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Abstract. Optimal transport (OT) provides effective tools for compar-
ing and mapping probability measures. We propose to leverage the flex-
ibility of neural networks to learn an approximate optimal transport
map. More precisely, we present a new and original method to address
the problem of transporting a finite set of samples associated with a first
underlying unknown distribution towards another finite set of samples
drawn from another unknown distribution. We show that a particular in-
stance of invertible neural networks, namely the normalizing flows, can
be used to approximate the solution of this OT problem between a pair
of empirical distributions. To this aim, we propose to relax the Monge
formulation of OT by replacing the equality constraint on the push-
forward measure by the minimization of the corresponding Wasserstein
distance. The push-forward operator to be retrieved is then restricted to
be a normalizing flow which is trained by optimizing the resulting cost
function. This approach allows the transport map to be discretized as
a composition of functions. Each of these functions is associated to one
sub-flow of the network, whose output provides intermediate steps of the
transport between the original and target measures. This discretization
yields also a set of intermediate barycenters between the two measures
of interest. Experiments conducted on toy examples as well as a chal-
lenging task of unsupervised translation demonstrate the interest of the
proposed method. Finally, some experiments show that the proposed
approach leads to a good approximation of the true OT.

Keywords: Normalizing flows · Optimal transport · Generative Model.

1 Introduction

The optimal transport (OT) problem was initially formulated by the French
mathematician Gaspard Monge. In his seminal paper published in 1781 [18], he
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raised the following question: how to move a pile of sand to a target location
with the least possible effort or cost? The objective was to find the best way to
minimize this cost by a transport plan, without having to list all the possible
matches between the starting and ending points. More recently, thanks to recent
advances related to computational issues [22], OT has founded notable successes
with respect to applications ranging from image processing and computer vision
[21] to machine learning [2] and domain adaptation [7].

Normalizing flows (NFs) have also attracted a lot of interest in the machine
learning community, motivated in particular by their ability to model high di-
mensional data [19,15]. These deep generative models are characterized by an
invertible operator that associates any input data distribution with a target dis-
tribution that is usually chosen to be Gaussian. They have the great advantage
of leading to tractable distributions, which eases direct sampling and density es-
timation. Applications of these generative models include image generation with
real-valued non-volume preserving transformations (RealNVP) [10] or generative
flows using an invertible 1x1 convolution (GLOW) [14].

Motivated by the similarities between the problem of OT and the training
of NF, this paper proposes a neural architecture and a corresponding training
strategy that permits to learn an approximate Monge map between any two
empirical distributions. The proposed framework is based on a relaxation of the
Monge formulation of OT. To adapt the training loss to the flow-based structure
of the network, this loss function is supplemented with a Sobolev regularisation
to promote minimal efforts achieved by each flow. Numerical simulations show
that this regularisation results in a smoother and more efficient trajectory. Inter-
estingly, the discretization inherent to the flow-based structure of the network
implicitly provides intermediate transports and, at the same time, Wasserstein
barycenters [1]. To the best of our knowledge, this is the first time that NFs
are considered to address OT and Wasserstein barycenter computation, up to
interesting dimensions.

Contributions. Our contributions are twofold: i) Section 2 recalls the Monge
formulation of OT and proposes a relaxation in the case of a transport between
two empirical distributions. ii) Section 3 presents the generic framework based
on NFs and describes a particular instance to solve the OT problem. Section 4
presents some experimental results illustrating the performance of the proposed
method. Section 6 concludes this paper.

2 Relaxation of the optimal transport problem

Let µ and ν be two probability measures with finite second order moments. More
general measures, for example on X = Rd (where d ∈ N∗ is the dimension), can
have a density dµ(x) = pX(x)dx with respect to the Lebesgue measure, often
noted pX = dµ

dx , which means that

∀h ∈ C
(
Rd
)
,

∫
Rd

h(x)dµ(x) =

∫
Rd

h(x)pX(x)dx (1)
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where C(·) is the class of continuous functions. In the remainder of this paper,
dµ(x) and pX(x)dx will be used interchangeably.

2.1 Background on optimal transport

Let consider X and Y two separable metric spaces. Any measurable application
T : X → Y can be extended to the so-called push-forward operator T♯ which
moves a probability measure on X to a new probability measure on Y. For any
measure µ on X , one defines the image measure ν = T♯µ on Y such that

∀h ∈ C(Y),

∫
Y
h(y)dν(y) =

∫
X
h(T (x))dµ(x). (2)

Intuitively, the application T : X → Y can be interpreted as a function moving a
single point from one measurable space to another [22]. The operator T♯ pushes
each elementary mass of a measure µ on X by applying the function T to obtain
an elementary mass in Y. The problem of OT as formulated by Monge is now
stated in a general framework. For a given cost function c : X × Y → [0,+∞],
the measurable application T : X → Y is called the OT map from a measure µ
to the image measure ν = T#µ if it reaches the infimum

inf
T

{∫
X
c(x, T (x))dµ(x) : T♯µ = ν

}
. (3)

Alternatively the Kantorovitch formulation of OT results from a convex relax-
ation of the Monge problem (3). By defining Π as the set of all probabilistic
couplings with marginals µ and ν, it yields the optimal π that reaches

min
π∈Π

∫
X×Y

c (x,y) dπ (x,y) (4)

Under this formulation, the optimal π, which is a joint probability measure with
marginals µ and ν, can be interpreted as the optimal transportation map. It
allows the Wasserstein distance of order p between µ and ν to be defined as

Wp (µ, ν)
def
= inf

π∈Π


(

E
x∼µ
y∼ν

d (x,y)
p

) 1
p

 (5)

where d(·, ·) is a distance defining the cost function c (x,y) = d (x,y)
p. The

Wasserstein distance is also known as the Earth mover’s distance. It defines a
metric over the space of square integrable probability measures.

2.2 Proposed relaxation of OT

OT boils down to a variational problem, i.e., it requires the minimization of
an integral criterion in a class of admissible functions. Given two probability
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measures µ and ν, the existence and uniqueness of an operator T that belongs to
the class of bijective, continuous and differentiable functions such that T♯µ = ν is
not guaranteed. The difficulty lies in the class defining these admissible functions.
Indeed, even when µ and ν are regular densities on regular subsets of Rd, the
search for a transport map such that T♯µ = ν makes the problem (3) difficult
in a general case. To overcome the difficulty of solving this equation on T♯, we
propose to reformulate the Monge’s OT statement by relaxing the equality on
the operator defining the image measure.

More precisely, the equality between the image measure T♯µ and the target
measure ν is replaced by the minimization of their statistical distance d(T♯µ, ν).
The choice of the distance d(·, ·) is crucial because it determines the quality of
the approximation of the image measure by the transport map T . In this work,
we propose to choose d(·, ·) as the Wasserstein distance Wp(·, ·). This choice
will be motivated by the fact that this distance can be easily approximated
numerically without explicit knowledge of the probability distributions µ and ν,
in particular when they are empirically described by samples only. The relaxation
of the Monge problem (3) can then be written as

inf
T

{
Wp(T♯µ, ν) + λ

∫
X
c(x, T (x))dµ(x)

}
(6)

where the cost function defined in (3) is interpreted here as a regularisation term
adjusted by the hyperparameter λ.

Remark 1. The relaxed formulation (6) relies on the Wasserstein distance be-
tween the target measure ν and the image measure T♯µ. This term should not
be confused with the Wasserstein distance Wp(µ, ν) which is the infimum reached
by the solution of the Kantorovitch’s formulation of OT (4).

2.3 Discrete formulation

In a machine learning context, the underlying continuous measures are con-
ventionally approximated by empirical point measures thanks to available data
samples. Therefore, in this paper, we are interested in discrete measures and
the empirical formulation of the OT problem. Within this framework, we will
consider µ and ν two discrete measures described by the respective samples
x = {xn}Nn=1 and y = {yn}Nn=1 such that µ = 1

N

∑N
n=1 δxn

and ν = 1
N

∑N
n=1 δyn

.
In the following, an empirical version of the criterion (6) is proposed in the case
of discrete measures.

The formulation (6) requires the evaluation of a Wasserstein distance whose
computation is not trivial in its original form, especially in high dimension.
An alternative consists in considering its rewriting in the form of the sliced-
Wasserstein (SW) distance. The idea underlying the SW distance is to repre-
sent a distribution defined in high dimension thanks to a set of projected one-
dimensional distributions for which the computation of the Wasserstein distance
is closed-form. Let pX and pY denote the probability distributions of the random
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variables X and Y . For any vector on the unit sphere u ∈ Sd−1, the projection
operator Su : Rd → R is defined as Su(x) ≜ ⟨u, x⟩. The SW distance of order
p ∈ [1,∞) between pX and pY can be written [4]

SWp (pX , pY ) =

(∫
Sd−1

Wp (Su♯pX , Su♯pY )
p
du

) 1
p

(7)

where the distance Wp(·, ·) defining the integrand is now one-dimensional, leading
to an explicit computation by inversion of the cumulative distribution functions.
In the case where the distributions pX and pY are represented by the respective
samples x and y, a numerical Monte Carlo approximation of the SW distance is

ŜW p(x,y) =
1

J

J∑
j=1

Wp

(
1

N

N∑
n=1

δSuj
(xn),

1

N

N∑
n=1

δSuj
(yn)

)
(8)

where u1, . . . , uJ are drawn uniformly on the sphere Sd−1. The empirical form
of the relaxation of the Monge problem (6) is then written as

min
T

{
ŜW p(T (x),y) + λ

N∑
n=1

c (xn, T (xn))

}
(9)

where, with a slight abuse of notations, T (x) ≜ {T (xn)}Nn=1.

3 Normalizing flows to approximate OT

This section proposes to solve the problem (9) by restricting the class of the
operator T to a class of invertible deep networks referred to as normalisation
flows. The structure and the main properties of these networks are detailed
in paragraph 3.1. The strategy proposed to train these networks to solve the
problem (9) is then detailed in paragraph 3.2.

3.1 Normalizing flows

Normalization flows are a flexible class of deep generative networks that intend
to learn a change of variable between two probability distributions pX and pY
through an invertible transformation TΘ : X 7→ Y = TΘ(X) parametrized by
Θ. In general, the distribution pX is only known through samples x = {xn}Nn=1

and, for tractability purpose, the distribution pY is chosen as a centered normal
distribution with unit variance. The parameters Θ defining the operator TΘ are
then adjusted by maximizing the likelihood associated with the observations x
according to the change of variable formula

pX(x) = pY (Tθ(x))
∣∣∣det JT−1

θ

∣∣∣ (10)
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with JT−1
Θ

=
∂T−1

θ

∂x . NF networks obey a cell-like structure, explicitly defining

the operator TΘ(·) as the composition of M functions T
(m)
θm

, usually referred to
as flows, i.e.,

TΘ(·) = T
(M)
θM

◦ T (M−1)
θM−1

◦ . . . ◦ T (1)
θ1

(·) (11)

with Θ = {θ1, . . . ,θM}. In the following, to lighten notations, each sub-function
contributing to the flow will be denoted by Tm = T

(m)
θm

. In the present work,
these functions are chosen as coupling layers as implemented by flows like Real-
NVP [10] and nonlinear independent component estimation (NICE) [9]. These
coupling layers ensure an invertible transformation and an explicit expression of
the Jacobian required in the change of variables (10). The input and output of
the mth layer are related as (yid , ych) = Tm (xid , xch) with{

yid = xid

ych = (xch + Dm (xid ))⊙ exp (Em (xid ))
(12)

where xid and xch (resp. yid and ych) are disjoint subsets of components of the
input vector x (resp. the output vector y). The splitting of the input x into xid

and xch is achieved by a masking process such that xch = mask(x) is transformed
into a function of the unchanged part xid . The scale function Em(·) and the offset
function Dm(·) are then described by neural networks whose parameters θm need
to be adjusted during the training. It is worth noting that imposing the flow-
based architecture detailed in (11) will lead to an explicit discretization scheme of
the transport map TΘ(·) into a sequence of elementary transport functions Tm(·).
As it will be shown in Section 3.3, this discretization has the great advantage
of providing Wasserstein barycenters associated with the two measures µ and ν.
Note that the proposed method is not limited to NFs composed of coupling layers
such as RealNVP [10], NICE [9] or GLOW [14]. It can be generalized to other
types of NFs, including free-form Jacobian of reversible dynamics (FFJORD)
[12] and masked autoregressive flows (MAF) [20].

3.2 Loss function

As mentioned before, the objective of this work is to learn a bijective operator
relating any two distributions pX and pY described by samples x and y. The
search for this operator is restricted to the class of invertible deep networks TΘ

described in paragraph 3.1. The conventional strategy to train the network would
be to maximize the likelihood defined by (10). However this approach cannot be
implemented in the context of interest here since the base distribution pY is no
longer explicitly given: it is only available through the knowledge of the set of
samples y. As a consequence, to adjust the weights of the network, the proposed
alternative interprets the underlying learning task as the search for a transport
map. Then a first idea would be to adjust these weights by directly solving the
problem (9). However, to take advantage of the flow-based architecture of the
operator TΘ(·), it seems legitimate to equally distribute the transport efforts
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provided by each flow. Thus, the regularization in (9) will be instantiated for
each elementary transformation Tm(·) associated to each flow of the network.

Moreover, when fitting deep learning-based models a major challenge arises
from the stochastic nature of the optimization procedure, which imposes to use
partial information (e.g., as mini-batches) to infer the whole structure of the
optimization landscape. On top of that, the cost function to be optimized is
not numerically constant since the approximation ŜW of the SW distance in (9)
depends on the precise set of random vectors {uj}Jj=1 drawn over the unit sphere.
To alleviate these optimization difficulties, we propose to further regularize the
objective function by penalizing the energy |JTm

(·)|2 of the Jacobians associated
with the transformations Tm(·), m = 1, . . . ,M . These Sobolev-like penalties
promote regular operators Tm(·), promoting an overall operator Tθ(·) regular
itself [13]. In the context of optimal transport, this regularization has already
been studied in depth in [17]. In that work, the author focused on the penalization
of the Monge’s formulation of OT by the ℓ2-norm of the Jacobian. It stated the
existence of an optimal transport map T solving the minimization problem

inf
T

{∫
X

(
|T (x)− x|2 + γ|JT |2

)
T (x)dx : T#µ = ν

}
(13)

This formulation of OT imposes the transport map T to be regular rather than
deducing its regularity from its optimal properties. Finally, the training of the
NF is carried out by minimizing the loss function

ŜW p(x,y)︸ ︷︷ ︸
SW

+

N∑
n=1

M∑
m=1

[
λc(Tm−1(xn), Tm(xn)) + γ |JTm(xn)|2

]
︸ ︷︷ ︸

Reg

(14)

with T0(xn) = xn. The proposed network, whose general architecture is depicted
in Fig. 1, will be referred to as SWOT-Flow in what follows.
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Fig. 1: Architecture of the proposed SWOT-Flow.

3.3 Intermediate transports and Wasserstein barycenters

As a consequence of the multiple-flow architecture (11) of the NF, the transport
map operated by the proposed SWOT-Flow is a composition of the M individual
flows Tm(·) (m = 1, . . . ,M). Thus each flow implements an elementary transport
and the composition of the first m flows defined as

T[m](·) ≜ Tm ◦ . . . ◦ T1(·) (15)
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can be interpreted as an intermediate step of the transport map from the input
measure µ towards the target measure ν, with T[M ](·) ≜ TΘ(·). Interestingly,
these intermediate transports can be related to Wasserstein barycenters between
µ and ν defined by [1]

inf
β

{αWp(µ, β) + (1− α)Wp(β, ν)} . (16)

Indeed, the next section dedicated to numerical experiments will empirically
show that T[m]♯µ approaches the solution of the problem (16) for the specific
choice of the weight α = m

M . In other words, the image measures provided by
each intermediate transport operated by SWOT-Flow, i.e., as the outputs of
each of the M flows, can legitimately be interpreted as Wasserstein barycenters.

4 Numerical experiments

This section assesses the versatility and the accuracy of SWOT-Flow through
two sets of numerical experiments. First, several toy experiments are presented to
provide some insights about key ingredients of the proposed approach. Then the
performance of SWOT-Flow is illustrated through the more realistic and chal-
lenging task of unsupervised alignment of word embeddings in natural language
processing. The source code is publicly available on GitHub 3.

4.1 Toy examples

In these experiments, the proposed framework SWOT-Flow is implemented and
tested with synthetic data. In all experiments, the input distributions are de-
scribed by the respective samples x = {xn}Nn=1 and y = {yn}Nn=1 such that
µ = 1

N

∑N
n=1 δxn

and ν = 1
N

∑N
n=1 δyn

with N = 20000. The cost function c(·, ·)
is chosen as the squared Euclidean distance, i.e., c(x, y) = ∥x − y∥22. However,
it is worth noting that the proposed method is not limited to this Euclidean
distance and can handle other costs defined on Rd or even on curved domains.

Implementation details. The stochastic gradient descent used to solve (14)
is implemented in Pytorch. We use Adam optimizer with learning rate 10−4 and
a batch size of 4096 or 8192 samples. The NF implementing TΘ(·) is a RealNVP
[10] for the example of Fig. 2 and an ActNorm type architecture network [14]
for Fig. 3 and Fig. 4. It is composed of M = 4 flows, each composed of two four-
layer neural networks corresponding to Dm(·) and Em(·) (d → 8 → 8 → d) using
hyperbolic tangent activation function. During training, the number J of slices
drawn to approximate the SW distance in (8) has been progressively increased,
starting from J = 500 to J = 2000 by step of 50 slices. At each epoch, new slices
are uniformly drawn over the unit sphere and 100 epochs are carried out for each
number of slices. The training procedure consist in 1) defining the loss function
3 FlorentinCDX/SWOT-Flow

https://github.com/FlorentinCDX/SWOT-Flow/
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as the sole SW term in (14) from J = 500 to 1500 slices and then 2) incorporating
the regularization term denoted as Reg in (14) where hyperparameters λ and γ
are increased by a factor of 5% every step of 100 slices.

Fig. 2: Operator T learnt by SWOT-Flow when the base distribution pX is a
double-moon (top left) and the target distribution pY is a circle (bottom right).

Qualitative results. As a first illustration of the flexibility of the proposed
approach, Fig. 2 shows the results obtained after learning an operator T that
transports a double moon-shaped distribution pX (top left) to a circle-shaped
distribution (bottom right). The empirical image measures T♯pX (top right) and
T−1
♯ pY (bottom left) are obtained by applying the estimated T (·) operator or its

inverse T−1(·). It is worth noting that the difficulty inherent to this experiment
lies in the respective disjoint and non-disjoint supports of the two distributions.
Despite the regularity of the trained NF, a very good approximation of the OT
is learnt, even in presence of this topological change.

Fig. 3 aims at illustrating the relevance of the Sobolev-like regularization
(i.e., the ℓ2-norm of the Jacobian) included into the loss function (14) defined to
train the NF. The first simulation protocol considers circle-shaped distributions
while the second case considers rectangle-shaped distributions. In what follows,
these two cases will be referred to as P1 and P2, respectively. In this experiment,
the objective is to learn the transport map from an initial distribution pX (light
blue) to a target distribution pY (dark blue) which is translated for P1 and
both translated and stretched for P2. The color gradient shows the outputs
of the M successive flows of the network, i.e. the image measures T[m]♯pX for
m = 1, . . . ,M . In the absence of regularization (left), the successive elementary
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Fig. 3: Elementary transports achieved by the proposed NF when trained without
(1st and 3rd panels) or with (2nd and 4th panels) the regularization for protocols
P1 (left panels) and P2 (right panels).

transports clearly suffer from multiple unexpected deformations (superfluous
translations and dilations). In contrast, when the loss is complemented with the
proposed Sobolev-type penalty (right), the learnt operator T is decomposed as
a sequence of much more regular elementary transports. The resulting transport
appears to be very close to optimal. In case P1, the expected translation is
recovered, as well as the combined translation and stretching in case P2.

Table 1: Overall cost C̄ and elementary costs c̄m required by each flow Tm(·)
of the NF trained with or without (w/o) regularization for protocols P1 (circle-
shaped distributions) and P2 (rectangle-shaped distributions).

c̄1 c̄2 c̄3 c̄4 C̄

P1
w/o regularization 150.13 110.94 108.41 151.65 521.12
with regularization 90.20 90.70 90.71 90.22 361.22

P2
w/o regularization 154.99 98.67 52.49 101.21 407.38
with regularization 88.77 89.42 89.43 89.38 357.0

To be more precise quantitatively, Table 1 compares some metrics obtained
when the NF has been trained using the regularization-free or regularized loss
function, as defined in (14). For the two aforementioned simulation protocols, it
reports the elementary costs

c̄m =
1

N

N∑
n=1

∥Tm−1(xn)− Tm(xn)∥22 (17)

spent by each of the M flows T1(·), . . . , TM (·) to achieve the transport maps
retrieved by SWOT-Flow. This table (last column) also reports the overall cost
C̄ =

∑M
m=1 c̄m. For the two simulation protocols P1 and P2, these results clearly

show cheaper transports when using the proposed regularization. For instance,
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for the simulation protocol P1, the overall cost is C̄ = 360 with the regular-
ization, compared to C̄ = 520 when it is omitted. Moreover, when using the
regularized loss function, this cost is distributed homogeneously over the succes-
sive flows, with a variation of at most ±1% from one flow to another, against
±20% otherwise.

(a) Training set (b) Squares (c) Triangles (d) Gaussians

(e) Training set (f) Circles (g) Squares (h) Gaussians

Fig. 4: Examples of transported data sets for protocols P1 (top) and P1 (bottom).

Fig. 4 aims at illustrating the capacity of generalization of the transport
map learnt by SWOT-Flow. In this experiment, SWOT-Flow has been trained
following the simulation protocols P1 (Fig. 4a) or P2 (Fig. 4e). Once trained
on the data set associated with each protocol, the NFs are fed with differently
shaped data and the elementary transports are monitored as above. Fig 4b-4d
and 4g-4h show the results when using square-, triangle-, Gaussian-shaped data
sets for both protocols, respectively. As expected, all initial distributions are
either simply translated in case P1 or translated and stretched in case P2. The
intermediate distributions correspond to the expected barycenters as well. Fig.
4 clearly demonstrates the generalization capacity of the proposed approach.

Multivariate Gaussians with varying dimensions. When the source and
target distributions µ and ν of a transportation problem are multivariate Gaus-
sians, the Wasserstein barycenters defined by (16) are also multivariate Gaussian
distributions. In this case, an efficient fixed-point algorithm can be used to esti-
mate its mean vector a and covariance matrix Σ [11]. This experiment capitalizes
on this finding to assess the ability of SWOT-Flow to approximate Wasserstein
barycenters, as stated in Section 3.3. To this end, the algorithm designed in [11]
is implemented to estimate the actual barycenter associated with two prescribed
multivariate Gaussian distributions for α = 1− α = 1

2 . This barycenter is com-
pared to the image measure T[m]♯µ estimated by SWOT-Flow with m = M

2 .
More precisely, the mean vector and the covariance matrix of the barycenter
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are compared to their maximum likelihood estimates â and Σ̂ computed from
the samples {T[m](xn)}Nn=1 transported by the first m flows. The resulting mean
square errors (MSEs)

MSE(a) = ∥a− â∥22 and MSE(Σ) = ∥Σ − Σ̂∥2F (18)

are reported in Table 2 for varying dimensions ranging from 2 to 8. This table
also reports the MSEs reached by other state-of-the-art free-support methods
[8,5,16]. For the methods [8] and [5], n = 5000 and n = 100 support points
have been used, respectively, since these are the maximum numbers allowed for
the algorithms to terminate in reasonable computational times. SWOT-Flow
compares favorably to state-of-the-art methods since reported MSEs in Table
2 appear to be most often the smallest. These observation may call for a more
general study, but remains noticeable since SWOT-Flow has not been specifically
designed to compute the Wasserstein barycenters, contrary to alternate methods.

Table 2: Performance of the estimation of the median barycenters. Reported
scores result from the average over 5 Monte Carlo runs.

[8] [5] [16] SWOT-Flow

D
im

en
si

on

2
MSE(a) 9.99 · 10−5 3.14 · 10−4 1.17 · 10−4 8.09 · 10−5

MSE(Σ) 7.28 · 10−4 2.39 · 10−3 1.98 · 10−3 1.44 · 10−4

4
MSE(a) 1.73 · 10−3 1.68 · 10−3 1.44 · 10−3 1.44 · 10−4

MSE(Σ) 1.35 · 10−2 2.50 · 10−2 1.22 · 10−2 3.61 · 10−4

6
MSE(a) 2.04 · 10−3 2.58 · 10−3 3.24 · 10−3 1.23 · 10−2

MSE(Σ) 4.38 · 10−2 8.86 · 10−2 2.37 · 10−2 5.29 · 10−4

8
MSE(a) 1.23 · 10−3 1.48 · 10−3 3.14 · 10−3 1.29 · 10−2

MSE(Σ) 8.31 · 10−2 1.64 · 10−1 4.23 · 10−2 2.22 · 10−3

4.2 Unsupervised word translation

In a second set of experiments, the performance of SWOT-Flow has been assessed
on the task of unsupervised word translation. Given word embeddings trained on
two monolingual corpora, the goal is to infer a bilingual dictionary by aligning
the corresponding word vectors.

Experiment description. This experiment considers the task of aligning two
sets of points in high dimension. More precisely, it aims at inferring a bilingual
lexicon, without supervision, by aligning word embeddings trained on monolin-
gual data. FastText [3] has been implemented to learn the word vectors used for
representation. It provides monolingual embeddings of dimension 300 trained on
Wikipedia corpora. Words are lower-cased, and those that appear less than 5
times are discarded for training. As a post-processing step, only the first 50k
most frequent words are selected in the reported experiments.
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Architecture. The proposed SWOT-Flow method has been implemented using
a RealNVP architecture. The scale function Em(·) and the offset function Dm(·)
are multilayer neural networks with two hidden layers of size 512 and hyperbolic
tangent activation function. Adam has been used as an optimizer with a learning
rate of 1 ·10−3. The number of slices involved in the Monte Carlo approximation
of the SW distance in (8) has been progressively increased from J = 500 slices
to J = 3000 by steps of 50. For each number of slices, 100 epochs have been
performed. The hyperparameters λ and γ adjusting the weights of the composite
regularization have been increased by a factor of 5% every steps of 500 slices.

Table 3: Comparison of accuracies obtained by SWOT-Flow and adv-net [6] for
unsupervised word translation (’en’ is English, ’fr’ is French, ’de’ is German, ’ru’
is Russian).

Method en-es es-en en-fr fr-en en-de de-en en-ru ru-en

SWOT-Flow
20-NN 37.4 24.2 46.6 34.1 44.4 27.6 14.4 3.8

10-NN 33.5 22.5 42.5 32.5 39.5 26.8 10.2 2.1

adv-net [6] 10-NN 31.4 21.2 39.6 35.1 40.1 27.1 7.1 2.3

Main results. To quantitatively measure the quality of SWOT-Flow, the prob-
lem of bilingual lexicon induction is addressed, with the same setting as in [6].
The same evaluation data sets and codes, as well as the same word vectors have
been used. Given an input word embedding (n = 1, . . . , N with Ntest = 1000) in
a given language, the objective is to assess if its counterpart T (xn) transported
by SWOT-Flow belongs to the close neighborhood of the output word embed-
ding yn in the target language. The neighborhood V(yn) is defined as the set of
K-nearest neighbors computed in a cosine similarity sense with K = 10 or 20 in
dimension 300. The overall accuracy is computed as the percentage of correctly
transported input samples. Denoting by 1A the indicator function, i.e., 1A = 1
if the assertion A is true and 1A = 0 otherwise,

accuracy =
1

Ntest

Ntest∑
n=1

1{T (xn)∈V(yn)} × 100 (%) (19)

Table 3 reports the accuracy scores for several pairs of languages. Although
SWOT-Flow has not been specifically designed to perform word translation,
these results show that its overall performance is on par with the adversarial
network (adv-net) proposed specifically for this task in [6]. In particular, SWOT-
Flow seems to perform well for translation between languages with close origins.

Fig. 5 qualitatively illustrates this good performance by showing how close a
set of translated words T (xn) are to their true translation yn. This representation
is obtained by a classical projection on the 2 first PCA components of the target
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(a) english → french (b) english → german

Fig. 5: 2D PCA representation of the target word embedding space: the targeted
translated (in green) and the transported source (in blue) embedded words.

embedded space. The translation of 5 specific words from English to French or
German fall in the close vicinity of their true counterparts.

5 Discussion

Cycle consistency. Cycle consistency, as proposed in CycleGAN [23], aims
at learning meaningful cross-domain mappings such that the data translated
from the domain X to the domain Y via TX→Y can be mapped back to the
original data points in X via TY→X . That is, TY→X ◦ TX→Y(x) ≈ x for all
x ∈ X . For CycleGan, and many other domain transfer models such as [2],
this key property should be enforced by including a cycle consistency term into
the loss function. Conversely, since NF-based generative models learn bijective
mappings, the proposed SWOT-Flow inherits the cycle consistency property by
construction.

Semi-discrete formulation. The proposed SWOT-Flow framework has been
explicitly derived to approximate OT between two discrete empirical distribu-
tions. It can be instanciated to perform semi-discrete OT, i.e., to handle the
case where one of distribution is not described by data points but rather given
as an explicit continuous probability measure. Instead of relaxing the Monge
formulation (3) as in (6), it would consist in replacing the SW distance with a
log-likelihood term log fν(·) associated with the target continuous measure. The
loss function in (14) would be replaced by

−
N∑

n=1

log fν(TΘ(xn)) +

N∑
n=1

M∑
m=1

[
λc(Tm−1(xn), Tm(xn)) + γ |JTm(xn)|2

]
(20)

where the log-likelihood term is evaluated at the data points {TΘ(xn)}Nn=1 trans-
ported by the NF.
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NF to approximate barycenters. As discussed in Section 3.3 and experimen-
tally illustrated in Section 4.1, the flow-based architecture of the SWOT-Flow
network leads to intermediate transports, that can be related to Wasserstein
barycenters. On the toy Gaussian example considered in Section 4.1, SWOT-
Flow provides good approximation of the barycenters, although it has not been
specifically designed to perform this task. If one is interested in devising a NF
approximating these barycenters, the definition (16) would lead to the optimiza-
tion problem

inf
T

{
M∑

m=1

αmWp(µ, T[m]♯µ) + (1− αm)Wp(T[m]♯µ, ν)

}
(21)

with αm = m
M . When handling empirical measures described by samples, the

subsequent discretization would require to replace both terms with Monte Carlo
approximations (8) of the SW distances. However, this would lead to a compu-
tationally demanding training procedure.

6 Conclusion

We propose a new method to learn the optimal transport map between two
empirical distributions from sets of available samples. To this aim, we write a
relaxed and penalized formulation of the Monge problem. This formulation is
used to build a loss function that balances between the cost of the transport and
the proximity in Wasserstein distance between the transported base distribution
and the target one. The proposed approach relies on normalizing flows, a fam-
ily of invertible neural networks. Up to our knowledge, this is the first method
that is able to learn such a generalizable transport operator. As a side bene-
fit, the multiple flow architecture of the proposed network interestingly yields
intermediate transports and Wasserstein barycenters. The proposed method is
illustrated by numerical experiments on toy examples as well as an unsupervised
word translation task. Future work will aim at extending these results to high
dimensional applications.
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