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Abstract:  13 

Ooencyrtus pityocampae and Ooencyrtus kuvanae are egg parasitoids that are considered 14 

potential candidates for the control of different pest species through inundative release. The aim 15 

of this study was to assess the effects of different cold-storage periods of Philosamia ricini eggs 16 

(host) on the rearing parameters of O. pityocampae and O. kuvanae. Host eggs were stored at 17 

3°C, and a factorial experiment involving two parasitoid species, nine host storage periods (1, 5, 18 

10, 15, 30, 45, 60, 75 and 90 days) and a control, and two host ages (1 and 2 days) was 19 

conducted, with 10 replications including 40-P. ricini eggs each. Adult emergence, development 20 

time, longevity, and fecundity were investigated. The parasitoid adult emergence percentage 21 

significantly varied with storage duration. These values were lower in O. kuvanae than in O. 22 
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pityocampae. The development time of O. kuvanae progeny increased in both host age groups 23 

except in the 1-day storage period subgroup. However, the development times of the progeny of 24 

O. pityocampae reared on one-day-old eggs stored for 5, 10, 60, and 75 days were increased, and 25 

the development times of the progeny of O. pityocampae reared on 2-day-old eggs stored for 45 26 

and 90 days were increased. The longevity of the F1 progeny of O. kuvanae was negatively 27 

affected by storage time. There was no difference in the longevity of the F1 progeny of O. 28 

pityocampae compared to that of the control. Additionally, the fecundities of the F1 progeny of 29 

O. pityocampae and O. kuvanae were 54.7 and 47.0 offspring/female, respectively. These results 30 

provide useful information for guiding the development of mass rearing methodologies for both 31 

parasitoid species.   32 

 33 
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 36 

Introduction 37 

Ooencyrtus pityocampae (Mercet) (Hymenoptera: Encyrtidae) is an efficient biological control 38 

agent of Thaumetopoea pityocampa (Den. & Schiff.) and T. wilkinsoni (Tams) (Lepidoptera: 39 

Notodontidae), which are among the most important defoliators of pine forests throughout the 40 

Mediterranean Basin (Buxton, 1983; Battisti et al., 1990; Masutti et al., 1993; Tiberi et al., 1994; 41 

Hódar and Zamora, 2004; Zhang et al., 2005; Binazzi et al., 2013; Samra et al., 2015). Other 42 

known hosts of O. pityocampae include Nezara viridula (Linnaeus) Aelia rostrata (Boh), 43 

Carpocoris sp., Dolycris baccarum (Linnaeus), Rhaphigaster nebulosa (Poda), Eurydema 44 

ventrale (Kolenati), E. oleracea (Linnaeus), Graphosoma lineatum (Linnaeus) Halyomorpha 45 
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halys (Stål) (Hemiptera: Pentatomidae) and Eurygaster maura (Linnaeus) (Hemiptera: 46 

Scutelleridae) (Tiberi et al., 1991;Tiberi et al., 1993; Federico et al., 2016).  47 

Ooencyrtus kuvanae (Howard) (Hymenoptera: Encyrtidae) is a primary egg parasitoid of 48 

Lymantria dispar (L.) (Lepidoptera, Lymantriidae) (Howard, 1910; Tadic and Bincev, 1959; 49 

Brown, 1984; Hofstetter and Raffa, 1998; Wang et al., 2013) but it can also parasitize other hosts, 50 

such as Dendrolimus spectabilis Butler (Lepidoptera: Lasiocampidae), Malacosoma americana 51 

(Fabricius), M. neustria tartacea (Motschulsky), Euproctis chrysorrhoea (Linnaeus), 52 

Hemerocampa leucostigma (Abbot & Smith), Hemerocampa definata (Packard), Lymantria 53 

fumida (Butler), Nygmia phaeorrhoea (Donovan), Stilpnotia salicis (Linnaeus) Eriogyna 54 

pyreterom (Westwood) (Lepidoptera: Saturniidae), Lycorma delicatula (White) (Hemiptera: 55 

Fulgoridae) and H. halys (Stål) (Hemiptera: Pentatomidae) (Huang and Noyes, 1994; Hofstetter 56 

and Raffa, 1998; Liu, 2019; Tunca et al., 2019). 57 

To reduce the costs associated with biological control programmes and to ensure the supply of 58 

high-quality natural enemies at times of high demand, it is important to improve parasitoid mass-59 

rearing techniques (Spínola-Filho, 2014). The encyrtid egg parasitoids O. pityocampae and O. 60 

kuvanae can be successfully raised on the host Philosamia ricini (Donovan) (Lepidoptera: 61 

Saturnidae) (Tunca et al., 2016, 2017). Philosamia ricini can be reared on Ligustrum vulgare (L.) 62 

(Amaranthaceae) and Ailanthus altissima (Mill.) Swingle (Simaroubaceae) (Venard, 2016), and 63 

rearing is straightforward and inexpensive. In addition, P. ricini oviposits more often, and its 64 

eggs are larger than those produced using two other known laboratory hosts, N. viridula and H. 65 

halys. Although methods for breeding this host are well known and have been optimized, they 66 

can be affected by external problems, such as the natural contamination of host plants by 67 

bacterial species. Consequently, there are occasional problems related to the production of P. 68 

ricini eggs due to high larval mortality, and the rearing of the two parasitoids can be affected. 69 
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 70 

When inundative release is used as a biological pest control strategy, large numbers of parasitoids 71 

are required to rapidly reduce the damaging pest population. However, the major challenge 72 

associated with this biological control strategy is the production of a large number of parasitoids 73 

of adequate quality (Orr, 1988). Several techniques have been used to optimize the large-scale 74 

mass production of parasitoids in laboratories. Some of these approaches include, the in vitro 75 

development of parasitoids (Strand et al., 1988; Nettles Jr,1990; Consoli and Vinson, 2004; 76 

Shirazi, 2006; Paladino et al. 2010; Kim et al. 2018), cold storage of parasitized hosts (Noble, 77 

1937; Dass and Ram, 1983; Gautam, 1986; Ganteaume et al. 1995 a, b; Bayram et al., 2005; 78 

Tunca et al., 2014; Liu et al., 2014; Kidane et al., 2015), cold storage of  parasitoids as pupae or 79 

adults (Gautam, 1986; Foerster et al., 2004; Foerster and Doetzer, 2006; Yılmaz et al. 2007; 80 

Mousapour et al., 2014; Afshari and Fandokht, 2019; Cira et al., 2021) and cold storage of 81 

unparasitized hosts (Corrêa-Ferreira and Moscardi, 1993; Kıvan and Kılıç, 2005; Mahmoud and 82 

Lim, 2007; Alim and Lim, 2010; de Carvalho Spínola-Filho et al., 2014; Singhamuni et al., 2015; 83 

Wong et al., 2020). 84 

 85 

Storing a host at a low temperature can arrest its development at the desired stage and contribute 86 

to the rearing of parasitoids. The cold storage technique allows the synchronization of parasitoid 87 

release with outbreaks of insect pests (Leopold, 1998; Pitcher et al., 2002; Colinet and Boivin, 88 

2011). Cold storage of P. ricini eggs is important, as it allows for a sufficient number of egg hosts 89 

for the rearing of O. pityocampae and O. kuvanae. The objective of this study was to investigate 90 

the optimum cold storage conditions of host eggs and to assess the performance of O. 91 

pityocampae and O. kuvanae reared on stored P. ricini eggs. 92 

 93 
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 94 

 95 

Materials and Methods  96 

This study was conducted at the INRAE-PACA Mediterranean Forest and Entomology Unit, 97 

Laboratory of Biological Control, Antibes, France. The experimental trials were conducted under 98 

laboratory conditions at 25 ± 1°C and 60± 5% relative humidity (RH), with a photoperiod of 18:6 99 

h L:D. P. ricini and O. pityocampae were reared according to Tunca et al. (2016). O. kuvanae 100 

was reared according to Tunca et al. (2017).  101 

Experimental Setup 102 

To determine the effect of cold storage of unparasitized P. ricini eggs on O. pityocampae and O. 103 

kuvanae rearing parameters, an experiment was carried out in a completely randomized 2 (1- and 104 

2- day old hosts) × 10 (1, 5, 10, 15, 30, 45, 60, 75, and 90 days cold storage and control) × 2 (2 105 

parasitoids, O. pityocampae and O. kuvanae) factorial design, with 10 replicates of each 106 

treatment combination. One- and two-day-old eggs were kept at 3
◦
C in a refrigerator during the 107 

cold storage period and 40 host eggs were placed in a test tube (1 x 7 cm) with a single mated O. 108 

pityocampae or O. kuvanae female for 24 h for oviposition. Five-day-old mated females of O. 109 

pityocampae and O. kuvanae were fed honey and used for the oviposition experiments. After 110 

oviposition, O. pityocampae and O. kuvanae females were removed from the test tubes. The 111 

tubes were incubated at 25 ± 1°C, with a RH of 65% ± 5% and a 16:8 h L:D photoperiod until 112 

parasitoid offspring emerged. Host larvae that hatched from unparasitized eggs were removed, 113 

and parasitized eggs were left in the tube. 114 

Exposed eggs were monitored on a daily basis, and the number of emerged adults was recorded. 115 

Similarly, the time that elapsed from the exposure until adult emergence of the parasitoids was 116 

recorded to account for the developmental time. The emergence rate was calculated as the 117 
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proportion of parasitized eggs in the tube and expressed as a percentage. To determine adult 118 

longevity, the parasitoids were placed in a test tube (1 x 7 cm) with a drop of bio-honey. 119 

Longevity was recorded daily until all of the parasitoids died. The fecundities of O. pityocampae 120 

and O. kuvanae were determined using one-day-old P. ricini eggs. For this analysis, O. 121 

pityocampae and O. kuvanae females (8 and 7 females, respectively) that emerged from stored 122 

eggs were chosen randomly. Thirty eggs were supplied on a daily basis to each newly emerged 123 

female until the females died, and the parasitoids that emerged from the parasitized eggs were 124 

counted every day. 125 

The emergence rate, the development time and adult longevity were analysed using a general 126 

linear model (GLM). Percentage data were normalized using an arcsine transformation (Zar, 127 

1999). The means were compared with Duncan’s test at a significance level of α = 0.05 128 

(McKenzie and Goldman, 2005; Minitab Release 14, SAS Institute, 2003).  129 

Results 130 

The cold storage period × parasitoid species interaction showed a significant (P<0.001) effect on 131 

the emergence rates of O. pityocampae and O. kuvanae (Table 1). Increasing cold storage periods 132 

significantly reduced the emergence rate in both parasitoid species (F=8.76, df=9, P<0.001). The 133 

emergence rates of O. pityocampae were higher than those of O. kuvanae at 10, 15, 30, 45, 60, 75 134 

and 90 days of storage (Table 2). The development times of the parasitoids were significantly 135 

affected by the interaction of three factors: cold storage period, host age, and parasitoid species 136 

(F=3.58, df=9, P<0.001) (Table 3). The development times of both parasitoid species increased 137 

compared to those of the corresponding controls for some storage periods (Table 4). The 138 

longevity of the parasitoids was affected by the interaction of the F1 condition and parasitoid 139 

species (F=13.68, df=1, P<0.001) (Table 5). The longevity of O. pityocampae (43.6 days) was 140 

significantly longer than that of O. kuvanae (36.6 days) when reared on stored eggs. Compared 141 
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with the life span of O. kuvanae reared on unstored eggs (49.5 days), of O. kuvanae reared on 142 

stored eggs was shorter (36.6 days) (Table 6). The fecundities of O. pityocampae and O. kuvanae 143 

were 54.7 (progeny/per female) and 47.0 (progeny/per female), respectively. The pre-oviposition 144 

times of O. pityocapae and O. kuvanae were 1.37 days and 1.28 days, respectively. At the same 145 

time, both have a post-oviposition periods. The post-oviposition times of O. pityocampae and O. 146 

kuvanae were 20.25 days and 14.71 days, respectively. 147 

 148 

Discussion 149 

It is important to rear egg parasitoid species on suitable hosts to ensure the success of biocontrol 150 

programmes (Consoli et al., 2010; Masry and El-Wakeil, 2020). Additionally, the ability to mass 151 

produce a large number of parasitoids is required storing host eggs for different periods could 152 

contribute positively to the mass rearing of parasitoids (Bigler, 1986; Vieira and Tavares, 1995; 153 

Lalitha et al., 2010; Masry and El-Wakeil, 2020).  154 

However, longer storage times may result in a decrease in the nutritional quality of host eggs; 155 

therefore the performance of parasitoids reared on refrigerated eggs may be reduced (Flanders, 156 

1938; Kostal et al., 2004, 2006). For this reason, it is important to take into consideration the host 157 

storage period during the rearing of parasitoids (Wong et al., 2020). Our results showed that the 158 

storage of P. ricini eggs caused adverse effects on in the biological parameters of the F1 159 

generation of O. pityocampae and O. kuvanae adults, represented by the rate of adult emergence, 160 

development time, longevity and fecundity. These results can be explained as follows: first, lethal 161 

effects occur during parasitoid development in low-quality stored eggs, and second parasitoids 162 

fail to accept stored eggs as hosts (Wong et al., 2020).  163 

Lethal effects lead to decreased parasitoid progeny emergence (Wong et al., 2020; Mahmoud and 164 

Lim, 2007; Mainali and Lim, 2013; McIntosh et al., 2019). In this study, exposure of P. ricini 165 
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eggs at different ages to low temperatures led to a reduction in the emergence rates of the both 166 

parasitoids. Siam et al. (2019) reported that low-temperature storage of host eggs for different 167 

periods had an effect on the efficiency of Trichogramma parasitoids. After 10, 15, 20 and 30 days 168 

of storage at 5°C T. evanescens emergence percentages decreased by 84.91, 80.48, 61.17, and 169 

50.73%, respectively. Bradely et al. (2004) and Ozder (2004) noted that the prolongation of cold 170 

storage led to a reduction in the efficiency of F1 female parasitoids. In our study, all the cold 171 

storage periods except for 1 day of cold storage (5, 10, 15, 30, 45, 60, 75 and 90 days) affected 172 

adult emergence in both parasitoids. In another study, when refrigerated H. halys eggs were 173 

stored at 8°C for up to two months, the emergence rate of Trissolcus japonicus (Ashmead) 174 

(Hymenoptera: Scelionidae) decreased significantly (Wong et al., 2020). Similar results have 175 

been reported in other studies for Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae) 176 

(Chen and Leopold, 2007), Trichogramma acacioi (Brun), T. atopovirilia (Oatman & Platner), T. 177 

benneti (Nagaraja & Nagarkatti), T. brasiliensis (Ashmead), T. bruni (Nagaraja) , T. demoraesi 178 

(Nagaraja), T. galloi (Zucchi), T. pretiosum (Riley), T. soaresi (Nagaraja) (Hymenoptera: 179 

Trichogrammatidae) (de Carvalho Spínola-Filho et al., 2014), T. chilonis and T. achaeae 180 

(Singhamuni et al., 2015). Tunca et al. (2014) noted that Venturia canescens (Gravenhorst) 181 

(Hymenoptera: Ichneumonidae) could not develop on Ephestia kuehniella (Zeller) or Plodia 182 

interpunctella (Hübner) (Lepidoptera: Pyralidae) stored at 5°C for 5, 7 and 15 days. Additionally, 183 

they did not develop on P. interpunctella larvae stored at 10°C for 15 days. The low rate of 184 

emergence can additionnaly be explained by the low rate of parasitism by O. pityocampae and O. 185 

kuvanae. Neither species may not accept stored P. ricini eggs for parasitization. There were 186 

significant reductions in the emergence rates of O. pityocampae and O. kuvanae after 5- days of 187 

host storage.  188 

 189 
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There are two important factors that influence the parasitism of stored host eggs: one is the ability 190 

to recognize chemical signals in host eggs, and the other is the level of tolerance to changes in 191 

physical characteristics, such as the colour, size and shape of the eggs (Stoepler et al., 2011). 192 

Female parasitoids may refuse cold-stored eggs with modified chemical and physical 193 

characteristics (Soares et al., 2009; Goubault et al., 2011; Penaflor et al., 2011; Stoepler et al., 194 

2011) Relatedly, Conti et al. (1996) reported that low-temperature storage modified egg shape 195 

and affected host recognition by parasitoids. The parasitism rates of T. semistriatus were 196 

decreased when exposed to Dolycoris baccarum (L.), Graphosoma lineatum (L.) and Eurydema 197 

ornatum (L.) (Heteroptera: Pentatomidae) eggs stored for three months at 6°C (Kıvan and Kılıç, 198 

2005). Chen and Leopold (2007) reported that parasitism by Gonatocerus ashmeadi Girault 199 

(Hymenoptera: Mymaridae) on eggs of Coagulata homalodisca (Say) (Hemiptera: Cicadellidae) 200 

decreased with an increasing cold storage period. Similarly, Karaborklu and Ayvaz (2007) noted 201 

that the emergence rate of and parasitism by T. evanescens adults that emerged from stored host 202 

eggs decreased depending on the storage period at 4°C. A similar result was also obtained for 203 

Trichogramma olea reared on Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae) eggs stored 204 

at 4°C (Gharbi, 2014). 205 

 206 

Compared with those reared on unstored eggs, O. pityocampae and O. kuvanae reared on eggs 207 

subjected to cold storage for different periods had longer development times. Chen and Leopold 208 

(2007) reported that after 70 days of Homalodisca coagulata (Say) (Hemiptera: Cicadellidae) egg 209 

storage, the developmental time of the parasitoid G. ashmeadi was delayed. Similarly, the 210 

development time of V. canescens was negatively affected by low temperature and storage time 211 

(Tunca et al., 2014). Wong et al. (2020) noted that the development time of T. japonicus 212 
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increased when eggs were refrigerated for long periods. Relatedly, the development time of 213 

parasitoids obviously decreased when reared on eggs of H. halys refrigerated for short periods.  214 

 215 

The longevity of adult O. pityocampae that emerged from cold-stored eggs did not differ from 216 

that of the adult control group. However, the longevity of O. kuvanae was significantly reduced. 217 

Kidane et al. (2015) reported that the longevity of Encarsia sophia (Hymenoptera: Aphelinidae) 218 

that emerged from host pupae stored for one week at 12 and 8°C was not affected, although 219 

longevity decreased to 66-72% with increasing storage period. The longevity of adult T. 220 

evanescens decreased significantly with increased host storage time (Ozder and Saglam 2004). 221 

Similarly, Gharbi (2014) reported that the longevity of T. oleae adults that emerged from stored 222 

pupae decreased significantly with increasing cold storage duration. Siam et al. (2019), showed 223 

that the longevity of female T. evanescens decreased with prolonged Sitotroga cerealella 224 

(Olivier) (Lepidoptera: Gelechiidae) cold storage periods.  225 

The cold storage of P. ricini eggs creates unfavourable conditions for the development of both O. 226 

pityocampae and O. kuvanae. Ooencytus pityocampae and O. kuvanae showed decreases in 227 

fecundity of 18.1% and 31.7%, respectively, when reared on cold-stored P. ricini eggs compared 228 

to those reared on fresh eggs (Tunca et al., 2019; Tunca et al., 2017). Similar results were 229 

obtained for T. cacoeciae, T. brassicae, T. evanescens (Ozder and Saglam, 2004), Gonatocerus 230 

ashmeadi (Hymenoptera: Mymaridae) (Chen and Leopold, 2007) and T. evanescens (Siam et al., 231 

2019).  232 

 233 

The healthy storage of host insects is extremely important for mass production. However, storing 234 

P. ricini eggs did not lead to the successful rearing of parasitoids. Ooencyrtus kuvanae was more 235 

sensitive than O. pityocampae in terms of development on stored eggs. However, the results of 236 
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this study showed that one- and two- day-old P. ricini eggs could be stored for up to 30 days for 237 

the rearing of O. pityocampae and that those stored for up to 10 days at 3°C could be used for 238 

rearing O. kuvanae for the sustainable production of these parasitoids. These results should be 239 

considered in the mass production of these two parasitoid species during autumn and winter and 240 

for their release in the field during the critical periods of natural pest hosts outbreaks.  241 
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