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Abstract

Squeal noise of rail-bound vehicles frequently occurs in curves with a small radius and is a major nuisance for
transport users and local residents. For the quantification of squeal intensity, a complete vibro-acoustic analysis is
developed in this paper. This complete analysis requires time-domain analysis able to introduce non linearities lead-
ing to obtain dynamic saturation at the contact zone and a computation of sound radiation of the whole system. For
time-domain analysis, a finite element (FE) formulation around the stationary position in an Eulerian reference frame
is derived with a fine discretization of the contact surface combined with unilateral and Coulomb friction laws. Appro-
priate numerical techniques and reduction strategies are then used in order to solve the non linear discrete equations in
dynamic self-sustained conditions. Both the transient approach and linear stability analysis are carried out. For sound
radiation calculation, the contact forces calculated from wheel/rail contact model are then used for the calculation of
squeal noise by using a coupled fluid-structure resolution based on boundary element method for the acoustic part and
finite element method for the structural part. Results are first discussed in terms of unstable modes which are consis-
tent between transient and stability analysis. Transient calculation shows that the apparent global friction coefficient
during stick-slip cycles is slightly smaller than the constant local friction coefficient, and a dynamic saturation curve
with hysteresis considerably different of the quasi-static curve. Finally the sound radiation calculation showed that the
sound power radiated from the wheel is dominant with harmonics coming from the contact non linearities.

Keywords: Curve squeal, Wheel/Rail contact, Finite element method,stability analysis, Time-domain (transient)
analysis.

1. Introduction

Curve squeal is a type of railway noise which is highly occurred when tramway or subways come in a tight radius
curve (radius lower than 200m [1]). It is well accepted that the high lateral slip of the wheel on the rail-head is the
main cause of curve squeal [2–4]. The friction forces generated by this sliding motion may lead to structural instability.
Self-sustained vibration of the wheel/rail system is then developed leading to squeal. This noise is characterized by5

high sound pressure levels (130 dB at 0.9 m from the wheel) at pure medium and high frequencies. The majority of
measurements described by Rudd [2], Vincent et al. [4], Koch et .al [5] show that the wheel radiates at frequencies
close to the natural frequencies of axial modes with zero nodal circle. However, squeal is occasionally observed at
frequencies close to the natural frequencies of axial and radial wheel modes [6]. In addition, the highest noise level
is often radiated by the inner leading wheel and rarely on the outer wheel [6]. Unlike rolling noise, the modeling of10

curve squeal noise is less advanced because it has to take into account highly frequency dynamic events (stick/slip) at
the contact zone during squeal. For a ”quantitative” vibro-acoustic model, it requires firstly a time-domain analysis,
which can describe nonlinear events leading to obtain dynamic saturation at the frictional rolling contact zone and then
a computation of sound radiated from the wheel and the rail.

Contact models, which allow for the description of phenomena at wheel/rail contact zone, are essential for all curve15

squeal models. It exists several models based on analytic formulas or heuristic laws allowing for the determination of
contact forces. In quasi-static condition (no dynamic), they are Hertz theory [7] for the normal problem and Kalker
linear theory [8], Vermeulen and Johnson model [9], Shen et al. model [10] or Chopaya law proposed by Ayasse
et al. [11] for the tangential problem. In dynamic condition, Gross-Thebing [12] proposed a law in which the low
frequency creep force - creepage law is represented by a damper to which a spring is introduced in series to simulate20

the high frequency transient effects. For rolling noise, Hertz theory and Gross-Thebing’s law are used and perform
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well in comparison with experimental results [13, 14]. However, these laws are only applied for relatively small
amplitudes and creepage. These quasi-static models may not be sufficient well to estimate curve squeal characterized
by high nonlinear phenomena (stick/slip) and high creepage occurring at the contact zone. On the other hand, by using
Kalker’s discretized contact models such as simplified theory [15] in [16–18] or variational theory [8] in [19–22], the25

impact of some simplifications (Boussinesq and Cerruti elastic half-space assumptions, contact/friction decoupling)
rather unknown in the case of high frequency dynamics and very fast evolutions at the contact zone. The modeling of
wheel/rail rolling contact by the finite element (FE) method has been recently developed. The majority of wheel/rail
FE contact models are performed within a Lagrangian frame [23–26]. They are in good agreement with Hertz theory
and CONTACT software based on Kalker’s variational theory [8] in both normal and tangential solutions in a quasi-30

static state. However, nonlinear transient FE simulations with frictional contact still remain very expensive in terms
of CPU time and memory size because the potential contact area in the rolling direction needs to be meshed with
elements of sufficient small size to insure the desired precision. To reduce the computational time, a finite element
(FE) computational method for the dynamics of frictional rolling contact systems in an Eulerian reference frame
was developed in [27]. Continuous equations of the problem are derived around the stationary position of rolling in35

an Eulerian reference frame. This approach allows for the large model reduction because the potential contact zone
become very small in comparison with those in Lagrangian frame. Moreover, in order to obtain reasonable computation
times, reduction strategies were also proposed in [27]. This model finally allows both transient and stability analyses
to predict unstable frequencies and full spectrum of friction-induced vibrations. The results of the quasi-static analysis
show a good agreement with the ones obtained with Kalker’s variational theory (implemented in CONTACT software)40

and analytical laws. Concerning the performance of the reduction strategies, the contact static approximation performs
well for the reduction of computational time but still ensures the desired precision. In an unstable configuration, results
of the time-domain analysis provided solutions which are coherent with the stability results.

Unlike contact models or friction characteristic, less attention has been paid for the computation of wheel/rail
sound radiation in curve. Considering that the sound radiated from the rail is very smaller than the sound radiated45

from the wheel in the squeal phenomenon [4], most of curve squeal models only calculate the noise radiated from the
wheel [17, 20, 21, 28–30]. Schneider and Popp [28] evaluated the radiated sound using the Rayleigh integral for a
baffled plate. Fingberg [29], Huang [17] and Zenzerovic [20, 21] used a combination of the boundary element method
(BEM) and modal expansion techniques. By using this technique, the sound power at a frequency is evaluated as a sum
of contributions from wheel modes. Techniques using in these models allow for the estimation of the sound radiated50

by the wheel. However, without the computation of the sound radiated by the rail, the contribution of rail to this noise
has been still unknown.

The aim of this paper is to develop a FE model for quantifying curve squeal. Considering that curve squeal is a
consequence of self-sustained friction-induced vibrations of the wheel-rail system, in the first part, a nonlinear time-
domain analysis allowing for the determination of these vibrations is developed in comparison with linear stability55

analysis. These analyses are based on the finite element contact model developed in [27]. The most performant
reduction basis including free-interface modes and residual static attachment modes (CSA) is used to reduce the
computational times. Models such as [2] consider that friction coefficient decreasing as a function of creep velocities
can generate instabilities of wheel/rail contact, acting as a negative damping introduced by the slope of creep/friction
curve. However recent works have shown that instabilities could also be obtained with a constant friction coefficient,60

associated to mode coupling [6, 19] and damping behavior of the track [31, 32]. Thus, it is introduced constant at the
local scale. Results are discussed and compared with those obtained with the point-contact model for both stability
and time-domain analysis. In the second part, the computation of sound radiation for both wheel and rail is performed
using the results of the time-domain analysis and based on the boundary element method (BEM). The contribution of
wheel/rail to this noise is evaluated quantitatively.65

2. Models for wheel/rail rolling contact and acoustic radiation

2.1. Statement of the problem
A wheel/rail rolling contact is described in Fig. 1. The z−axis coincides with the common normal to the two

surfaces in contact, the longitudinal x−axis corresponds to the rolling direction and the y−axis refers to the lateral
direction. The wheel rolling speed is V .70

In curve, three movements of wheel may happen [8, 33]: lateral sliding, longitudinal sliding or rotation around
their common normal (or spin) with relative velocities ∆Vy, ∆Vx and ∆Ωz respectively. ∆Vy can be approximated by:
Vα where α is angle of attack. As a result of these movements, the relative sliding instantaneous velocity (or creep
velocities) between the wheel and the rail at the contact interface in the Eulerian frame is given by [34] :

ṡx = vW
x − vR

x = ∆Vx − ∆Ωzy + V(
∂uW

x

∂x
−
∂uR

x

∂x
) + (u̇W

x − u̇R
x )

ṡy = vW
y − vR

y = ∆Vy + ∆Ωzx + V(
∂uW
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∂x
−
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Figure 1: Coordinate system, kinetic variables (α: angle of attack of the curve, ∆Vy: imposed lateral sliding velocity,
∆Vx: imposed longitudinal sliding velocity and ∆Ωz: imposed spin velocity)

where subscripts R,W denote respectively the rail and the wheel. The notation u̇ = ∂u
∂t refers to the time partial

derivative. u(x, y, z, t) and v(x, y, z, t) denote respectively the displacement and velocity fields of the structure. The
terms involving V ∂u

∂x represent the deformation contributions due to rolling in the Eulerian frame whereas the terms
involving u̇ simply represent the dynamic contributions.

2.2. Transient and stability analysis75

In order to evaluate the response of wheel/rail contact system excited by these creep velocities (Eq. (1)), the finite
element contact model developed and validated in [27] is adopted. Both transient and stability analysis are performed.
Local constant friction is assumed at the contact interface. For the time-domain analysis, non-smooth laws such as
Signorini’s unilateral law and Coulomb’s law to deal with frictional contact on the interface. These laws are written in
equivalent semi-regularized forms ([35]). Convective terms are neglected. The principle of virtual power is used for the80

system dynamics with contact laws written in weak forms. The integration scheme called ”modified θ−method” [36]
which allows to introduce nonlinearities (impact, stick, slip) is used to compute transient solutions. An iterative fixed
point algorithm on equivalent contact reactions and friction forces is used for the non linear resolutions for quasi-static
and dynamic solutions at each time step.

It must be noted for the following equations that M, K,C are the mass, stiffness and viscous damping matrix of85

the whole system. U, Rn and Rt denote respectively the vectors of nodal displacements, normal reactions and friction
forces. These nodal displacements, normal reactions and friction forces depend on the relative sliding instantaneous
velocity in Eq. (1) and friction coefficient. Their determination is presented in [27]. In order to reduce the size of the
system and the computational time for the nonlinear resolutions at each time step, the ”Contact static approximation”
which performs well for the reduction of computational time but still ensures the desired precision [27] is chosen in90

this study. The principle is to search an approximated solution U = Bqr of the problem spanned by a reduced basis B,
leading to a reduced dynamics equation. B is a composed of free-interface normal modes Φ enriched by static residual
attachment modes Φ̃s which can be written:

Φ̃s = Φs −Φ(ΦTKΦ)−1ΦTPc
T (2)

where Pc
T = [Pn

TPt
T] and Pn,Pn are matrices allowing to pass the contact reactions from the local relative frame to

the global frame. Φs is the static displacement responses to unit contact reactions e.g. attachments modes such as:95

KΦs = Pc
T. Hence, Φ̃s corresponds to attachment modes after the elimination of the contribution of normal modes.

Using basis B = [Φ Φ̃s] together with the elimination of the dynamic terms relating to the residual attachment
modes Φ̃s, this reduction strategy consists of two steps: global step by solving the global dynamics using free-interface
normal modes (Eq. (3)) and local step by adding a local static residual flexibility controlled by matrix Φ̃

T
s (Eq. (4)) in

the expression of the contact displacements:

ΦTMΦq̈ + ΦTCΦq̇ + ΦTKΦq = ΦT(F + Pn
TRn + Pt

TRt) (3)

Φ̃
T
s KΦ̃sqs = Φ̃

T
s (F + Pn

TRn + Pt
TRt) (4)

where q and qs are the generalized coordinate vectors corresponding respectively to normal modes and residual at-
tachment modes such that U = Φq + Φ̃sqs.

In parallel with time-domain analysis, stability analysis is carried out around full sliding equilibriums in order to
predict unstable modes. The linearization of the non-linear equations around the equilibrium leads to a constrained100

non symmetric eigenvalues problem. Complex modes are then computed. Modes corresponding to complex eigen-
values λ with positive real part are unstable. The divergence rate of a complex mode is defined as <(λ)/=(λ) where(
<(λ),=(λ)

)
are respectively the real and imaginary parts (pulsation) of the mode. The same reduction technique is
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used for the stability analysis but considering residual attachment modes Φ̃s defined on the effective contact region at
the quasi-static equilibrium, leading to the following eigenvalue problem in Eq. (5):105 (

λ2ΦTMΦ + λΦTCΦ + ΦT(K + Kc)Φ
)

q̃ = 0 (5)

where Kc = (P̃T
n + µP̃T

t )
(
InΦ̃

T
s (P̃T

n + µP̃T
t )

)−1
P̃n is a non-symmetrical matrix taking into account the effects of the

frictional forces. µ is friction coefficient. P̃n, P̃t are new projections matrices on nodes in the effective contact region
at equilibrium. In is the boolean localization matrix such that P̃n = InP̃c with P̃c = [P̃T

n P̃T
t ]. This stability analysis

then consists in solving the global dynamics using free-interface modes in Eq. (5) coupled by a local static residual
stiffness controlled by matrix Kc.110

2.3. Calculation of the squeal noise radiated by a railway system: wheel/rail/sleepers

The methodology used for the calculation of the sound radiated by both wheel and track has been developed by ESI-
Group. Compared to rolling noise simulation [1], where the contact forces are related to the roughness of the rail and
the wheel contact surfaces, in the case of squeal noise, the origin of the forces is the alternation of (stick/slip) phases in
the contact zone, which can be predicted by a nonlinear mechanical simulation in the time domain as described before.115

The vibro-acoustic simulation uses these contact forces as an input to compute, in the frequency domain, the acoustic
power radiated by one of the three system: (1) the wheel, (2) the two rails and (3) the sleepers.

Assuming the three systems to be linear, the acoustic power radiated by one system (i), noted W i
a, can be expressed

as a quadratic form of the two contact forces ( f y, f z), such as:

W i
a = [ fy fz]∗

[
Hi

ayy Hi
ayz

Hi
azy Hi

azz

]
[ fy fz]T (i=1,2,3...: wheel, rails, sleeper...) (6)

where Hi
a is the (2x2) matrix containing acoustic transfer functions, with unit (W/N2) and ()∗ states for complex120

conjugate operation. In this study, the extra-diagonal terms of the acoustic transfer matrix that represent the cross-
correlation terms between acoustic pressure and velocity are neglected. This means that the power radiated is the
summation of the power due to the lateral force with that due to the vertical component. Also, it is assumed that
the vibration on the three systems wheel/rails/sleepers are uncorrelated one from the other, and therefore the total
acoustic power Wa is given by the simple summation: Wa =

∑
(i=1:3) W i

a. Force spectrum is obtained by using Fourier125

transformation for stationary temporal forces (limit cycle) as presented in section 3.4.3
For each system, the acoustic power is computed by using a coupled fluid-structure approach based on a Bound-

ary Element Method (BEM) [37] for the acoustic part and a Finite Element Method (FEM) for the structural part.
Considering the wheel for example, it is meshed with solid elements for the structural analysis, whereas the BEM
mesh is a surface mesh corresponding to the external skin of the wheel. The degrees of freedom in the simulation are130

respectively the acoustic pressure (P) at the nodes of the BEM mesh and the displacement vector w = (wx,wy,wz) at
the nodes of the structural mesh, and these are solution of the following symmetric linear system [38][

K − ω2M − ρω2A B + C/2
BT + CT/2 −D/(ρω2)

] (
w
P

)
=

(
F − Fa

Sa

)
(7)

where K,M are the stiffness and mass matrices of the structure. D(ω) is the acoustic admittance BEM matrix. A(ω)
is the pseudo-added mass matrix due to the fluid. B(ω) is the BEM coupling matrix. C is the FEM coupling matrix.
Sa,Fa: acoustic source and force vectors. F : mechanical force vector. ω = 2π f is the pulsation of the problem with f135

the frequency (Hz).
A modal approach also is used for the structure in order to reduce the size of the system. Once the linear system in

Eq. (7) is inversed, the acoustic power is obtained by performing the following surface integral on the BEM mesh:

W i
a =

∫
S

1/2<(PVn)dS (8)

where P is the acoustic pressure field and Vn the normal velocity field, both defined on the external skin of the
wheel. The (normal) velocity field on the skin of the structure is classically related to the (normal) displacement by:140

Vn = iωwn. <(•) denotes the real part of (•). This vibro-acoustic simulation also gives the opportunity to extract
(for the excitation at hand) the radiation efficiency indicator, which tells about the capacity of the system to transform
vibration into acoustic power. This indicator, noted σ, which usually tends to the unity value for high frequencies, is
given by:

σ =
Wa

S ρC〈Vn〉2
with 〈Vn〉

2 =
1

2S

∫
S
|〈Vn〉

2|dS (9)
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3. Application to wheel/rail dynamics in curve145

In this section, an application of the numerical method presented in the previous sections is proposed for a
wheel/rail model in rolling contact with imposed lateral creepages as in a curve squeal situation.

3.1. Wheel/Rail models

The wheel/rail models considered in [32] are used in this paper. The wheel FE model corresponds to a standard
steel monobloc wheel with nominal rolling diameter of 920 mm and a mass of 314 kg (Fig. 2). From this model, 100150

free-interface modes have been calculated up to 8000 Hz considering clamped boundary conditions at the hub. 3 kinds
of mode may be distinguished: the radial modes (r, n), the axial modes (a,m, n) and the circumferential modes (c,m)
where n is the number of nodal diameters and m is the number of nodal circles [1]. Modal damping factors are chosen
depending on the nodal diameters (1, 0.1 and 0.01% for n = 0, n = 1 and n ≥ 2 respectively, cf. [1]).

Z

0
x

rigid constraint

(a) XOZ plan

Z

Y

0

(b) YOZ plan

Figure 2: Wheel FEM mesh (wheel of type ”Vyksa BA005” with a nominal rolling diameter of 920 mm and a mass
of 314 kg) with a rigid constraint applied at the inner face of the hub, where the wheel is connected to the axle.

The track FE model consists in one periodically supported rail of UIC60 type as used in [32]. This rail is 48 m155

long. The space between the sleepers (sleeper span) is 60 cm. The FE track model is made of 200000 quadratic
elements and 600000 DOFs. As a first approach, the dynamics of the sleepers and the ballast is neglected because of
its rather low frequency domain. The rail has 48 m length but ends with 2 anechoic terminations of 6 m composed of
5 rail portions of length L = (0.6; 0.6; 0.6; 1.2; 3.0) m with increasing damping, avoiding the return of waves. The
track support contains only elastic pads that connect the rail and each sleeper. They are modeled by 69 springs of160

longitudinal, lateral and vertical stiffnesses (Kx = Ky = 36,Kz = 180) MN/m for each sleeper. The contact position is
in the center of the rail in the x−axis. The rail structural damping is η = 0.02. An equivalent viscous damping model is
derived from structural damping factors of 0.02 for the rail, 1 for the pad and 0.1 to 1 for the rail anechoic terminations
[39].

Y

X

Figure 3: FE model of the wheel with fine mesh on the contact zone

For both wheel/rail models, the contact zone is meshed with elements size of 1mm (Figs. 3 and 4). To validate this165

mesh, result is compared with that obtained from analytical models in quasi-static condition [27].

3.2. Results of the stability analysis

In this section, the results of the stability analysis of the wheel/rail system for the reference case is firstly presented.
The bifurcation curves (effect of friction coefficient) then allow to analyze the influence of the discretization of the
contact zone on instabilities.170
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Figure 4: FE model of the rail with fine mesh on the contact zone

3.2.1. Reference case analysis
The reference case with the kinematic parameters listed in Table 1 is considered in this section. Results of the

stability analysis is carried out in case of full lateral sliding using a higher creepage syo = ∆Vy/V = 1%. In order to
solve the non symmetric eigenvalue problem, the reduction strategy presented in Eq. (5) (contact static approximation)
is performed. Four unstable modes with positive real part are obtained as listed in Tab. 2. The corresponding unstable175

mode shapes are shown in Fig. 5. As for the point-contact model [32], there are 3 axial wheel modes with (2,3,4)
nodal diameters and zero nodal circle involved in the first three unstable modes and some axial and radial wheel
modes involved in the fourth unstable mode. The predictions are in good agreement with general experimental results
[4] which showed that the main squeal frequencies are close to natural frequencies of axial modes with zero nodal
diameter.180

The corresponding frequencies are almost the same between the two models whereas the divergence rates are
higher for the surface-contact model.

Rolling velocity V (m/s) 10
Imposed lateral velocity of the wheel Vy (m/s) 0.1

Friction coefficient µ 0.3
Static vertical load N 70000 N

Table 1: Kinematic parameters of the wheel/rail rolling contact model

Point-contact model Surface-contact model
UF (Hz) Real part Wheel modes UF (Hz) Real part Wheel modes

334 4.0 (a,0,2) 334 5.11 (a,0,2)
918.3 8.0 (a,0,3) 917.9 9.55 (a,0,3)
1671 1.0 (a,0,4) 1670 1.0 (a,0,4)
3418 1.38 (a,0,6), (r,5) and (a,1,1) 3417 2.73 (a,0,6), (r,5) and (a,1,1)

Table 2: Stability results obtained with both point-contact and surface-contact models in the reference case (UF:
unstable frequency)

(a) Mode (a,0,2) (b) Mode (a,0,3) (c) Mode (a,0,4) (d) Mode (a,0,6)

Figure 5: Unstable mode shapes

3.2.2. Bifurcation curves
The bifurcation curves of the unstable complex modes are represented in Fig. 6 in comparison with the results

obtained with the point-contact model [32]. The critical friction coefficients above which the complex modes become185

unstable are respectively equal to 0.06, 0.1, 0.22 and 0.3. Fig. 6 shows also that with or without discretization of the

6



contact area, the unstable frequencies are almost identical (difference < 2Hz). However, the divergence rates of the
unstable modes are higher for the surface contact model than for the point contact model due to the difference between
the Hertz’s stiffness kH in [7] and the FE local stiffness matrix (Kc in Eq. (5). An ”equivalent” average FE stiffness
k f e can be calculated, equal to the sum of all terms of (InΦ̃

T
s (P̃T

n + µP̃T
t ))−1. Stiffness k f e is found to be 1.19 times190

larger than Hertz’s stiffness kH . On the other hand, the form of the bifurcation curves of each unstable mode obtained
with the surface-contact model is similar to that obtained with the point-contact model. It can be conclude that the
instability mechanisms are similar for the two models. As found in [32], the first three unstable modes are due to
equivalent damper behavior of the rail whereas the fourth unstable mode results from a mode coupling instability.
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Figure 6: Bifurcation curves of the unstable modes obtained with the FE model (solid line) and point-contact model
(dotted line)

The above results show that for stability analysis, the discretization of the contact zone does not modify sub-195

stantially the instability mechanisms. However due to a stronger coupling between the normal contact DOFs, the
divergence rates of the unstable modes are greater for the surface-contact model than for the point-contact model.

3.3. Results of the time-domain analysis

From the stability analysis of the wheel/rail contact performed in the previous section, four unstable modes are
obtained. However, stability analysis does not allow to introduce nonlinearities and determine the amplitude and full200

spectrum of the friction-induced vibration. The aim of this section is to perform time-domain analysis in order to
compare these analyses, especially in the case of several unstable modes and to test the influence of some parameters.

3.3.1. Reference case analysis
Results of the time-domain analysis corresponding to the unstable case founded in the previous section are deter-

mined using a numerical time integration from given initial conditions. In all the following results, the integration205

starts from the equilibrium i.e. the initial displacements are the displacements obtained from the quasi-static solution
and the initial velocities are null. The parameters V = 10 m/s, µ = 0.3 and syo = ∆Vy/V = 1% are used. The time step
for the integration is ∆t = 1µs.

The time series of the lateral velocity of a point outside the contact zone is presented in Fig. 7a. The spectrogram in
Fig. 7b allows to observe which frequencies are present in the solution and when they appear. At the beginning of the210

simulation, there are two major frequencies: 334 and 919 Hz which are very close to the natural frequencies of the two
first unstable modes provided by stability analysis. In the stationary step, where nonlinear events happen, the dominant
frequency is fo = 919 Hz and its harmonic frequencies fk = k fo appear. This dominant frequency corresponds to the
unstable mode with the greatest positive real part (Tab. 2).

Fig. 8a shows the time series of the lateral contact resultant forces Ft. The tangential resultant force increases215

until a pronounced creep/slip oscillation builds up as shown in Fig. 8b. When the tangential contact resultant force is
smaller than the traction bound µFn, a transient stick zone appears at the leading edge of the effective contact region
as shown in Fig. 9.
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Figure 7: Tangential velocity of a point outside the contact zone
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The status of the contact points at the time steps marked with Arabic numerals is represented Fig. 9
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The apparent global friction coefficient which is defined as a ratio between the resulting tangential and normal
contact force is represented in Fig. 10. This coefficient varies between 0.2958 corresponding to a partial slip state and220

0.3 corresponding to the full slip state. It is clear that the average global friction coefficient during these stick-slip
cycles is lightly smaller than the constant local friction coefficient. Thus, the decrease of the global friction coefficient
could be interpreted as a consequence (and not a cause) of the friction-induced vibrations.
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Figure 10: Apparent global friction coefficient

By neglecting the term ∂u
∂x in Eq. (1) representing the deformation contributions due to rolling in the Eulerian frame,

the global dynamic lateral creepage can be defined as:225

syd = syo +
1
V
∂uy

∂t
(10)

where ∂uy

∂t is the averaged lateral dynamic velocity in the effective contact zone. The dynamic saturation curve is
defined as the relation between the dynamic tangential resulting contact force and the global dynamic lateral creepage.
The curve is represented in Fig. 11 in comparison with some quasi-static point-contact models. An hysteresis curve
is obtained with the full FE model. This curve is considerably different of quasi-static saturation curve. A possible
explanation is that the quasi-static models do not take in account the lateral contact stiffness which is a key parameter230

at high frequencies [1, 40, 41].
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Figure 11: Dynamic saturation curve. The contact status at points marked with Arabic numerals is represented Fig. 9

These results of the this reference case show a consistence with the results of the stability analysis and exhibit
localized stick/slip oscillations in the contact zone as in [19]. The influence of parameters on final limit cycles are
analyzed in following sections.

3.3.2. Influence of imposed lateral creepage235

Time-domain analysis is performed with syo% varying from −0.9% to 0.9% while other parameters in Tab. 1 as
well as initial conditions are maintained constant. Friction-induced vibrations are only obtained with syo >= 0.5%
(Tab. 3), which corresponds to the full sliding state of the contact zone between inner wheel and rail. Besides, results
of the stability analysis does not show instabilities for contact between outer wheel and rail (syo < 0) . These results
are in good agreement with experimental observations in [4] which showed that squeal is mainly observed near the240

inner wheel.
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syo -0.9% -0.8% -0.7% -0.5% -0.4% 0.4% 0.5% 0.7% 0.8% 0.9%
friction-induced vibrations 0 0 0 0 0 0 x x x x

Table 3: results of the time-domain analysis obtained with difference imposed lateral creepage (0: no friction-induced
vibrations, x: stick-slip limit cycle)

3.3.3. Influence of friction coefficient
To study the influence of friction coefficient, time-domain analysis is performed with friction coefficient µ = 0.4

and other parameters in Tab. 1 as well as initial conditions are maintained constant. For reference purposes, stability
analysis gives the unstable frequencies and corresponding type of unstable modes shapes in Tab. 4.245

UF (Hz) Real part Wheel modes
334 7.3 (a,0,2)

917.9 13.9 (a,0,3)
1670 2.05 (a,0,4)
3417 16.8 (a,0,6), (r,5) and (a,1,1)

Table 4: Stability results obtained with surface-contact model for µ = 0.4 (UF: unstable frequency)

The time series and the spectrogram of the lateral velocity of a point outside the contact zone is presented in
Fig. 12. At the beginning of this simulation, there are three major frequencies whose amplitude increases: 330, 920
and 3430 Hz which are very close to the frequencies of the three unstable modes with the greatest real part. In the
second step where nonlinear events happen, there is competition between these modes. The first mode (330Hz) stops
its contribution in the solution. The two other modes continue to develop. In the final step, the frequency fo = 3430250

Hz and its harmonic frequencies fk = 2 fo become dominant. This dominant frequency corresponds to the unstable
mode with the greatest positive real part as shown in Tab. 4.
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Figure 12: Tangential velocity of a point outside the contact zone for µ = 0.4

From the results in these above sections, it seems that the dominant frequency in the limit cycle corresponds to
the unstable mode with the greatest real part. However, Loyer et al [36] showed that in the case with several unstable
modes, different limit cycles can be found depending on initial conditions. On the other hand, for the modeling of255

curve squeal, little existing models have discussed about the influence of initial conditions on final limit cycle. This
influence has been considered (not detailed in the paper) and exhibits that, also for the modeling of curve squeal, initial
conditions act on the limit cycle and dominant frequencies. It also modifies the amplitude of the saturation curve but
does not change the profile of the dynamic response.

3.4. Sound radiated by a railway set wheel/rails/sleepers260

3.4.1. Numerical FE models for vibro-acoustic simulation
In terms of geometry, the FE model used for the vibro-acoustic simulation is similar to the one used previously for

the mechanical squeal simulation, but the level of detail requested is not as high especially in the contact area. The
average mesh size (∼5cm for the track, ∼1.5cm for the wheel) is ruled by a classic quarter wavelength criterion. It
enables to properly model the wave propagation up to 6kHz for both systems. The FE model of the track presented265

Fig. 13 is made of 2 rails and 46 sleepers. It is 21.6m long. Due to the symmetry of the track along the rail X-axis, only
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half of the track is modeled and special boundary conditions are applied in order to properly simulate the complete
track behavior, whose initial length is 43.2m. The track is attached to the ground by a set of damped springs and a 6
meters anechoic termination has been added in order to minimize the reflecting waves in the rails. The mesh contains
245988 nodes and 55560 solid elements. The acoustic mesh corresponds to the skin of the track. It is obtained by a270

surface coating operation and it contains 42666 nodes and 81882 surface elements. An infinite rigid acoustic plane is
added bellow the track in order to simulate the wave reflection of the rigid ground made of concrete.

Figure 13: Finite Element model of the track used for vibro-acoustic simulation

3.4.2. Acoustic transfer function results and radiation efficiency results
When exciting each system individually with a unit force in vertical or lateral direction, this enables to extract the

acoustic transfer function, defined as the ratio between the acoustic power radiated by the system, and the squared275

force amplitude as defined in Eq. (8). Fig. 14a depicts the acoustic transfer functions obtained for the track (rails and
sleepers) considering the vertical force only, and Fig. 14b the acoustic transfer functions of the wheel for both load
cases lateral and vertical. For this excitation, the power radiated by the rails is clearly higher than the one radiated by
the sleepers, once the decoupling frequency ( f ≈ 300 Hz) between rails and sleepers is passed. This cut-off frequency
is driven by the stiffness of the springs placed between the rails and the sleepers and the masses at hand. On Fig. 15a280

is compared the radiation efficiency of the rail obtained with the current BEM-coupled 3D method, and the analytical
result obtained for an equivalent infinite cylinder with a radius R= 8.6 cm moving as a rigid body in lateral direction
[1]. A good correlation between both results is observed especially at low frequencies.

For the wheel (Fig. 14b), the radiated power in both directions exhibits lots of sharp peaks at eigenfrequencies
of the wheel, whose amplitude is only controlled by the structural damping. The damping values retained for the285

simulation are quite weak (10−3, 10−4) and depends on the azimuth order of the mode, as suggested in reference [1].
Bellow 1kHz, the lateral force clearly produces more acoustic power than the vertical one. The radiation efficiency
of the wheel depicted Fig. 15b, shows values close to one around the first axial mode (a,0,0) near 228 Hz, but also
for frequencies greater than 500 Hz. It can be noticed that the mode at 336 Hz does not radiate that much, because
for circumferential modes with even order (m=2,4,..) acoustic contributions tend to cancel each other. The results in290

terms of transfer function (in particular the peaks corresponding to resonances for the wheel) and of radiation efficiency
(radiation efficiency close to 1 from 1000 Hz) are not surprising. The same results can be found as for rolling noise
[1] since they are independent of the excitation.

3.4.3. Squeal acoustic power results
The nonlinear mechanical analysis for the reference case performed previously produces squeal contact forces as295

time signals ( fy(t), fz(t)). These have to be transformed from the time domain into the frequency domain in order to be
combined with the acoustic transfer functions previously computed. This is done by performing a Fourier transform
of the time signals, with a proper normalization, resulting in force Power Spectral Densities (PSD) ( f 2

y (ω), f 2
z (ω)),

with unit (N2/Hz). Fig. 16a represents an example of force time signals ( fy(t), fz(t)) for a flexible rail configuration
with imposed lateral creepage syo = 1%. The graph represents a time slot of T = 0.01 s, but the total signal duration300

processed is T = 0.1 s and the sample frequency is Fs = 106 Hz. Both signals obviously look periodic. The force
level in vertical direction is 13dB higher than the one in lateral direction, but less harmonic distortion is observed
for this signal which looks like a pure tone. In the frequency domain, the force PSDs presented Fig. 16b exhibit a
fundamental frequency at f = 920 Hz and regularly spaced harmonics at frequencies: 1840, 2760, 3680 Hz,... Like
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Figure 14: Acoustic transfer functions (W/N2) for the track (rails and sleepers) and the wheel in the frequency range
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self-sustained vibrations due to the unstable dynamic behavior of mechanical systems with friction such as brake305

squeal [42–44], the excitation due to curve squeal is clearly different from that of the rolling noise [1]: there is a
fundamental frequency which corresponds to a resonance and harmonics which do not correspond to resonances of
the wheel. The fundamental frequency is close to unstable frequency found in stability analysis, which is also close to
natural frequency of the wheel. These harmonic frequencies result from nonlinear events during squeal. The frequency
range of the excitation being mainly greater than 1000 Hz, one may almost use a radiation efficiency equal to 1 and do310

without the vibro-acoustic calculation to make an approximate estimate of the radiated power levels.

F
o
rc

e
-Y

 (
N

)

Time (s)

F
o
rc

e
-Z

 (
N

)

200

0

-200

1000

-1000

0

0.020.01 0.015

0.020.01 0.015

LFz= 52.5 dB(N)

LFy= 39.6 dB(N)

(a) time signals
Frequency (Hz)

P
S
D

(d
B
 r

e
. 

1
e
-1

2
 W

/H
z
) LFy= 39.6 dB(N)

LFz= 52.5 dB(N)

0 2000 4000 6000 8000

50

40

30

20

10

0

-40

-30

-20

-10

(b) PSD

Figure 16: Force time signals fy(t) and fz(t) as well as their PSDs, ( syo = 1%)

The simple multiplication of the force PSD by the acoustic transfer functions (and the summation for both forces)
as reported in Eq. (7) leads to the acoustic power PSD (W/Hz) for the different systems. The strong excitation level
at fundamental frequency 920Hz and harmonics are retrieved as peaks in the final power PSD spectra presented in
Fig. 17a. The global acoustic power level L=121.3dB is fully dominated by the wheel. At 920Hz, the high response315

level can be obviously explained by the fact the force excitation level at that frequency is high, but also by the fact the
order of the wheel mode excited (m=3) is odd, and therefore the transformation of the vibration into acoustic power by
the wheel is even more efficient. At 1837 Hz, no such coincidence occurs and the second peak in the response simply
corresponds to the second harmonic in the excitation signal. For a lower imposed lateral creepage syo = 0.5%, the force
excitation levels are 15-20 dB lower: (Fy, Fz) = (19.5, 36.8) dBN for syo = 0.5% whereas (Fy, Fz) = (39.6, 52.5) dBN320

for syo = 1%, but the general shape of the force PSD are still the same, with a fundamental at 920 Hz plus harmonics.
The acoustic power radiated by the wheel (Fig. 17b) consequently is also ( 17 dB) lower: L=103.9dB against L=121.3
dB.
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Figure 17: Acoustic power PSD for wheel, rails and sleepers

4. Conclusion

In this paper, a model for wheel/rail frictional rolling contact in curve is developed. For rolling contact model,325

a FE model developed and validated in [27] is adopted. The reduction basis including the free-interface modes and
static residual flexibility modes is used in order to reduce the computation loads and times. Time-domain analysis
is also performed in order to determine the amplitude and full spectrum of the self-sustained vibrations in curve.
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results of the time-domain analysis are used to compute the sound radiation of wheel and rail. Stability analysis is
performed in comparison with the results obtained with the point-contact model in order to highlight the influence of330

the discretization of the contact zone on the instability mechanism and intensity.
The stability results show that the discretization of the contact zone does not modify the instability mechanisms.

However, due to a stronger coupling between the normal contact DOFs, the divergence rates of the unstable modes are
greater for the surface-contact model than for the point-contact model.

The results of the transient calculation are consistent with the results of the stability analysis and exhibit localized335

stick/slip oscillations in the contact zone. The apparent global friction coefficient during stick-slip cycles is slightly
smaller than the constant local friction coefficient. Thus, the decrease of the apparent global friction coefficient could
be considered as a consequence of the friction-induced vibrations. The dynamic saturation curve with hysteresis
obtained by the full FE model is considerably different of the quasi-static curve. This is probably due to the lateral
wheel/rail contact stiffness at high frequencies. Thus, it is necessary for the curve squeal point-contact models to take340

into account this lateral stiffness. Even when these predictions are in good agreement with general experimental results
in terms of squealing wheel or modes, the data will have to be validated experimentally.

Although the goal of the rail dynamic play an essential role for instabilities of wheel/rail contact system as found
in recent works [18, 32, 45], the sound radiation calculation shows that the sound power radiated from the wheel is
clearly dominant especially at the peak corresponding to the fundamental frequency. Thus, the computation of the345

sound radiated by the wheel is enough sufficient to evaluated the squeal sound radiation.
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