with relative permittivity
ε(r′) in a host medium with relative permittivity εh. In the far
field the electric field of the scattered wave Es(r) can be linked
to the susceptibility, χ (r′) = ε(r′)/εh − 1, and to the electric
field due to the incoming wave inside the scattering medium
E(r′) as (see Appendix A for details)

Es(r) = eikr

r

k2

4πε0εh
(I − ûout ⊗ ûout)p(ûout), (1)

where the total dipole p(ûout) (direction dependent) is

p(ûout) ≡ ε0εh

∫
d3r′e−ikout ·r′

χ (r′)E(r′), (2)

k = 2πnh/λ0 is the wavenumber, λ0 denotes the wave-
length in vacuum, and kout = kûout is the wave vector of
scattered light. The integral defining p(ûout) is taken over
the scattering volume. We consider an incident plane wave

E in(r) = E0ûpoleikin·r polarized along the direction ûpol, whose
intensity is Iin = |E0|2/(2Z ), Z ≡ √

μ0/ε0
√

1/εh being the
host medium impedance. The differential scattering cross
section (SCS) in the direction ûout reads

dσs(ûout)

d	
= 1

k2
(| f (ûout)|2 − |ûout · f (ûout)|2), (3)

where we introduce the dimensionless field f (ûout) ≡
k3

4πε0εh
p(ûout)/E0. For simplicity, in the following, we only

consider scattering in the yz-plane with an incident wave’s
electric field polarized perpendicularly to this plane, and
thus we can assume kin = kûz and ûpol = ûx [see Fig. 1(a)
for the scattering geometry]. Furthermore, we assume that
the local electric field is collinear to the incoming field,
f (ûout) = f (θ )ûx, i.e., the scattered field is perpendicular to
the scattering plane and only depends on the θ angle (see also
Appendix B).

A. Modified momentum transfer

Equation (3) is exact but can only be solved for a spherical
scatterer using Mie’s theory [42] or the Debye series [43].
In general, the far-field scattered wave depends on the local
field inside the scatterer, E(r′) in Eq. (2), which is a priori un-
known. However, Eq. (3) can be solved by approximating the
local field. In the simplest case one replaces the local field by
the unperturbed incident field, which corresponds to the RGD
limit. Based on this assumption, it is straightforward to calcu-
late a sphere’s differential SCS angular dependence dσ (θ )

d	
=

| f (θ )|2
k2 —proportional to the particle form factor F (q) ≡

V −1
∫

V d3re−iq·r—as shown, e.g., in Refs. [42,44], f (q) =
k3V
4π

χF (q) = k3V
4π

χ
3 j1(qR)

qR , where j1(x) = (sin x − x cos x)/x2

is the first-order spherical Bessel function of the first kind and
χ = εp/εh − 1. In the RGD-theory, the scattering momentum
transfer is given by the norm of the scattering vector q = |q| =
|kout − kin | = 2k sin(θ/2). For a sphere of radius R, the form
factor F (q) = 3 j1(qR)/qR only depends on the modulus of q.
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For a more accurate theoretical description going beyond
RGD, Saxon proposed already in 1955 to replace the incident
field’s phase by the phase inside the particle m · kin · r′:
E(r′) = E0ûpoleimkin·r′

[45]. This idea was later taken up by
Shimizu [46] and Gordon [47] in the 1980s but never became
widely used. Further assumptions about the field inside the
dielectric medium can be added to the model, as discussed
by Gordon [47], but are not considered in the present paper.
Using the local field approximation by Saxon and Gor-
don [45,47], we obtain a modified momentum transfer qmod

qmod = kout − m · kin, (4)

q2
mod = k2(m2 + 1 − 2m cos θ ), (5)

which, for m → 1, using 1 − cos(θ ) = 2(sin(θ/2))2, ap-
proaches the usual RGD-result. Although Eq. (4) and Eq. (5)
are known in the literature, the consequences of this model
have not been fully explored nor applied to complex, mixed
dielectrics. Compared to RGD, the modified RGD (mRGD)
yields much better agreement with Mie scattering by spheres,
especially in the forward scattering direction and concerning
the position of the minima as shown in Fig. 2(a). Plotted as
a function of qmodR, the scattering data nearly collapse on a
master curve, Fig. 2(b). We remark that for sufficiently small
qmodR, below the first minima, the mRGD approximation per-
fectly agrees with the Mie scattering result. Even for large kR
and moderate to large values of m, the mRGD approximation
still provides a good overall agreement with the Mie theory in
a regime where the classical RGD model fails. We also notice
from Eq. (5) that for m > 1, the effective momentum transfer
qmod remains nonzero even for θ → 0 with qmod(0)R =
kR

√
m2 − 2m + 1 = kR|m − 1|. As we increase m, the

minima of the scattering function are pushed to smaller angles
and eventually disappear at discrete values of m. For example,
the first zero of j1(x)2 is located at x = qmod(θ )R = 4.493
and therefore for qmod(0)R > 4.493 it cannot be reached
anymore, Fig. 3.

B. Wentzel-Kramers-Brillouin approximation (WKBA)

The influence of the particle curvature on the phase delay
and momentum transfer can be taken into account using the
Wentzel-Kramers-Brillouin approximation (WKBA) [40] that
calculates the phase delay that each ray experiences inside
the medium prior to scattering. If we assume that the in-
coming plane wave propagates rectilinear in the positive z
direction, the phase at each point can be written as φ(r′) =
kz′ + k

∫ z′

−∞[m(z) − 1]dz, where we integrate along the recti-
linear path with x, y = const. The corresponding electric field
E(r′) = E0ûpoleiφ(r′ ) then can be plugged into Eq. (2). For
spherical particles Eq. (2) reduces to a 1D integral [48]. The
WKBA-differential SCS of a sphere is plotted in Fig. 2(a)
for m = 1.2 and kR = 6.5. One can remark that WKBA
predicts a scattering curve almost identical to the mRGD
model. The main significant improvement of WKBA com-
pared to mRGD is the removal of the scattering singularities,
or zero intensities, at the minima position. The WKBA and
mRGD accurately predict forward scattering, as shown in
the inset of Fig. 2(b), which holds even up to large m val-
ues (WKBA-prediction is identical for θ = 0). The WKBA-
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FIG. 2. (a) Angular dependence of the differential scattering
cross-section (SCS) of single dielectric spheres with m = 1.2, kR =
6.5. Open symbols show the prediction by Mie theory and the lines
are predicted by single scattering approximations RGD (orange line),
mRGD (dash-dotted blue line), and WKBA (solid-blue line). (b) Mie
differential scattering cross-section (SCS) for m = 1.2 and kR ∈
[2, 6] plotted as a function of qmodR, see Eq. (5). Dash-dotted blue
line: mRGD approximation. Inset: Mie differential scattering cross
section at θ = 0 (open symbols) for different particle sizes (left)
and refractive indices (right). Dash-dotted lines show the mRGD-
prediction (WKBA-prediction for θ = 0 is identical). The horizontal
lines show the RGD prediction.

and mRGD-predictions lose accuracy at backscattering angles
θ > 90◦.

Next, we address scattering from mixed dielectrics. To
develop the main concepts, we restrict the quantitative discus-
sion to the case of a dense assembly of N dielectric spheres
densely packed in a large metaball. We first derive an approx-
imate expression for E(r′), and then calculate the far-field
scattered intensity and the differential SCS. Numerically we
generate dense packings of identical polystyrene particles
suspended in water (filling fraction φ = 0.6, m = 1.2) by
running a force-biased generation algorithm followed by a
molecular dynamics equilibration using the PackingGener-
ation project [49]. Figure 1(b), shows the Mie analysis of
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FIG. 3. Shift of the position of the minima of the scattering func-
tion θmin with increasing m. Open squares: predictions by Mie theory
for a dielectric sphere with kR = 6.5. The plot shows sharp tran-
sitions, e.g., around m = 1.6 where the first minimum disappears.
Dashed lines: prediction for the minima position from mRGD for
kR = 6.5, solving qmodR = xmin for values where j(xmin ) = 0. Solid
lines: prediction from WKBA model.

the field inside a dielectric sphere m = 1.2 [22]. The results
support Saxon’s proposal; the wavefronts remain relatively
flat, but the wavelength of the incident wave is reduced by a
factor m. We use the multiple sphere T-matrix method (MSTM
open-source code [50]) to numerically calculate the field prop-
agating inside the densely packed assemblies of particles,
Fig. 1(c). The wavefronts still overall resemble a plane wave
but with a wavelength rescaled by an effective refractive index
ratio meff. From the calculations of the spatial field distribution
for N = 435, m = 1.2, we extract meff ≈ 1.12, a value that is
very close to Maxwell-Garnett (MG) effective medium pre-
diction mMG.

WKBA assumes that the local fields exciting each scatterer
in the ensemble correspond to plane waves with a phase given
by the optical path length traversed by the input field in the
effective medium. In a purely numerical implementation using
ray tracing, the WKB-approximation can be applied to any
mixed dielectric such as sphere assemblies, see Fig. 4(a), but
also to bicontinuous materials such as dielectric hyperuni-
form, diamond, or foam-like networks [51–54].

III. SCATTERING FROM PARTICLE CLUSTERS

We consider the case of sphere-packings in a finite-sized
spherical cluster, Figs. 1(b) and 1(c), for which we can de-
rive a closed-form analytical result. For a scattering element
r′ inside a given sphere, index i, the integral can be split
into φ(r′) = kz′ + k

∫ zi

z0
(m(z) − 1)dz + k

∫ z′

zi
(m − 1)dz. The

first integral describes the phase delay acquired on the path
starting at z0 to zi, sitting on a plane normal to uz through
the ith-particle’s center. In a mean-field approach, we ap-
proximate m(z) 
 meff where meff = (φ np + (1 − φ)nh)/nh is
the weighted average of the refractive index ratio of the two
material components (for |m − 1| < 0.5, meff 
 mMG [27]).
Thus

∫ zi

z0
(m(z) − 1)dz 
 (meff − 1)(zi − z0). The second in-

tegral is taken fully inside the dielectric material, so we
can evaluate it immediately. We find φ(z′) = km(z′ − zi ) +
kmeffzi − k(meff − 1)z0. The last term can be dropped if we
assume all rays start on the same plane z0 = constant, thus
neglecting the spherical cluster’s shape curvature [55]. Since
kin = kuz, we can return to the vector notation and write

E(r′) =
∑

i

[r′ ∈ i]E0eimkin·(r′−ri )+imeffkin·ri , (6)

where [r′ ∈ i] is the indicator function of the particle i. When
applied to a periodic structure, such as an opal photonic crys-
tal, the expression for the inner electric field respects Bloch’s
theorem, which demonstrates the consistency of our approach.
The latter becomes apparent if we rewrite Eq. (6) as follows:

E(r′) = E0eimeffkin·r′ ∑
i

[r′ ∈ i]ei(m−meff )kin·(r′−ri ), (7)
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FIG. 4. Scattering from a cluster of N = 435 particles with kR = 2.2 and m = 1.2, panel (a) and (b). Open squares: T-matrix calculations of
a cluster shown in the inset of panel (a). The solid line in panel (a) shows the numerical WKBA (ray tracing) prediction. (b) Lines: predictions
by the closed-form analytical model Eq. (10) using either qeff or qeff

mod for the structure factor. (c) Experimental differential scattering cross
section of dilute dispersions of spherical particle clusters (mean diameter dPB = 3.3 μm, polydispersity δdPB/dPB ∼ 0.45) suspended in water
(nh = 1.33) measured by static light scattering, λ = 660 nm [36]. The clusters are made of closely packed R = 174 nm (kR ≈ 2.2) polystyrene
spheres (np = 1.59) with a polydispersity of ∼5% and a filling fraction of φ ∼ 0.6 [36]. Lines: same color label as in panel (b), calculated
using Eq. (9) with Mie scattering amplitudes and averaged over the PB-size distribution.
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which shows that E(r′) is a product of a plane wave and a
periodic function.

With Eq. (2) and our definition of the modified momentum
transfer in the effective medium qeff

mod = kout − meffkin, we
obtain the total dipole

p(ûout)

ε0εhE0
= ûpol

∑
i

eiqeff
mod·ri

∫
Vi

χe−iqmod·(r′−ri )d3r′, (8)

where each integration is performed over the volume of ith
particle. The integral only depends on the shape of the parti-
cle, and thus the sum over particle positions i and the particle
form factor factorize in the common way [44,56],

p(ûout) = ε0εhE0ûpolχ
∑

Vie
iqeff

mod·ri F (qmod, Ri ), (9)

where Ri is the radius of the corresponding sphere. For
monodisperse assemblies Ri = R = constant, F (qmod, Ri ) can
be taken out of the sum. Considering averages over all pos-
sible orientations we can drop the vector notation for the
momentum transfer. Then the differential SCS for assemblies
of identical particles with radius R is given by

dσ (θ )

d	
= NS

(
qeff

mod

)dσ (θ )

d	 p
, (10)

with S(|x|) = 1
N 〈∑p,p′ eix·(rp−rp′ )〉 defined as a finite sum

over particle (p, p′) centers inside the cluster, where the
averaging is performed over various cluster configurations.
Expression (10) strongly resembles the classical RGD-
approximation (|m − 1| → 0), but now can be applied for
a finite refractive index contrast |m − 1| < 0.2 − 0.5. In a
single scattering approximation for a mixed dielectric, the
momentum transfer for collective scattering is set by the
product of the structure factor, with a momentum transfer
qeff

mod, and the sphere differential SCS. For the latter we can
use the mRGD or WBK approximation (with qmod), but we
can also derive Eq. (10) retaining the full Mie solution for
(dσ (θ )/d	)p (Appendix A). In Fig. 4, we test the accuracy
of the model predictions by comparison with exact MSTM
numerical [50] and experimental results obtained for spherical
random close-packed clusters.

Equation (10) using the Mie sphere differential SCS
gives an accurate prediction for low-angle scattering [57].
At the same time, the commonly employed expression qeff =
meff(kout − kin ) catastrophically fails in the forward direction.
In the back-scattering direction, however, scattering is weak;
both definitions of qeff show deviations, and the level of
agreement is comparable. In this regime, multiple scattering
or internal reflections, not considered in the model, become
increasingly important as |m − 1| increases.

IV. CONCLUSIONS

To conclude, we have shown how to accurately treat the
phase delay and momentum transfer in single light scattering
from optically soft, disordered dielectrics. The derivation and
validation of Eqs. (9) and (10) using the WKB-approximation
for assemblies of dielectric spheres is the central result of
this paper. Furthermore, we explore the use of the WKBA
and modified RGD concepts and suggest pathways to de-
velop more accurate theoretical ways to describe scattering

in heterogeneous dielectrics. Notably, we clarify the effective
medium’s role in the momentum transfer definition for the
particle form and structure factor. Moreover, in a purely nu-
merical implementation, the same approach, using ray tracing,
can be applied to any structures, sphere assemblies, and bicon-
tinuous materials such as dielectric hyperuniform, diamond,
or foam-like networks, emphasizing the importance of our
results. Finally, one can also use the single-scattering concepts
derived in our paper as a basis to improve the modeling of
diffuse transport in dense dielectrics.

The data shown in the figures and some of the underlying
raw data are available on the online repository Zenodo [58].
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APPENDIX A: GENERAL DERIVATION OF THE
DIFFERENTIAL SCATTERING CROSS SECTION

The electromagnetic wave equation in the absence of
sources (pure scattering) for a monochromatic field reads

∇ × ∇ × E(r) −
(ω

c

)2
ε(r)E(r) = 0, (A1)

where we assume a piecewise constant relative permittivity
function ε(r) (in general complex and depending on the fre-
quency ω). For a given incoming field E in(r), it satisfies the
wave equation in a host medium with constant permittivity
ε(r) ≡ εh, and we can recast equation (A1) to

∇ × ∇ × E(r) −
(ω

c

)2
εhE(r) =

(ω

c

)2
ε0εhχ (r)E(r), (A2)

where the susceptibility relative to the host medium is defined
as χ (r) ≡ (ε(r) − εh)/εh. That takes the form of the wave
equation in the host medium with additional sources given
by a polarization current density P(r) ≡ ε0εhχE(r). The scat-
tered field is given by the particular solution to equation (A2)
with radiation boundary conditions. Considering the Green
tensor for the electromagnetic field G(r, r′), the total scattered
electric Es(r) field is given by

Es(r) = k2

ε0εh

∫
d3r′GE (r, r′)P(r′), (A3)

where k = 2πnh/λ0 is the host wave number of the input
wave. Taking the far-field approximation of the Green tensor,

GE (r, r′) 
 eikr

4πr
(I − ûout ⊗ ûout)e

−ikout·r′
, (A4)
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where kout = kûout, and ûout = r/|r|, we obtain

Es(r) = eikr

r

k2

4πε0εh
(I − ûout ⊗ ûout)p(ûout), (A5)

where the total dipole p̂out (depending on the direction ûout) is
defined as

p̂out ≡
∫

d3r′e−ikout·r′
P(r′). (A6)

Equation (A6) holds for any scalar permittivity and assumes a
magnetic permeability equal to the vacuum one. Taking the
curl of the scattered electric field, we obtain the scattered
magnetic field in the far-field approximation

Hs(r) = eikr

r

k2

4πε0εhZ
ûout × p(ûout), (A7)

where Z stands for the host medium impedance

Z ≡
√

μ0

ε0

√
1/εh. The scattering Poynting vector S(r) =

1/2�(Es(r) × H∗
s (r)) is given by

S(r) = ûout

2Z

(
k4

4πε0εh

)2

(|p(ûout)|2 − |ûout · p(ûout)|2). (A8)

The incoming field E in(r) is a plane wave

E in(r) = E0ûpole
ikin·r (A9)

of amplitude E0 and polarization vector ûpol, whose intensity
is I0 = |E0|2/(2Z ). The differential SCS is defined as the ratio
of the scattered power per unit solid angle in a given direction
to the input intensity

dσs(ûout)

d	
= S(r) · ûout

Iin
r2 = 1

k2
(| f (ûout)|2 − |ûout · f (ûout)|2),

(A10)

where f (ûout) is defined as in the main text,

f (ûout) ≡ k3

4πε0εh
p(ûout)/E0. (A11)

If the input field presents an additional phase delay,
E in(r, φ) = E in(r, φ)eiφ , so will the polarization current den-
sity and the total dipole, i.e., P(r′, φ) = P(r′)eiφ, p(ûout, φ) =
p(ûout)eiφ , and analogous phase delays will also be present
in the scattered fields. We make the assumption that the local
fields exciting each individual scatter (i) in the ensemble is
a plane wave with a phase given by the optical path length
traversed by the input field in the effective medium,

φi = kz0,i + kmeff(zi − z0,i ), (A12)

where z0,i is the input point of the plane wave impinging on
the spherical particle cluster. If we neglect curvature effects,
z0,i = z0 common to all scatters, we have

φi = kmeffzi + k(1 − meff )z0. (A13)

The field scattered by each particle will carry an additional
phase φi, depending on the scatter position, due to the ef-
fective medium. This approximation leads to the differential

SCS

dσs(ûout)

d	
= NS

(
qeff

mod

)dσ (θ )

d	 NP
. (A14)

The total dipole p̂out, Eq. (A6), depends on the complete solu-
tion of the scattering problem, i.e., the total electric field inside
the scattering medium E(r). In general, we divide the system
into discrete elementary dipoles and apply approximations
such as the mRGD or the numerical WKB (ray tracing). In the
case of sphere assemblies, however, where the complete Mie
scattering solution of a sphere is known, we can substitute the
complete Mie scattering solution inside the sphere to get an
exact value of the total dipole p(ûout).

APPENDIX B: ELECTRIC FIELD INSIDE
DIELECTRIC PARTICLES

In the mRGD, and WKBA approximation, we only correct
the phase of the field inside the scattering material. The field
amplitude is kept unchanged. Even for a moderate index con-
trast, this assumption is not always well fulfilled. For small
particles k � R (in the Rayleigh limit) one should use the
electrostatic result E = 3

m2+2 E0 [22]. The latter is also respon-
sible for the drop of the zero angle Mie differential SCS for
kR less than two observed in Fig. 2. However, for |m − 1|,
|m − 1| � 0.4 and kR � 1, the inner field amplitude is close
to the incoming one, as assumed in our model [22].

APPENDIX C: PREPARATION OF COLLOIDAL
PARTICLE CLUSTERS

As described earlier in Ref. [36] we synthesize polystyrene
colloidal particles by standard surfactant-free polymerization
using 4-vinylbenzene sulfonate as an ionic comonomer. From
static light scattering (SLS), the average diameter of the
spheres is 348 nm with a typical polydispersity of 5%. We
prepare particle clusters using a solvent-drying method. For
this purpose, we add about 20 μL of aqueous particle dis-
persion with a volume fraction of 1% to 1 mL of anhydrous
decanol. We obtain a water/particle-in-oil emulsion using a
vortex mixer at 2700 rpm for 20 seconds. Since water is spar-
ingly soluble in decanol, the droplets shrink rapidly, leading
to the formation of solid spherical clusters. We purify the
clusters by centrifugation and redispersing them several times
in isopropanol. In a final step, we replace the isopropanol by
purified water. We add a 5 mM KCl electrolyte to stabilize the
clusters against aggregation. We determine the mean size and
cluster size distribution by image analysis based on scanning
electron microscopy images (SEM).

APPENDIX D: STATIC LIGHT SCATTERING
EXPERIMENTS

As described earlier in Ref. [36] we acquire experimental
differential cross-sectional data by static light scattering (SLS)
with a commercial scattered light spectrometer-goniometer
(LS Instruments, Fribourg, Switzerland) operating at a laser
wavelength of λ = 660 nm and covering scattering angles θ

from 15◦ to 150◦. For the calibration of the absolute scale data,
we use toluene.
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