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Sorbonne Université, CNRS, 75005 Paris, France 

 

*Corresponding Authors: 

Kong Ooi Tan 
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Abstract  

Polarization transfers are crucial building blocks in magnetic resonance experiments, i.e., they can 

be used to polarize insensitive nuclei and correlate nuclear spins in multidimensional NMR 

spectroscopy. The polarization can be transferred either across different nuclear spin species or from 

electron spins to the relatively low-polarized nuclear spins. The former route occurring in solid-state 

NMR (ssNMR) can be performed via cross polarization (CP), while the latter route is known as 

dynamic nuclear polarization (DNP). Despite having different operating conditions, we opinionate that 

both mechanisms are theoretically similar processes in ideal conditions, i.e., the electron is merely 

another spin-1/2 particle with a much higher gyromagnetic ratio. Here, we show that the CP and DNP 

processes can be described using a unified theory based on average Hamiltonian theory (AHT) 

combined with fictitious operators. The intuitive and unified approach has allowed new insights on the 

cross effect (CE) DNP mechanism, leading to better design of DNP polarizing agents and extending 

the applications beyond just hyperpolarization. We explore the possibility of exploiting theoretically 

predicted DNP transients for electron-nucleus distance measurements—like routine dipolar-

recoupling experiments in solid-state NMR. 

 

  



1 Introduction 

Polarization-transfer experiments play crucial roles in magnetic resonance spectroscopy. Not 

only do they enhance the sensitivity of the insensitive nuclei, but also allow distance measurement 

and, hence, structure determination in the system of interest. Two examples of such experiments are 

cross polarization (CP),[1] which facilitates polarization transfer via a spin-locking technique in solid-

state NMR, and dynamic nuclear polarization (DNP), which enables the transfer from unpaired 

electrons to nuclei mediated by strategic microwave (μw) irradiation.[2,3] The CP mechanism was 

first theoretically explained using a spin-thermodynamic approach,[1] which predicts an exponential 

time dependence of nuclear polarization during the buildup. However, the semi-classical treatment 

was then shown to be inconsistent with the observation of transient oscillations in a ferrocene single 

crystal—a phenomenon that was accurately described using the product-operator formalism that 

adopts a quantum-mechanical approach.[4,5] Transient oscillation was exploited in many NMR 

experiments to measure the distance between nuclear spins accurately.[6–8] 

Although an analytical theory has long been developed for explaining DNP mechanisms, in 

particular, solid effect (SE) and cross effect (CE),[9–11] they are primarily adapted for cases when 

energy-level transitions are saturated with low-power continuous-wave (CW) microwaves. In such 

situations, perturbation theory is applied to theoretically describe the nuclear polarizations during DNP. 

[12–15] Nevertheless, we expect such a treatment to be less appropriate when strong μw powers are 

applied. For instance, it might fail to describe transient oscillations, a common phenomenon in many 

polarization-transfer experiments, due to poor convergence to exact numerical solutions.[4] Therefore, 

there is a need to review the DNP theory that applies to high-power μw conditions. Microwave 

instrumentation has been rapidly developing since the commercialization of magic-angle spinning 

(MAS) DNP and dissolution DNP (D-DNP) spectrometers.[16–18] With this rapid progress, high-field 

pulsed DNP spectroscopy [19] may become available in the near future. 

In this work, we show that CP, NOVEL (Nuclear spin Orientation Via Electron spin Locking), SE, 

and CE (Fig. 1) can be explained with an analytical theory based on average Hamiltonian theory (AHT) 

combined with fictitious operators in subspaces.[20–23] We opinionate that DNP and CP are 



fundamentally similar processes in terms of spin physics in ideal situation, i.e., the relaxation rates 

are negligible and that both processes can be described using a unified theoretical framework. The 

exact analytical results obtained from the unified theory will shed new light on CE mechanism, which 

could help design better DNP polarizing agents, and further extend DNP applications beyond 

hyperpolarization, i.e., measuring electron-nucleus correlations, distances, and relative orientations 

for structure determination in biological molecules or materials. 

 

2 Theory 

2.1 Cross polarization (CP) 

We begin by first writing down the Hamiltonian of a two-spin 𝐼𝑆 system in the double rf rotating 

frame: 

 ℋ̂CP = 2𝑑IS𝑆̂z𝐼z + 𝜔1S𝑆̂x +𝜔1I𝐼x, (1) 

 

Fig. 1 Schematic diagrams of CP, NOVEL, SE, and CE pulse sequences and matching conditions. 

Note that the delay d=0 in conventional CW DNP experiments. For pulsed DNP settings, which are 

relevant for many experiments discussed in this work (vide infra), p + d would ideally be set to ~ 

1.3 T1e, and the repetition loop n will be optimized to attain optimal transfer. 



where 𝜔1S and 𝜔1I are the nutation frequencies of the 𝑆 and 𝐼 spin along the x-axes, respectively; 𝑑IS 

denotes the dipolar coupling between the two spins. The frame is then rotated with a propagator 𝑈t =

exp(−𝑖 (𝜋𝑆̂y + 𝜋𝐼y) 2⁄ ) so that the z-axis1 is now defined along with the rf fields: 

 

ℋ̂t = 𝑈t
−1ℋ̂CP𝑈t 

= 2𝑑IS𝑆̂x𝐼x +𝜔1S𝑆̂z + 𝜔1I𝐼z, 

(2) 

followed by another interaction-frame transformation using 𝑈1(𝑡) = exp(−𝑖(𝜔1S𝑆̂z + 𝜔1I𝐼z)𝑡): 

 

ℋ̂̃(𝑡) = 𝑈1
−1(𝑡)ℋ̂t𝑈̂1(𝑡) − (𝜔1S𝑆̂z + 𝜔1I𝐼z) 

= 𝑑IS(𝑆̂x𝐼x + 𝑆̂y𝐼y) cos(𝜔1S −𝜔1I)𝑡 + 𝑑IS(𝑆̂x𝐼y − 𝑆̂y𝐼x) sin(𝜔1S −𝜔1I)𝑡 

+𝑑IS(𝑆̂x𝐼x − 𝑆̂y𝐼y) cos(𝜔1S + 𝜔1I)𝑡 − 𝑑IS(𝑆̂x𝐼𝑦 + 𝑆̂y𝐼x) sin(𝜔1S +𝜔1I)𝑡. 

(3) 

Then, ℋ̂̃(𝑡) becomes time-independent if we apply 𝜔1S = 𝜔1I (Hartmann-Hahn condition) and AHT in 

the second step: 

 ℋ̂̃(𝑡) = 𝑑IS[(𝑆̂x𝐼x + 𝑆̂y𝐼y) + (𝑆̂x𝐼x − 𝑆̂y𝐼y) cos 2𝜔1I𝑡 − (𝑆̂x𝐼y + 𝑆̂y𝐼x) sin 2𝜔1I𝑡], (4) 

 

 ℋ̂̅ =
𝜔1I
𝜋
∫ ℋ̂̃(𝑡)
𝜋/𝜔1I

0

𝑑𝑡 = 𝑑IS(𝑆̂x𝐼x + 𝑆̂y𝐼y). (5) 

Note that the AHT treatment is valid if the chosen cycle time (𝜏𝑐 = 𝜋/𝜔1I) is short compared to ~2𝜋/𝑑IS. 

After that, the evolution of the initial density operator, 𝜌̂(0) = 𝑆̂z, in the spin-locked frame under ℋ̂̅ (Eq. 

5) can be computed using the Liouville von Neumann (LvN) equation: 

 𝜌̂(𝑡) = 𝑈CP𝜌̂(0)𝑈CP
−1 = 𝑆̂z cos

2(𝜔CP𝑡) + 𝐼z sin
2(𝜔CP𝑡) + (𝑆̂x𝐼y − 𝑆̂y𝐼x) sin(2𝜔CP𝑡), (6) 

where 𝜔CP = 𝑑IS/2 and 𝑈CP = exp(−𝑖ℋ̂̅𝑡). It is evident that the first two terms in Eq. 6 show that the 

polarization has been transferred from 𝑆̂z  to 𝐼z   the transfer was mediated by 𝑆̂x
Δ = 𝑆̂x𝐼x + 𝑆̂y𝐼y , a 

 
1
 Suppose we transfer the polarization from 𝑆 to 𝐼, the initial density matrix 𝜌̂(0) during spin lock changes from 

𝑆̂x to 𝑆̂z in the double rotating frame rotated by the propagator 𝑈̂t. The process of polarization transfer can be 

easier analyzed in this frame.  



familiar fictitious spin-1/2 operator in the ZQ subspace.[5] By realizing other fictitious operators—

including those in the ZQ and double-quantum (DQ) subspaces—and their commutator relations,
2
 

one can describe the transfer in a more compact form: 

 
𝑆̂z = 𝑆̂z

Σ + 𝑆̂z
Δ
2𝜔CP𝑆̂x

Δ

→     𝑆̂z
Σ + 𝑆̂z

Δ cos(2𝜔CP𝑡) − 𝑆̂y
Δ sin(2𝜔CP𝑡) 

→ 𝑆̂z
Σ − 𝑆̂z

Δ = 𝐼z if 𝑡 = 𝜋 (2𝜔CP)⁄ . 

(7) 

Thus, we have exemplified here that using the fictitious operators in AHT offers a simple yet insightful 

approach to understanding CP. Note that the realization and identification of these fictitious operators 

in the subspaces are important elements to describe DNP processes (vide infra). 

 

2.2 NOVEL 

NOVEL is often referred to as the CP-equivalent sequence in DNP due to their similar matching 

conditions,[20,24] i.e., the electron Rabi field, 𝜔1S, during spin-lock is set to match the nuclear Larmor 

frequency, 𝜔0I in NOVEL (Fig. 1b). The Hamiltonian of a two-spin electron-nucleus system during the 

spin-lock in the electron-rotating-frame is given by: 

 ℋ̂NOVEL = −𝜔0I𝐼z + 𝐴zz𝑆̂z𝐼z + 𝐴zx𝑆̂z𝐼x + 𝐴zy𝑆̂z𝐼y + 𝜔1S𝑆̂x, (8) 

where 𝐴zz and 𝐴zx(y) are the secular and pseudo-secular components of the hyperfine interaction. 

Then, a tilted-frame transformation using 𝑈s = exp(−𝑖𝜑𝐼z)  and 𝜑 = tan−1(𝐴zy 𝐴zx⁄ )  is performed 

along 𝐼z to obtain: 

 ℋ̂s = 𝑈s
−1ℋ̂NOVEL𝑈s = −𝜔0I𝐼z + 𝐴zz𝑆̂z𝐼z +𝐵zx𝑆̂z𝐼x + 𝜔1S𝑆̂x, (9) 

where 𝐵zx = √𝐴zx2 + 𝐴zy2 . Following a similar treatment shown in CP (section 2.1), a propagator 𝑈t =

exp(− 𝑖𝜋𝑆̂y 2⁄ ) is applied to set the electron z-axis along the μw spin-lock field: 

 
2
  Other ZQ operators are 𝑆̂z

Δ = (𝑆̂z − 𝐼z) 2⁄   and 𝑆̂y
Δ = 𝑆̂y𝐼x − 𝑆̂x𝐼y , and the relevant DQ operator here is 𝑆̂z

Σ =

(𝑆̂z + 𝐼z) 2⁄ . These operators obey [𝑆̂x
Δ, 𝑆̂y

Δ] = 𝑖𝑆̂𝑧
Δ and [𝑆̂x,y,z

Δ , 𝑆̂x,y,z
Σ ] = 0. 



 ℋ̂t = 𝑈t
−1ℋ̂s𝑈̂t = 𝜔1S𝑆̂z − 𝜔0I𝐼z − 𝐴zz𝑆̂x𝐼z − 𝐵zx𝑆̂x𝐼x, (10) 

followed by another interaction-frame transformation using 𝑈1 = exp(−𝑖(𝜔1S𝑆̂z − 𝜔0I𝐼z)𝑡): 

 

ℋ̂̃(𝑡) = 𝑈1
−1(𝑡)ℋ̂𝑡𝑈1(𝑡) − (𝜔1S𝑆̂z −𝜔0I𝐼̂z) 

   = −𝐴zz(cos𝜔1S𝑡 𝑆̂x − sin𝜔1S𝑡 𝑆̂y)𝐼z 

−𝐵zx(cos𝜔1S𝑡 𝑆̂x − sin𝜔1S𝑡 𝑆̂y)(cos 𝜔0I𝑡 𝐼x + sin𝜔0I𝑡 𝐼y). 

(11) 

Similarly, ℋ̂̃(𝑡) becomes time-independent if one sets 𝜔1S = ±𝜔0I and applies AHT in the second step: 

 

ℋ̂̃(𝑡) = −
𝐵zx
2
(𝑆̂x𝐼x ∓ 𝑆̂y𝐼y) 

     −
𝐵zx
2
[(𝑆̂x𝐼x ± 𝑆̂y𝐼y) cos 2𝜔0I𝑡 + (𝑆̂𝑥𝐼𝑦 ∓ 𝑆̂y𝐼x) sin 2𝜔0I𝑡] 

     −𝐴zz(cos𝜔0I 𝑆̂x𝐼z ∓ sin𝜔0I𝑡 𝑆̂y𝐼z). 

(12) 

 

 

ℋ̂̅ =
𝜔0I
2𝜋
∫ ℋ̂̃(𝑡)
2𝜋 𝜔0I⁄

0

𝑑𝑡 

= {
−
𝐵zx

2
(𝑆̂x𝐼x + 𝑆̂y𝐼y)  if 𝜔1S = −𝜔0I(ZQ)

−
𝐵zx

2
(𝑆̂x𝐼x − 𝑆̂y𝐼y)  if 𝜔1S = 𝜔0I (DQ)

. 

(13) 

Note that the AHT treatment is valid if 𝜔0I ≫ 𝐴zz, 𝐵zx, which is true for most DNP experiments at high 

fields. Also, one can obtain ZQ (DQ) effective Hamiltonian if the electron Rabi field is parallel 

(antiparallel) to the spin-locked electron spin. Then, similar to the treatment in CP, the initial density 

operator 𝜌̂(0) = 𝑆̂z evolves under either the ZQ or DQ effective Hamiltonian to become: 

 𝜌̂ZQ(𝑡) = 𝑆̂𝑧 cos
2(𝜔NOVEL𝑡) + 𝐼𝑧 sin

2(𝜔NOVEL𝑡) + sin(2𝜔NOVEL𝑡) (𝑆̂y𝐼x − 𝑆̂x𝐼y), (14) 

 

 𝜌̂DQ(𝑡) = 𝑆̂𝑧 cos
2(𝜔NOVEL𝑡) − 𝐼𝑧 sin

2(𝜔NOVEL𝑡) + sin(2𝜔NOVEL𝑡) (𝑆̂y𝐼x + 𝑆̂x𝐼y), (15) 

where 𝜔NOVEL = 𝐵zx 4⁄  denotes the NOVEL build-up rate, and that the DQ transfer has an opposite 

sign relative to the ZQ case. Although the sin2(𝜔NOVEL𝑡) term (Eq. 14) implies transient oscillations 

as in CP, such effects are not easily observed in experiments. This is because most state-of-the-art 



DNP experiments observe only bulk 1H instead of an isolated 1H spin, and nuclear spin diffusion 

dampens such transients. Although there have been a few reports of such transient-like features in 

literature, they are mostly performed on single crystals,  or the experiments were not optimized for 

such purposes.[25–28] Encouraged by these early findings, we envision that our theoretical 

framework here could motivate some new experimental efforts in observing these transients at high 

fields, realizing electron-nucleus distance measurement using DNP. 

 

2.3 Solid effect (SE) 

There are several theoretical approaches that can analyze the SE in literature.[12,13,29,30] One 

could apply perturbation theory to determine the degree of state mixing between the Zeeman 

eigenstates, and this method is best suited if the electron nutation frequency, 𝜔1S, is small relative to 

the electron relaxation rate, 𝑇1e
−1. Here, we will show an approach similar to the framework shown by 

Jain et. al,[27] where AHT and the product-operator formalism were used. We begin with a similar 

Hamiltonian as in Eq. 8 except for an inclusion of an electron offset term, Ω𝑆̂z: 

 ℋ̂SE = Ω𝑆̂z −𝜔0I𝐼z + 𝐴zz𝑆̂z𝐼z + 𝐴zx𝑆̂z𝐼x + 𝐴zy𝑆̂z𝐼y + 𝜔1S𝑆̂x, (16) 

Additionally, we show the matrix representation of the Hamiltonian (Eq. 16) using the Zeeman 

eigenbases |𝛼𝛼⟩, |𝛼𝛽⟩, |𝛽𝛼⟩, and |𝛽𝛽⟩ for an electron-nucleus system |𝑒𝑛⟩: 

 ℋ̂SE ≡
1

4
[

𝐴zz − 2𝜔0I + 2Ω
𝐴zx − 𝑖𝐴zy
2𝜔1s
0

𝐴zx − 𝑖𝐴zy
−𝐴zz + 2𝜔0I + 2Ω

0
2𝜔1s

2𝜔1s
0

−𝐴zz − 2𝜔0I − 2Ω
−𝐴zx − 𝑖𝐴zy

0
2𝜔1s

−𝐴zx + 𝑖𝐴zy
𝐴zz + 2𝜔0I − 2Ω

] (17) 

Here, we emphasize the importance of recognizing the SE matrix representation because it will be 

used later to derive the CE DNP matching condition. Next, we simplify the Hamiltonian by introducing 

the pseudo-secular term 𝐵zx𝑆̂z𝐼x  (see Eq. 9), and apply a propagator 𝑈t = exp(−𝑖𝜃𝑆̂y)  with 𝜃 =

tan−1(𝜔1S/Ω ), so that the electron z-axis is aligned along the effective field 𝜔eff = √𝜔1s
2 + Ω2:3

 

 
3 Note that the initial density operator is now 𝜌(0) = cos 𝜃 𝑆̂z − sin 𝜃 𝑆̂x. 



 

ℋ̂SE = 𝜔eff cos 𝜃 𝑆̂z − 𝜔0I𝐼z + 𝐴zz𝑆̂z𝐼z + 𝐵zx𝑆̂z𝐼x + 𝜔eff sin 𝜃 𝑆̂x 

ℋ̂𝑡 = 𝑈t
−1ℋ̂SE𝑈t = 𝜔eff𝑆̂z − 𝜔0I𝐼z + (𝐴zz𝐼z + 𝐵zx𝐼x)(cos 𝜃 𝑆̂z − sin 𝜃 𝑆̂x), 

(18) 

followed by another interaction-frame transformation using 𝑈1 = exp(−𝑖(𝜔eff𝑆̂z −𝜔0I𝐼z)𝑡): 

 

ℋ̂̃(𝑡) = 𝑈1
−1(𝑡)ℋ̂𝑡𝑈1(𝑡) − (𝜔eff𝑆̂z − 𝜔0I𝐼z) 

 = (𝐴zz𝐼z + 𝐵zx(𝐼x cos𝜔0I𝑡 + 𝐼y sin𝜔0I𝑡)) (cos𝜃 𝑆̂z − sin𝜃 (𝑆̂x cos𝜔eff𝑡 − 𝑆̂y sin𝜔eff𝑡)). 
(19) 

Similarly, the Hamiltonian ℋ̂̃(𝑡) becomes time-independent if 𝜔eff = ±𝜔0I (see Appendix 1) and AHT 

is applied with the condition 𝜔0I ≫ 𝐴zz sin 𝜃 , 𝐵zx cos 𝜃: 

 

ℋ̂̃(𝑡) = 𝐴zz cos 𝜃 𝑆̂z𝐼z 

−
𝐵zx sin 𝜃

2
[(𝑆̂x𝐼x ∓ 𝑆̂y𝐼y) + (𝑆̂x𝐼x ± 𝑆̂y𝐼y) cos2𝜔0I𝑡 + (𝑆̂𝑥𝐼𝑦 ∓ 𝑆̂y𝐼x) sin 2𝜔0I𝑡] 

−𝐴zz sin 𝜃 (𝑆̂x𝐼z cos𝜔0I𝑡 ∓ 𝑆̂𝑦𝐼z sin𝜔0I𝑡) 

+𝐵zx cos 𝜃 (𝑆̂z𝐼x cos𝜔0I𝑡 + 𝑆̂z𝐼y sin𝜔0I𝑡). 

(20) 

 

 ℋ̂̅ =
𝜔0I
2𝜋
∫ ℋ̂̃(𝑡)
2𝜋 𝜔0I⁄

0

𝑑𝑡 = {
−
𝐵zx sin 𝜃

2
(𝑆̂x𝐼x + 𝑆̂y𝐼y) + 𝐴zz𝑆̂z𝐼z cos 𝜃 if 𝜔eff = −𝜔0I 

−
𝐵zx sin 𝜃

2
(𝑆̂x𝐼x − 𝑆̂y𝐼y) + 𝐴zz𝑆̂z𝐼z cos 𝜃 if 𝜔eff = +𝜔0I

, (21) 

where ZQ and DQ fictitious spin-1/2 operators are again obtained (see Eqs 5 and 13). Although there 

is now an extra 𝐴zz𝑆̂z𝐼z term in Eq. 21 compared to the CP and NOVEL cases, its effect can be safely 

ignored because the 𝑆̂z𝐼z  operator represents an identity operator in the ZQ/DQ subspaces  it 

commutes with all operators. This is evident by inspecting the matrix representation of Eq. 21 for the 

case of 𝜔eff = −𝜔0I (ZQ condition): 

 ℋ̂̅ZQ ≡
1

4
[

𝐴zz cos 𝜃
0
0
0

0
−𝐴zz cos 𝜃
−𝐵zx sin 𝜃

0

0
−𝐵zx sin 𝜃
−𝐴zz cos 𝜃

0

0
0
0

𝐴zz cos 𝜃

]. (22) 

Following from Eq. 21, the initial density operator along the effective field, 𝜌(0) = 𝑆̂z will evolve under 

the ZQ/DQ Hamiltonian to become: 



 

𝜌̂ZQ (𝑡) = 𝑆̂z cos
2(𝜔SE𝑡) + 𝐼z sin

2(𝜔SE𝑡) + (𝑆̂y𝐼x − 𝑆̂x𝐼y) sin(2𝜔SE𝑡) 

𝜌̂DQ (𝑡) = 𝑆̂z cos
2(𝜔SE𝑡) − 𝐼z sin

2(𝜔SE𝑡) + (𝑆̂y𝐼x + 𝑆̂x𝐼y) sin(2𝜔SE𝑡) 

(23) 

where the SE build-up rate is 𝜔SE = 𝐵zx sin 𝜃 /4. Since the results were obtained using a generalized 

expression with minimal assumptions, the weak μw irradiation case (𝜔1s ≪ 𝜔0I) should converge to 

the same results shown in the literature.[13] Hence, the matching conditions are: 

 

𝜔eff = √𝜔1s
2 + Ω2 = ±𝜔0I for general cases 

⟹Ω~± 𝜔0I for weak μw cases, 

(24) 

and the initial nuclei polarization build-up (from Eq. 23) is given by ⟨𝜌̂(𝑡 ≪ 1)|𝐼z⟩ ∝ sin
2(𝜔SE𝑡) ~𝜔SE

2𝑡2, 

where 𝜔SE
2 = (𝐵zx𝜔1s 4𝜔0I⁄ )2. We have derived the well-known SE matching conditions Ω~ ± 𝜔0I, 

and the 𝐼z(𝑡 ≪ 1) ∝ 𝜔0I
−2  dependence yields the well-known observation that the enhancement 

factor scales by a factor of ~𝜔0I
−2—which is true if the Rabi field 𝜔1s, relaxation rates, and all other 

factors remain constant when the 𝐵0 field increases.[30] 

 

2.4 Cross effect (CE) 

The CE was first discovered when the DNP field profile showed changes when higher radical 

concentrations were used.[10,11] The effect was then exploited by tethering two monomeric nitroxide 

radicals to form a biradical. [31–33] The underlying CE mechanism was explained theoretically using 

perturbation theory for the static and the MAS cases.[12,34–37] In the theoretical analyses, the 

perturbation treatment was applied twice because there is no off-diagonal term that directly connects 

the two degenerate energy eigenstates. Such successive perturbative treatment might lose important 

insights because some terms are discarded in each perturbative step. We will now revisit the CE 

theory in the static case and demonstrate that new insights are obtained using the unified theory. 

A generic lab-frame Hamiltonian for a two-electron-one-nucleus system is given by: 

 ℋ̂ = 𝑑(3𝑆̂1z𝑆̂2z − 𝑆̂1 ⋅ 𝑆̂2) − 2𝐽𝑆̂1 ⋅ 𝑆̂2 + 𝐴zz
(1)
𝑆̂1z𝐼z + 𝐴zx

(1)
𝑆̂1z𝐼x + 𝐴zy

(1)
𝑆̂1z𝐼y… (25) 



+𝐴zz
(2)𝑆̂2z𝐼z +𝐴zx

(2) 𝑆̂2z𝐼x + 𝐴zy
(2) 𝑆̂2z𝐼y + 𝜔0S1𝑆̂1z + 𝜔0S2𝑆̂2z −𝜔0I𝐼z, 

where 𝑑 and 𝐽 represent the dipolar coupling and the exchange interaction between the two electrons, 

respectively. Note that the 𝐴zz
(𝑛)

 component is secular, while the 𝐴zx
(𝑛)

 and 𝐴zy
(𝑛)

 components are not. The 

index n labels the hyperfine interaction between the electron and the first or second nucleus (n =1 or 

2). 𝜔0I(S) denotes the Larmor frequency of the nucleus (electrons). Note that the usual tilted-frame 

transformation along 𝐼z  to remove 𝑆̂z𝐼y  cannot be done here for both electron-nuclear spin pairs 

unless one assumes that the sizes and signs of 𝐴zy
(𝑛) 𝐴zx

(𝑛)⁄  are the same for both electron-nucleus pairs 

(n =1 or 2). 

 

By inspecting the matrix representation of the Hamiltonian (Eq. 25) excluding the μw field, it is 

clear that the full Hamiltonian is block diagonal with one central 4×4 block (Fig. 2) and two 2×2 blocks. 

We call the central 4×4 block the CE subspace, which will be our focus because the other two blocks 

are relevant only for NMR transitions. The matrix representation of the CE subspace can be rewritten 

in a more compact form to become:  

 ℋ̂CE ≡
𝐽 − 𝑑

2
𝔼̂ (26) 

 

Fig. 2 Matrix representation of the Hamiltonian that describes the two-electron-one-

nucleus spin system, where the CE subspace is comprised of the middle 4x4 Eigenbases 

{ |𝛼𝑒𝛽𝑒𝛼𝑛⟩,  |𝛼𝑒𝛽𝑒𝛽𝑛⟩ , |𝛽𝑒𝛼𝑒𝛼𝑛⟩ , |𝛽𝑒𝛼𝑒𝛽𝑛⟩  . Note that Σ𝜔± = 2(𝜔0S1 + 𝜔0S2 ± 𝜔0I)  and 

Δ𝜔± = (𝜔0S1 − 𝜔0S2 ± 𝜔0I). The unfilled matrix elements are zero. 



+
1

4
[

Δ𝐴zz − 2𝜔0I + 2Δ𝜔
Δ𝐴zx + 𝑖Δ𝐴zy
−2(2𝐽 + 𝑑)

0

Δ𝐴zx − 𝑖Δ𝐴zy
−Δ𝐴zz + 2𝜔0I + 2Δ𝜔

0
−2(2𝐽 + 𝑑)

−2(2𝐽 + 𝑑)
0

−Δ𝐴zz − 2𝜔0I − 2Δ𝜔
−Δ𝐴zx − 𝑖Δ𝐴zy

0
−2(2𝐽 + 𝑑)
−Δ𝐴zx + 𝑖Δ𝐴zy

Δ𝐴zz + 2𝜔0I − 2Δ𝜔

] 

where Δ𝜔 = 𝜔0S1 − 𝜔0S2 , Δ𝐴zz = 𝐴zz
(1) − 𝐴zz

(2)
 , Δ𝐴zx = 𝐴zx

(1) − 𝐴zx
(2)

 , Δ𝐴zy = 𝐴zy
(1) − 𝐴zy

(2)
 , and 𝔼̂  is the 

identity operator.
4
  At this point, we can directly quote the matching conditions and the effective 

Hamiltonian for the CE because the ℋ̂CE matrix (Eq. 26) is mathematically identical to the ℋ̂SE matrix 

(Eq. 17) except for the definition of the symbols. For instance, Ω, 𝜔1S, 𝐴zz, 𝐴zx, and 𝐴zy in SE are now 

analogous to Δ𝜔 , −(2𝐽 + 𝑑) , Δ𝐴zz , Δ𝐴zx , and Δ𝐴zy , respectively in CE. Thus, we can define new 

fictitious spin-1/2 operators for this CE subspace and rewrite Eq. 27: 

 ℋ̂CE =
𝐽 − 𝑑

2
𝔼̂ + Δ𝜔𝑆̂z

CE −𝜔0I𝐼z
CE + Δ𝐴zz𝑆̂z

CE𝐼z
CE + Δ𝐴zx𝑆̂z

CE𝐼x
CE + Δ𝐴zy𝑆̂z

CE𝐼y
CE − (2𝐽 + 𝑑)𝑆̂x

CE , (27) 

where the eigenstates of the fictitious operator 𝑆̂z
CE are |𝛼𝑒𝛽𝑒⟩ and |𝛽𝑒𝛼𝑒⟩. By ensuring that the AHT 

assumption made in Eq. 21 remains valid here, the SE results and matching conditions can be directly 

adapted for the CE case: 

 

𝜔0I = ±√(2𝐽 + 𝑑)2 + Δ𝜔2 

~ ± Δ𝜔 if |2𝐽 + 𝑑| ≪ |Δ𝜔|. 

(28) 

Similarly, the build-up rate is 

 𝜔CE =
Δ𝐵zx(2𝐽 + 𝑑)

4𝜔0I
, (29) 

where Δ𝐵zx = √Δ𝐴zx2 + Δ𝐴zy2 , which can be regarded as the Pythagorean sum of the size differences 

between the two pseudo-secular hyperfine interactions. We call this term the differential hyperfine 

interaction. Then, by directly adapting the results from SE (Eq. 23), one can express that the 

polarization is transferred from 𝑆̂z
CE  to 𝐼z

CE  via the fictitious operator 𝑆̂x
Δ,CE  in the CE-ZQ double 

 
4 As discussed earlier, identity operator commutes with all operators, and, hence, negligible. 



subspace, i.e., 𝑆̂z
CE

2𝜔CE𝑆̂x
Δ,CE

→       𝐼z
CE(see Eq. 7). The CE transfer mechanism has been analytically derived 

with minimal efforts and assumptions. 

Note that the buildup rate 𝜔CE (Eq. 29) derived here is similar to those shown in the literature, 

[12,34,35,38] except on the significance of Δ𝐵zx [3,38,39] in mediating DNP, and that the CE buildup 

curve should also exhibit a familiar transient oscillation just like other polarization-transfer sequences 

discussed earlier. We emphasize that the description refers only to the static case. For MAS, where 

the energy levels cross one another, and the matching conditions are adiabatically swept, one would 

expect an exponential buildup behaviour—as correctly predicted by the level anti-crossing (LAC) 

framework and Landau-Zener equation. [12,40] 

Although the source of polarization 𝑆̂z
CE is negligible at thermal equilibrium, it can be enlarged by 

saturating either electron. For example, if the first electron is saturated via microwaves at 𝜔μw =

𝜔0S1 (exciting both |𝛽𝑒𝛽𝑒⟩ ↔ |𝛼𝑒𝛽𝑒⟩  and |𝛽𝑒𝛼𝑒⟩ ↔ |𝛼𝑒𝛼𝑒⟩  transitions), this will indirectly create a 

population difference between the |𝛼𝑒𝛽𝑒⟩ and |𝛽𝑒𝛼𝑒⟩ states—this prepares a non-zero 𝑆̂𝑧
CE. Again, we 

emphasize that it is the difference between the two electron spin polarization, rather than the absolute 

electron polarization, that is responsible for mediating CE DNP. Hence, we expect CE DNP to be more 

efficient if the two electrons have very different T1 values,[41,42] with the slower-relaxing electron 

being saturated prior to the CE matching condition (Eq. 28). This is to say that the CE mechanism is 

a two-step process where the first step requires the two-electron polarization difference resulting from 

μw to saturate an electron or other approaches, and the second step involves a passive three-spin 

flip process that does not require active perturbations including μw irradiation. Thus, these two 

processes do not need to occur simultaneously, and this unique feature was exemplified in the MAS 

case, where the saturation and polarization steps happen at different rotor angles. Following this idea, 

a Gedankenexperiment where CE DNP can be mediated by generating polarization difference 

between two electrons with selective optical pumping (without microwave irradiation) was proposed 

recently.[43] This is technically possible because microwave irradiation is not required to facilitate CE 



DNP (see CE Hamiltonian in Eq. 27).5 Besides CE, we also note that the fictitious operator formalism 

on a three-spin system was also applied to understanding chemically induced DNP.[44] 

In summary, we realize that the matrix representation of the CE Hamiltonian is mathematically 

similar to the SE Hamiltonian. This allows us to directly adopt the SE results for CE with minimal 

approximations. We will later show how the position of the 1H nuclei in a biradical and the differential 

hyperfine interaction Δ𝐵zx could affect the CE DNP performance (section 3.3). 

Table 1. Unified theoretical framework for CP, NOVEL, SE, and CE 

 CP NOVEL SE CE 

Initial Hamiltonians in 
respective frames 

Equation 1 Equation 8 Equation 16 Equation 27 

Effective Hamiltonian ℋ̂̅ = 𝑑IS(𝑆̂𝑥𝐼𝑥 + 𝑆̂𝑦𝐼𝑦) ℋ̂̅ = −
𝐵zx
2
(𝑆̂x𝐼x ± 𝑆̂y𝐼y) 

ℋ̂̅ = −
𝐵zx𝜔1S
2𝜔0I

(𝑆̂x𝐼x ± 𝑆̂y𝐼y) 

+𝐴zz𝑆̂z𝐼z cos 𝜃 

ℋ̂̅ =
Δ𝐵zx(2𝐽 + 𝑑)

2𝜔0I
(𝑆̂x𝐼x ± 𝑆̂y𝐼y) 

+Δ𝐴zz𝑆̂z𝐼z cos 𝜃 

AHT assumptions 𝜔1I, 𝜔1S > 𝑑IS  𝜔1S, 𝜔0I > 𝐵zx 𝜔0I, Ω > 𝐴zz cos 𝜃 , 𝐵zx sin 𝜃 𝜔0I, Δ𝜔 > Δ𝐴zz cos 𝜃 , Δ𝐵zx sin 𝜃 

Initial density 
operator 𝜌̂(0) 

𝐼z 𝑆̂𝑧 𝑆̂z 𝑆̂𝑧
CE 

Matching condition 𝜔1S = 𝜔1I 𝜔1S = 𝜔0I ω0I = ±𝜔eff = ±√Ω2 +𝜔1S
2  ω0I = ±𝜔eff = ±√Δ𝜔2 + (2𝐽 + 𝑑)2 

Build-up rate ωCP =
𝑑IS
2

 ωNOVEL =
𝐵zx
4

 𝜔SE =
𝐵zx𝜔1S
4𝜔0I

 𝜔CE =
Δ𝐵zx(2𝐽 + 𝑑)

4𝜔0I
 

 

3 Results and discussion 

We have analyzed and concluded that CP, NOVEL, SE, and CE could be described using a 

unified theoretical framework, yielding the effective Hamiltonians, matching conditions, build-up rates, 

etc. (Table 1). Next, we will analyze the situation in which the matching conditions are not exactly 

fulfilled, i.e., a slight mismatch is present. 

 

3.1 Treating mismatch in DNP matching condition 

Note that we have only derived the effective Hamiltonians and buildup rates for which the DNP 

 
5 In principle, the derived CE Hamiltonian (Eq. 27) would be different if strong microwaves are present. Nevertheless, 

this kind of CE DNP might be practically realized if pulsed microwave devices that can flexibly turn on or off the 

microwaves become available in the future. 



matching conditions are perfectly satisfied. In practical situations, each electron spin packet might 

experience a different effective field 𝜔eff(Ω,𝜔1S)  due to μw  field ( 𝜔1S ) inhomogeneity or g-

anisotropy/offset frequencies (Ω). Consequently, only a fraction of electron spins fulfils the matching 

conditions, and the remaining spins experience mismatches in varying magnitudes, which will be 

analyzed here. First, we will consider the SE case in which a mismatch frequency 𝛿SE ≠ 0 is present: 

 𝛿SE = 𝜔eff +ω0I (ZQ) or 𝛿SE = 𝜔eff − ω0I (DQ). (30) 

Then, we perform an interaction-frame transformation on Eq. 18 with the propagator 𝑈
1′
=

exp(−𝑖(𝜔eff𝑆̂z − ω0I𝐼z − 𝛿SE𝑆̂z)𝑡): 

 

ℋ̂̃′ = 𝑈1′
−1(𝑡)ℋ̂𝑡𝑈1′(𝑡) − 𝜔eff𝑆̂z +ω0I𝐼z + 𝛿SE𝑆̂z

Σ + 𝛿SE𝑆̂z
Δ 

= 𝐴zz cos 𝜃 𝑆̂z𝐼z + 𝛿SE𝑆̂z
Σ + 𝛿SE𝑆̂z

Δ 

−
𝐵zx sin 𝜃

2
[(𝑆̂x𝐼x − 𝑆̂y𝐼y) cos((𝜔eff − 𝛿SE − 𝜔0I)𝑡)

− (𝑆̂x𝐼y + 𝑆̂y𝐼x) sin((𝜔eff − 𝛿SE −𝜔0I)𝑡)] 

−
𝐵zx sin 𝜃

2
[(𝑆̂x𝐼x + 𝑆̂y𝐼y) cos((𝜔eff − 𝛿SE + 𝜔0I)𝑡)

+ (𝑆̂x𝐼y − 𝑆̂y𝐼x) sin((𝜔eff − 𝛿SE +𝜔0I)𝑡)] 

−𝐴zz sin 𝜃 (𝑆̂x𝐼z cos(𝜔eff − 𝛿SE)𝑡 − 𝑆̂y𝐼z sin(𝜔eff − 𝛿SE)𝑡) 

+𝐵zx cos 𝜃 (𝑆̂z𝐼x cos 𝜔0I𝑡 + 𝑆̂z𝐼y sin𝜔0I𝑡), 

(31) 

where we have used the fictitious operator 𝑆̂z
Σ = (𝑆̂z + 𝐼z) 2⁄  and  𝑆̂z

Δ = (𝑆̂z − 𝐼z) 2⁄  (see Appendix 3). If 

𝐴zz, 𝐵zx ≪ 𝜔0I, we can apply AHT and obtain:  

 

ℋ̂̅′ =
𝜔eff − 𝛿SE

2𝜋
∫ ℋ̂̃′(𝑡)
2𝜋 (𝜔eff−𝛿SE)⁄

0

𝑑𝑡 

= {
−
𝐵zx sin 𝜃

2
(𝑆̂x𝐼x + 𝑆̂y𝐼y) + 𝛿SE𝑆̂z

Σ + 𝛿SE𝑆̂z
Δ + 𝐴zz cos 𝜃 𝑆̂z𝐼z    if 𝜔eff − 𝛿SE + 𝜔0I = 0 

−
𝐵zx sin 𝜃

2
(𝑆̂x𝐼x − 𝑆̂y𝐼y) + 𝛿SE𝑆̂z

Σ + 𝛿SE𝑆̂z
Δ + 𝐴zz cos 𝜃 𝑆̂z𝐼z    if 𝜔eff − 𝛿SE −𝜔0I = 0

 

= {
−
𝐵zx sin 𝜃

2
𝑆̂x
Δ + 𝛿SE𝑆̂z

Σ + 𝛿SE𝑆̂z
Δ + 𝐴zz cos 𝜃 𝑆̂z𝐼z    if 𝜔eff − 𝛿SE +𝜔0I = 0

−
𝐵zx sin 𝜃

2
𝑆̂x
Σ + 𝛿SE𝑆̂z

Σ + 𝛿SE𝑆̂z
Δ + 𝐴zz cos 𝜃 𝑆̂z𝐼z   if 𝜔eff − 𝛿SE − 𝜔0I = 0

. 

(32) 

Then, the evolution of 𝜌′(𝑡) can be computed using the LvN equation with 𝜌(0) = 𝑆̂z = 𝑆̂z
Σ + 𝑆̂z

Δ: 



 𝜌
′(𝑡) = {

𝑆̂z(1 − cos
2 𝜁SE sin

2𝜔SE
′ 𝑡) + 𝐼z cos

2 𝜁SE sin
2𝜔SE

′ 𝑡 − 𝑆̂x
Δ
sin 2𝜁SE sin

2 𝜔SE
′ 𝑡 + 𝑆̂y

Δ
cos 𝜁SE sin 2𝜔SE

′ 𝑡 

𝑆̂z(1 − cos
2 𝜁SE sin

2 𝜔SE
′ 𝑡) − 𝐼z cos

2 𝜁SE sin
2𝜔SE

′ 𝑡 − 𝑆̂x
Σ
sin 2𝜁SE sin

2𝜔SE
′ 𝑡 + 𝑆̂y

Σ
cos 𝜁SE sin 2𝜔SE

′ 𝑡
, (33) 

where 𝜁SE = tan
−1(𝛿SE (2𝜔SE)⁄ ), 

 𝜔SE
′ = √𝜔SE

2 (Ω)+ (𝛿SE 2⁄ )2 = √
𝐵zx
2 𝜔1S

2

16(𝜔1s
2 +Ω2)

+
𝛿SE
2

4
, (34) 

and 𝜔SE(Ω) = 𝐵zx𝜔1S (4𝜔eff(Ω))⁄ . Note that the new build-up rates 𝜔SE
′  is apparently faster when a 

mismatch is present, albeit that the maximum polarization is lower by a factor of cos2 𝜁SE . This 

phenomenon is mathematically analogous to the situation in which an off-resonance 𝜋  pulse was 

applied to a spin, i.e., the polarization cannot be fully inverted despite experiencing a larger effective 

field. The mismatch is now treated as offsets in the ZQ and DQ fictitious spin-1/2 subspaces. Similarly, 

we can extend the theorem for the CE case by introducing mismatch 𝛿CE  = 𝜔eff,CE ± 𝜔0I, leading to 

𝜔CE
′ = √𝜔CE

2 (Δ𝐵zx , d)+ (𝛿CE 2⁄ )2 and 𝜁CE = tan
−1(𝛿CE (2𝜔CE)⁄ ) (vide infra, see Fig. 7c). 

Table 2. Parameters used in theoretical analyses and numerical simulations. The PAS-to-lab 
frame Euler angles are (60°, 45°, 36°). 

 NOVEL SE CE 

Magnetic field B0 0.35 T 5 T 5 T 

g factor 2.003 2.003 
ge1=2.003000 
ge2 is 2.006041 

Coordinate 
(PAS) 

1H (0, 0, 0) 
e (0, 0, 𝑟eH) 

1H (0, 0, 0) 
e (0, 0, 𝑟eH) 

1H (0, 0, 0) 
e1 (0, 0, 𝑟e1H) 
e2 0.8𝑟e1H (sin 135°, 0, cos 135°) 

Microwave Rabi Field  
𝝎𝟏𝐒 

𝜔0I 4 MHz - 

𝝆̂(𝟎) 
𝑆̂1z 𝑆̂1z Saturated: 𝑆̂1z 

Inverted: 𝑆̂1z − 𝑆̂2z 
 

 

3.2 Theoretical results and numerical simulations 

To verify the theoretical results, we compare the evolution of density operators using the effective 

Hamiltonians (Table 1) with numerically simulated results from Spinach.[45] For easier analysis, 

relaxation effects and g-anisotropy are not included at this stage, and other parameters are listed in 

Table 2. The field strengths for the SE and CE were chosen to be 5 T, but we restricted NOVEL to 



0.35 T because it is not yet feasible to perform this experiment at higher fields. Note that the μw 

irradiation is employed throughout the sequence for NOVEL and SE. For CE, ideal µw pulses were 

applied only in the beginning to prepare the electron polarization difference and subsequently ‘turned 

off’. 

 

The results of numerical simulations agree with the theoretical predictions exceptionally well (Fig. 

3) in all three DNP cases. In particular, the theoretically derived DNP buildup rates (𝜔NOVEL = 𝐵zx 4⁄ , 

𝜔SE = 𝐵zx𝜔1S 4𝜔0I⁄  , and 𝜔CE = Δ𝐵zx(2𝐽 + 𝑑) 4𝜔0I⁄  ) for different electron-nucleus distances are 

verified to be correct. Note that a near ~100% (~658) polarization transfer is possible for single 

crystals in NOVEL (Fig. 3a), but the SE (Fig. 3b) has a marginally lower enhancement due to a small 

projection loss between 𝑆̂1z  and the direction of the effective field 𝜔eff . As in a typical CE DNP 

 

Fig. 3 Plots of 1H enhancement calculated by theory (line) and numerical simulations for (a, d) NOVEL, 

(b, e) SE, and (c, f) CE on (a-c) single-crystal or (d-f) powdered samples. DNP with different e-1H 

distances (4.3 Å, 5.5 Å, and 6.5 Å are examined in NOVEL and SE. Two different initial states are 

considered in CE (c and f): saturated second electron spin 𝜌(0) = 𝑆̂1z (red) and inverted second electron 

spin, 𝜌(0) = 𝑆̂1z − 𝑆̂2z = 𝑆̂z
CE (violet). The two e-1H distances are 10 Å and 8 Å, respectively. The e-1H 

angle is 135°. The powder averages were performed using the two-angle Lebedev grids with rank 131 

provided in Spinach. 



experiment, if we saturate the second electron (𝜌(0) = 𝑆̂1z ), only ~50 % transfer (~329) can be 

obtained (Fig. 3c). However, if the polarization of the second electron is inverted with a 𝜋 pulse using 

a pulsed microwave source, i.e., to prepare an initial state of 𝜌(0) = 𝑆̂1z − 𝑆̂2z = 𝑆̂z
CE , a ~ 100 % 

transfer can be achieved again. Thus, we demonstrated that the fictitious operator (𝑆̂z
CE) used in our 

unified theory has shown a new and intuitive insight in this pulsed cross effect experiment.[46] We 

would like to clarify that most contemporary CE DNP experiments are performed under MAS 

conditions with CW gyrotron, where microwave irradiation is turned on throughout the experiments. 

In such situations, the presence of various types of adiabatic rotor events has allowed enhancement 

 larger than 329.[47] 

 For powdered samples, the maximum transient polarization is ~482 (Fig. 3d-e) in SE and NOVEL, 

which corresponds to a transfer efficiency of 482/658~73 %—a known benchmark value obtainable 

by -encoded sequences including CP.[48–51] This can be inferred from Eq. 13 and Eq. 21, where 

the Hamiltonians (or 𝐵zx) are -independent.
6
 Again, it is clear that some developed concepts that 

existed in the well-familiarized conventional ssNMR techniques can be directly adapted for DNP cases, 

and perhaps shed new lights on analyzing the existing DNP sequence. For instance, one can evaluate 

the robustness of a pulse sequence by inspecting if the effective Hamiltonian of a pulse sequence is 

-encoded. Similarly, we envision such an evaluation strategy can be better exploited when 

developing new DNP sequences, especially when the high-frequency pulsed microwave technology 

becomes available in the future.[19] The CE performance on powdered samples (Fig. 3f) is much 

weaker than SE’s and NOVEL’s because only a small fraction of the crystallites satisfies the 

orientation-dependent 𝑑(𝛼, 𝛽, 𝛾) in CE matching condition (Eq. 28). 

Next, g-anisotropy is included in the simulations to resemble actual DNP experiments. The 

buildup curves for several crystallites with different SE matching conditions and three different e-1H 

 

6
 Note that only 𝐴zx and 𝐴zy depend on , 𝐵zx = √𝐴zx2 + 𝐴zy2  is -independent. 



spin systems (Fig. 4a) were examined. All three systems have the same spin interactions except the 

e-1H Euler angles relative to the g tensor and show different frequency profiles (Fig. S4). The 

simulated curves fit the calculated results from the unified theory well—if the mismatched situations 

are also considered (Eq. 33). In other words, the calculated curves (Fig. 4b-d) were not performed 

using a single crystal, but an entire powder spectrum that includes crystallites that do not exactly 

satisfy the matching conditions (see supplementary material).
7
 Besides, it is evident that the buildup 

profiles are sensitive to the e-1H Euler angles, which imply that it is theoretically possible to determine 

the full e-1H dipolar coupling tensor from DNP. 

Nevertheless, it could be challenging to demonstrate these effects in actual experiments due to 

several practical reasons. Firstly, the profiles of the actual build-up curves will depend on several 

parameters, including relaxation rates (Fig. S3) and microwave powers. In principle, one would require 

a pulsed high-power microwave device to facilitate faster DNP build-up curves, as implied by 𝜔SE ∝

𝜔1S in Table 1. However, such a technology is not yet available at high fields. Secondly, the presence 

of abundant 1H spins in the vicinity could dampen the build-up curves due to spin diffusion, 

complicating the distance analysis. Hence, we believe that such techniques will be more suitably 

applied to an isolated two-spin system, i.e., direct electron-19F/31P/13C DNP in samples where 

unpaired electrons are naturally present or strategically placed (metalloproteins or paramagnetic 

dopants in materials). If experimentally proven, the technique could have important applications on 

paramagnetic biomolecules or materials. 

 
7
 The entire powder spectrum can be considered here because the radical has narrow lines, i.e., either DQ or 

ZQ condition (not both) is calculated here. 



 
3.3 The effect of J, d, and Δ𝐵zx on the CE-DNP enhancement 

It is known in the literature that the 𝑒-𝑒 interactions—exchange interaction, J, and dipolar coupling, 

d—play crucial roles in affecting CE DNP performance.[52–54] In particular, Equbal et al. noted from 

numerically simulated results that the CE radicals should have J 𝑑⁄ > 1.25 for an efficient MAS DNP 

transfer.[40,55] We show that the phenomenological finding can be explained by inspecting the 

orientation-dependent build-up rate 𝜔CE(𝛼, 𝛽, 𝛾) ∝ (2𝐽 + 𝑑(𝛼, 𝛽, 𝛾))  (Eq. 29),
8
  which requires |2𝐽 +

𝑑(𝛼, 𝛽, 𝛾)| > 0 so that all crystallites have non-zero build-up rates even if the CE matching conditions 

are fulfilled, i.e.:  

 
8 𝛼, 𝛽, 𝛾 are the relative Euler angles between the crystal to the lab frame. 

 

Fig. 4 (a) The calculated electron EPR lineshape of e-1H system with g-tensor (gx= 2.0046, gy= 2.0038, 

gz= 2.0030) and μw frequency 9 GHz. The build-up curves in (b-c) correspond to different μw central 

frequencies and matching positions labelled in (a). The relative Euler angles between the e-1H dipolar 

couplings and the g-tensor are (0, 10°, 0), (0, 50°, 0), (0°, 90°, 0) for (b-d). The e-1H distance is 4.3 Å.  



 

|2𝐽 + 𝑑(𝛼, 𝛽, 𝛾)| > 0 

Either 2𝐽 + 𝑑ee > 0 → 𝐽 𝑑ee⁄ < −1 2⁄  

or 2𝐽 − 𝑑ee 2⁄ < 0 → 𝐽 𝑑ee⁄ > 1 4⁄  

where 𝑑 =
1

2
𝑑ee(1 − 3 cos

2 𝛽) and 𝑑ee = 𝜇0𝛾𝑒
2ℏ 4𝜋𝑟𝑒𝑒

3⁄  

(35) 

Hence, enforcing |𝐽 𝑑ee⁄ | > 1 2⁄  would ensure that no crystallite will have an instantaneous 𝜔CE = 0 

for any orientation in a rotor period. Moreover, having |𝐽 𝑑ee⁄ | ≫ 1 2⁄  would guarantee that the buildup 

rate 𝜔CE is moderately higher than a certain threshold, thereby yielding a faster and more efficient 

DNP transfer. Additionally, it was reported that a high |𝐽 𝑑ee⁄ | ratio would also help maintain a large 

adiabaticity of the electron-electron rotor event, which helped maintain a large difference in electron 

polarization for efficient DNP. [38,40,55] Nevertheless, the |𝐽 𝑑ee⁄ |  ratio cannot be increased 

indefinitely, or else it might have a deleterious effect. For instance, the simplified CE condition 𝜔0I~±

Δ𝜔  is no longer applicable for the strong 𝐽  case, and the full CE matching condition 𝜔0I =

±√(2𝐽 + 𝑑)2 + Δ𝜔2 (Eq. 28) dictates that the CE condition can never be fulfilled if (2𝐽 + 𝑑) > 𝜔0I. We 

will not discuss this further here as the actual CE MAS DNP scenario will be more complex when g-

anisotropy is considered, and it is beyond the scope of this work. Nevertheless, we emphasize that 

the derived matching conditions and buildup rates remain valid for static and MAS cases. 



 

It is known in the literature that the nature of the 1H nuclei close to the electron plays a significant 

role in DNP. For instance, there exists a sweet spot in which the e-1H distance should be short for 

efficient DNP contact/transfer but larger than the spin diffusion barrier so that the polarization can be 

distributed across the bulk sample. Recent literature has reported that the size of this sweet spot is 

~3-6 Å away from the radical.[56–58] Although our unified theory and a simple three-spin model here 

will not be sufficient to treat the spin diffusion barrier issue, we plan to analyze the role of the 

differential hyperfine interaction, Δ𝐵zx, in mediating CE DNP. 

We set up an e1-e2-1H three-spin system in which the two electrons are separated by 2𝑟0= 12 Å, 

and the 1H nucleus is on a spherical shell with a radius 𝑅 = 30 Å away from the origin (Fig. 5). For 

this study, the two electrons are fixed in position, but the angles (𝜃, 𝜙) will be varied. Figure 6 shows 

the simulated  (Fig. 6a) and calculated Δ𝐵zx (Fig. 6b) for various 1H’s locations on the 𝑅 = 30 Å shell 

(or different 𝜃 and 𝜙 angles). The two profiles are very similar and imply a correlation between  and 

Δ𝐵zx. To corroborate the results, the data from these two plots are sampled and replotted in Fig. 6c, 

showing the relation of  against Δ𝐵zx, which shows clearly that high Δ𝐵zx values yield high , and the 

converse is also true. These findings confirm the 𝜔CE ∝  Δ𝐵zx relation (Eq. 29) derived from our unified 

theory. 

 
Fig. 5 A three-spin e1-e2-1H model with the coordinates of the spins given by 𝑟̃𝑒1 =

 (0, 𝑟0, 0)  , 𝑟̃𝑒2 = (0,−𝑟0, 0) , 𝑟̃1H =  𝑅(sin 𝜃 cos 𝜙 , sin 𝜃 sin𝜙 , cos 𝜃 )  The distances are 𝑟0 =

6 Å and R = 30 Å. The two electrons (blue sphere) have fixed positions, while the angles 

𝜃 and 𝜙 of the 1H atom (red sphere) are varied. Other spin parameters include ge1=2.0000, 

ge2=2.0030 (isotropic) satisfying the CE matching condition, 𝐽 = 0 Hz, T1e=1 ms, T2e=5 μs, 

B0=5 T, and microwaves ofω1S 2𝜋⁄ = 4 MHz is applied on e1. 



Moreover, it is intriguing that there are some blind spots with minimum  in the z=0 plane (equator) 

and some local spots (see red arrows in Fig. 6b). To further understand this phenomenon, we will first 

write down the expressions of Δ𝐵zx and 𝐴zx,y
(𝑖)

 in this spin system: 

 

Δ𝐵zx = √(𝐴zx
(1) − 𝐴zx

(2))
2
+ (𝐴zy

(1) − 𝐴zy
(2))

2
 

𝐴zx
(𝑖)
= −

3

2
𝑑i sin 2𝜃i cos 𝜙i 

𝐴zy
(𝑖)
= −

3

2
𝑑i sin 2𝜃i sin𝜙i, 

(36) 

where and 𝑑i = 𝜇0𝛾𝑒𝛾𝐼ℏ 4𝜋𝑟𝑒iH
3⁄  is the electron-nucleus dipolar coupling, 𝜃i is the angle between the 

dipole and the external B0 field, and ϕi is the azimuth angle. Two solutions are obtained by setting 

Δ𝐵zx = 0  (Eq. 35): (1) 𝐴zx
(1) = 𝐴zx

(2) = 𝐴zy
(1) = 𝐴zy

(2) = 0  or (2) 𝐴zx
(1) = 𝐴zx

(2)
  and  𝐴zy

(1) = 𝐴zy
(2)

 . Indeed, the 

solution of the first case is 𝜃 = 𝜋 2⁄  (or z = 0 equator). By solving the second case: 

 

Δ𝐵zx = 0

{
 
 

 
 

𝑅 sin 𝜃 + 𝑟0
(𝑅2 + 2𝑅𝑟0 sin 𝜃 + 𝑟0

2)5 2⁄
=

𝑅 sin 𝜃 − 𝑟0
(𝑅2 − 2𝑅𝑟0 sin 𝜃 + 𝑟0

2)5 2⁄

cos 𝜙 = 0

, (37) 

one obtains the positions of the 1H atoms are (0, ±14.06, ±26.50) Å or 𝜃 =27.9° (Fig. 6b), which are 

as expected. This is interesting because, in the SE DNP case, the  = 0 blind spot would be at the 

magic angle 𝜃 = 54.7° , where the dipolar coupling is also zero. However, our unified theory has 

successfully revealed that this is not the case in the CE, and the blind spots are at the regions where 

the two hyperfine fields are exactly equal (or differential hyperfine interaction Δ𝐵zx = 0 )—a 

phenomenon that has not yet been discussed in the literature. 



 

For powdered samples, the general features exhibited by the simulated  (Fig. 7a) and powder-

averaged 〈Δ𝐵zx〉 (Fig. 7b) are similar, i.e., the high  regions are well reflected by the high calculated 

〈Δ𝐵zx〉 values. However, some differences are also noted: (1) there are starker contrasts between the 

annular rings (red crosses in Fig. 7a) and (2) the asymmetry between the two z-hemispheres is not 

observed in the 〈Δ𝐵zx〉  plot (Fig. 7b). To address issue (1), we incorporated the effects of CE 

mismatches due to the orientation-dependent dipolar couplings (see Section 3.1) and calculated 

⟨𝜔CE
′
cos2 𝜁CE⟩. The resulting 〈𝜔CE

′
cos2 𝜁CE〉 plot (Fig. 7c) for the powder subset shows a much better 

agreement with simulated . The strength of the unified theoretical framework allowing direct 

adaptation of the SE scenario for CE is again exemplified here. For issue (2), the  asymmetry 

between the +y and -y hemispheres (Fig. 6a, Fig. 7a) can be explained by the size of the exchange 

interaction 𝐽 (Appendix  2), selective excitation on one of the two electrons, and relaxation effects. As 

the issue is multifaceted and complex, we will not discuss it further. 

 

Fig. 6 (a) Simulated CE-DNP enhancement  and (b) calculated Δ𝐵zx for single crystals on a three-

spin system shown in Fig. 5. (b) The Δ𝐵zx=0 and the maximum Δ𝐵zx regions are labelled by red 

arrows red crosses, respectively. (c) Plot of  against Δ𝐵zx using resampled data from (a) and (b).  



 

We have demonstrated here that our unified theory has shed new light on the role of differential 

hyperfine interaction Δ𝐵zx (or the position of nearest 1H) in dictating the CE-DNP performance. These 

findings could be exploited to design more efficient biradicals by avoiding these zero-enhancement 

blind spots—either by optimizing the linkers or deuterating the 1H’s at those regions. 

 

4 Conclusion 

We have provided an analytical description for CP, NOVEL, SE, and CE mechanisms using the same 

unified theoretical framework. Not only the use of fictitious spin-1/2 operators combined with average 

Hamiltonian theory provides an easy-to-understand and intuitive explanation for the polarization-

transfer mechanisms, but it also sheds new light on fundamental DNP mechanisms. For instance, we 

show that the DNP build-up curves should also feature transient oscillations, which could be exploited 

 

Fig. 7 (a) Simulated CE-DNP enhancement , (b) calculated Δ𝐵zx and (c) ωCE
′ cos2 𝜁CE for powders 

on a three-spin system shown in Fig. 5c. The maximum enhancement and ωCE
′ cos2 𝜁CE regions are 

labelled by red crosses. 



to extract crucial structural information in metal-doped paramagnetic biomolecules or materials, i.e., 

we would like to extend the DNP applications beyond just hyperpolarization. Moreover, the realization 

that SE and NOVEL have -independent DNP performances, and that an inverted electron 

polarization could generate higher DNP enhancement than a simple saturation scheme in CE could 

motivate further development of new (pulsed) DNP sequences in the future. Besides that, our theory 

sheds light on the roles of exchange interaction (J) and Δ𝐵zx in CE. In particular, the CE matching 

conditions helped explain the phenomenological finding of a good J/D ratio for efficient CE in the 

literature. Moreover, the theory also highlighted the importance of the differential hyperfine interaction 

Δ𝐵zx, which is directly correlated to the CE enhancement factors. These results can potentially be 

exploited for designing more efficient biradicals. Additionally, although our study here is performed 

only on the static case, our unified theory remains valid and can be extended for the MAS case if 

needed. At last, we hope that our presented findings here could stimulate an experimental effort in 

verifying our theory and numerical results—when high-power pulsed microwave devices at high fields 

become available in the future. 

5 Supplementary Material 

See supplementary material for MATLAB scripts used for performing SPINACH numerical simulations. 
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Appendix  

1 Matching conditions 

The simplified form of the Hamiltonian in the interaction frame for NOVEL (Eq. 11) and SE (Eq. 19) 

are: 

 

NOVEL: 

  ℋ̂̃(𝑡) = −
𝐵zx
2
[(𝑆̂x𝐼x − 𝑆̂y𝐼y) cos(𝜔1S − 𝜔0I)𝑡 − (𝑆̂x𝐼y + 𝑆̂y𝐼x) sin(𝜔1S −𝜔0I)𝑡] 

     −
𝐵zx
2
[(𝑆̂x𝐼x + 𝑆̂y𝐼y) cos(𝜔1S + 𝜔0I)𝑡 + (𝑆̂x𝐼y − 𝑆̂y𝐼x) sin(𝜔1S + 𝜔0I)𝑡] 

     −𝐴zz(cos𝜔1S 𝑆̂x𝐼z − sin𝜔1S𝑡 𝑆̂y𝐼z). 

 

SE: 

   ℋ̂̃(𝑡) = 𝐴zz cos 𝜃 𝑆̂z𝐼z 

 −
𝐵zx sin 𝜃

2
[(𝑆̂x𝐼x − 𝑆̂y𝐼y) cos(𝜔eff −𝜔0I)𝑡 − (𝑆̂x𝐼y + 𝑆̂y𝐼x) sin(𝜔eff −𝜔0I)𝑡] 

 −
𝐵zx sin 𝜃

2
[(𝑆̂x𝐼x + 𝑆̂y𝐼y) cos(𝜔eff +𝜔0I)𝑡 + (𝑆̂x𝐼y − 𝑆̂y𝐼x) sin(𝜔eff +𝜔0I)𝑡] 

 −𝐴zz sin 𝜃 (𝑆̂x𝐼z cos𝜔eff𝑡 − 𝑆̂y𝐼z sin𝜔eff𝑡) 

 +𝐵zx cos 𝜃 (𝑆̂z𝐼x cos𝜔0I𝑡 + 𝑆̂z𝐼y sin𝜔0I𝑡), 

(S1) 

It is evident that the matching condition are 𝜔1S = ±𝜔0I and 𝜔eff = ±𝜔0I for NOVEL and SE cases, 

respectively. 

 

2 Further examples of enhancement plots showing asymmetry 



 

3 Definition of fictitious spin-1/2 operators 

 

Original 
operators 

1

2
(𝑆̂z + 𝐼z) 

1

2
(𝑆̂z − 𝐼z) 𝑆̂x𝐼y + 𝑆̂x𝐼y 𝑆̂y𝐼x − 𝑆̂x𝐼y 𝑆̂x𝐼x − 𝑆̂y𝐼y 𝑆̂x𝐼x + 𝑆̂y𝐼y 

Fictitious 
operators 

𝑆̂z
Σ 𝑆̂z

Δ 𝑆̂y
Σ 𝑆̂y

Δ 𝑆̂x
Σ 𝑆̂x

Δ 

 

 

Fig. S1 Simulated CE-DNP enhancement in powdered samples with (a) 𝐽 = 9 MHz (b) 

and −9 MHz. Note the reflection in  asymmetry on the hemispheres when the sign of 

exchange interaction is reversed. 

 

Fig. S2 Simulated CE-DNP enhancement in powders. The  asymmetry is reversed (with 

respect to Fig. 6d) by saturating the second e2 (0 -6 0) instead of the first electron e1. 



4 SE buildup curves of an electron-proton spin system 

 

Fig. S3 Simulated powdered build-up curves of SE with various T2e in an e-1H system. The e-1H 

distance is 4.3 Å, T1e = 1 ms, T1n = 13 s, T2n = 1 ms, B0 = 5 T, isotropic g value is 2.0038, and g- 

anisotropy is not considered. The transient oscillations are observable only when T2e > 10 s. For 

these curves, the maximum transients occur around the same time (~ 50 s) even though their T2 are 

different. 

 

5 Frequency profiles of electron-proton system (powdered) 

 

 

Fig. S4 The frequency profiles of electron-proton system with different hyperfine vectors in PAS. The 



parameters of the system are the same as those used in Fig 4b-d. 
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