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A flow is a directed space structure on a homotopy type. It is already known that the underlying homotopy type of the realization of a precubical set as a flow is homotopy equivalent to the realization of the precubical set as a topological space. This realization depends on the noncanonical choice of a q-cofibrant replacement. We construct a new realization functor from precubical sets to flows which is homotopy equivalent to the previous one and which does not depend on the choice of any cofibrant replacement functor. The main tool is the notion of natural d-path introduced by Raussen. The flow we obtain for a given precubical set is not anymore q-cofibrant but is still m-cofibrant. As an application, we prove that the space of execution paths of the realization of a precubical set as a flow is homotopy equivalent to the space of nonconstant d-paths between vertices in the geometric realization of the precubical set.

Introduction

Presentation. Precubical sets are a prominent geometric model for concurrency theory [START_REF] Fajstrup | Directed Algebraic Topology and Concurrency[END_REF]. The n-cube represents the concurrent execution of n actions. The space of d-paths in the geometric realization of a precubical set is studied in many papers, such as a series of papers [START_REF] Raussen | Trace spaces in a pre-cubical complex[END_REF][START_REF] Raussen | Simplicial models of trace spaces[END_REF][START_REF] Raussen | Simplicial models for trace spaces II: General higher dimensional automata[END_REF][START_REF] Ziemiański | Spaces of directed paths on pre-cubical sets[END_REF][START_REF] Ziemiański | Spaces of directed paths on pre-cubical sets II[END_REF] by Raussen and Ziemiański (the list of references is not exhaustive). Precubical sets can also be realized as flows in the sense of [START_REF] Gaucher | A model category for the homotopy theory of concurrency[END_REF]. The realization functor of a precubical set as a flow is first introduced in [11, Definition 7.2].

The two approaches (let us call them the cubical one of Raussen and Ziemiański and the globular one of the author) do not coincide up to homeomorphism. In the cubical approach, the d-paths of the topological n-cube [0, 1] n are the continuous paths which are nondecreasing with respect to each axis of coordinates. Raussen and Ziemiański also study several variants (tame, strict, natural etc.) which give rise to homotopy equivalent spaces of d-paths between two fixed vertices in the geometric realization of the precubical set. None of these definitions give rise to spaces of d-paths from the initial to the final states of the n-cube [0, 1] n which are homeomorphic to the spaces of execution paths from the initial to the final states of the n-cube [0, 1] n viewed as a flow. In the latter case, the space of execution paths from the initial to the final states of the n-cube is the (n -1)-dimensional disk D n-1 (see Theorem 3.12). It means that the latter space depends on a noncanonical choice of an achronal slice in the middle of the topological n-cube and on a noncanonical choice of a homeomorphism between this achronal slice and D n-1 .

The underlying homotopy type of a flow is the homotopy type obtained after removing the temporal information contained in a flow. It is defined in [START_REF] Gaucher | T-homotopy and refinement of observation. IV. Invariance of the underlying homotopy type[END_REF]Section 6] and a more conceptual construction is provided in [14, Proposition 8.16] using Moore flows. It is already known in full generality that the underlying homotopy type of the realization of a precubical set as a flow is isomorphic to the homotopy type of the realization of a precubical set as a topological space [10, Theorem 6.2.1]. One of the purposes of this paper is to prove the directed version of this result.

At first, using the notion of natural d-path introduced by Raussen in [24, Definition 2.14], we improve the realization functor from precubical sets to flows |-| q : □ op Set → Flow introduced in [11, Definition 7.2] as follows.

Theorem (Theorem 5.8). There exist a colimit-preserving functor |-| nat : □ op Set → Flow which does not depend on any cofibrant replacement and a natural transformation µ : |-| q ⇒ |-| nat such that for all precubical sets K, the natural map µ K : |K| q → |K| nat induces a bijection on states and a homotopy equivalence P α,β |K| q ≃ P α,β |K| nat for all α, β ∈ K 0 . Theorem 5.8 implies that P α,β |K| nat is m-cofibrant, P α,β |K| q being q-cofibrant. The interest of the natural realization functor is that it does not depend anymore on the arbitrary choice on any cofibrant replacement functor for the category of flows. Surprisingly, it does not even depend on an m-cofibrant replacement or on an h-cofibrant replacement of the category of flows. The geometric properties of the natural d-paths enable us in Section 6 to give another description of the natural realization functor using Ziemiański's notion of cube chain. As an application of Theorem 5.8 and of Section 6, we prove the following theorems:

Theorem (Theorems 7.7 and 7.8). Let K be a precubical set. Let α, β be two vertices of K. The space of execution paths P α,β |K| nat is homotopy equivalent to the set of nonconstant tame natural d-paths from α to β equipped with the ∆-kelleyfication of the relative topology induced by the compact-open topology in the geometric realization of K. When moreover K is spatial (e.g. proper), the homotopy equivalence is a homeomorphism.

Theorem (Corollary 7.9). Let K be a precubical set. Let α, β be two vertices of K. Then the space of execution paths P α,β |K| q is homotopy equivalent to the space of nonconstant d-paths from α to β in the geometric realization of K equipped with the ∆-kelleyfication of the compact-open topology.

Corollary 7.9 is not surprising. However, until a proof was known, it was not sure that the statement was true for all precubical sets in full generality, and not only e.g. for nonpositively curved precubical sets in the sense of [START_REF] Goubault | Directed homotopy in non-positively curved spaces[END_REF], a notion which brings together the properties satisfied by the precubical sets coming from a lot of real concurrent systems (see [START_REF] Goubault | Directed homotopy in non-positively curved spaces[END_REF]Proposition 1.29]).

Outline of the paper. Section 2 is a reminder about the three model structures of flows: Quillen (q), Hurewicz (h) and mixed (m) introduced in [START_REF] Gaucher | Six model categories for directed homotopy[END_REF]. It contains, as a new and easy remark, the proof that these three model structures on flows are simplicial.

Section 3 recalls some basic facts about cocubical objects, gives the definition of an r-realization functor with r ∈ {q, m, h} in Definition 3.6, adapts in Theorem 3.8 some tools coming from [START_REF] Gaucher | Globular realization and cubical underlying homotopy type of time flow of process algebra[END_REF], and finally gives the example of the q-realization functor expounded in [START_REF] Gaucher | Towards a homotopy theory of process algebra[END_REF].

Section 4 recalls the notion of tame natural d-path of a precubical set and proves some basic facts about their topology, in relation with the ∆-generated spaces which are the setting of this work.

Section 5 expounds the construction of the natural realization functor in Definition 5.3. It does not depend on any cofibrant replacement functor. It is a new realization functor which is proved to be equivalent in some sense to the one of [START_REF] Gaucher | Towards a homotopy theory of process algebra[END_REF] in Theorem 5.8. This section also proves that this new realization functor is an m-realization functor.

Section 6 gives an equivalent definition in Theorem 6.3 of the natural realization functor in terms of cube chains in the sense of Ziemiański. In Section 7, the tame concrete realization of a precubical set as a flow and the notion of spatial precubical set are introduced in Definition 7.1 and in Definition 7.3 respectively. Theorem 7.7 proves that the natural realization and the tame concrete realization coincide in the spatial case. Then the latter theorem is generalized to the nonspatial case in Theorem 7.8. Finally, the connection with the q-realization functor is described in Corollary 7.9.

Appendix A is devoted to proving that the class of spatial precubical sets is a small orthogonality class.

Prerequisites and notations. We refer to [START_REF] Adámek | Locally Presentable and Accessible Categories[END_REF] for locally presentable categories, and to [START_REF] Rosický | On combinatorial model categories[END_REF] for combinatorial model categories. We refer to [START_REF] Hirschhorn | Model Categories and Their Localizations[END_REF][START_REF] Hovey | Model Categories[END_REF] for more general model categories, and to [START_REF] Garner | Lifting accessible model structures[END_REF][START_REF] Hess | A necessary and sufficient condition for induced model structures[END_REF][START_REF] Rosický | Accessible model categories[END_REF] for accessible model cat-egories. The main tools used in this paper are the {q, m, h}-model structures of flows [START_REF] Gaucher | Six model categories for directed homotopy[END_REF], the homotopical results of [START_REF] Gaucher | Globular realization and cubical underlying homotopy type of time flow of process algebra[END_REF] about the realization functors of precubical sets as flows, and some topological results due to Ziemiański about natural d-paths and the technique of cube chains coming from [START_REF] Ziemiański | Spaces of directed paths on pre-cubical sets II[END_REF].

The initial object of a category is denoted by ∅. The terminal object of a category is denoted by 1. The set of maps from X to Y in a category C is denoted by C(X, Y ). Id X denotes the identity map of X.

The category Top denotes the category of ∆-generated spaces or of ∆-Hausdorff ∆-generated spaces (cf. [15, Section 2 and Appendix B]). The inclusion functor from the full subcategory of ∆-generated spaces to the category of general topological spaces together with the continuous maps has a right adjoint called the ∆-kelleyfication functor. The latter functor does not change the underlying set. The category Top is locally presentable and cartesian closed. The internal hom TOP(X, Y ) is given by taking the ∆-kelleyfication of the compact-open topology on the set Top(X, Y ). The category Top is equipped with its q-model structure. The m-model structure [START_REF] Cole | Mixing model structures[END_REF] and the h-model structure [START_REF] Barthel | On the construction of functorial factorizations for model categories[END_REF] of Top are also used in various places of the paper. The q-model structure of Top is combinatorial. The m-model structure and the h-model structure of Top are accessible ( 1). The three model structures are monoidal and simplicial.

Compact means quasicompact Hausdorff (French convention).

Warning. All d-paths in a geometric realization of a precubical set considered in this paper are tame and nonconstant: see Remark 4.6. The adjective "tame" is added on purpose everywhere. The adjective "nonconstant" is often omitted (but always understood), except in Corollary 7.9 to avoid any confusion. A flow X consists of a topological space PX of execution paths, a discrete space X 0 of states, two continuous maps s and t from PX to X 0 called the source and target map respectively, and a continuous and associative map

Three simplicial model structures of flows

* : {(x, y) ∈ PX × PX | t(x) = s(y)} → PX such that s(x * y) = s(x) and t(x * y) = t(y). Let P α,β X = {x ∈ PX | s(x)
= α and t(x) = β}: it is the space of execution paths from α to β, α is called the initial state and β is

( 1 ) It is unlikely that they are combinatorial but no proof is known. The proof of [START_REF] Raptis | Homotopy theory of posets[END_REF]Remark 4.7] that the h-model structure is not cofibrantly generated works only for the category of general topological spaces.

called the final state. Note that the composition is denoted by x * y, not by y • x. The category Flow is locally presentable by [START_REF] Gaucher | Homotopy theory of Moore flows (I)[END_REF]Theorem 6.11].

Every set can be viewed as a flow with an empty space of execution paths. Every poset can be viewed as a flow with one execution path from α to β if and only if α < β. The obvious functor Set ⊂ Flow from the category of sets to that of flows is limit-preserving and colimit-preserving. The following example of flows will be important later:

Example 2.2. For a topological space Z, let Glob(Z) be the flow defined by Glob(Z) 0 = {0, 1}, PGlob(Z) = P 0,1 Glob(Z) = Z, s = 0, t = 1. This flow has no composition law. We need to recall: Theorem 2.4. Let r ∈ {q, m, h}. Then there exists a unique model structure on Flow such that:

• A map of flows f : X → Y is a weak equivalence if and only if f 0 : X 0 → Y 0 is a bijection and for all (α, β) ∈ X 0 × X 0 , the continuous map P α,β X → P f (α),f (β) Y is a weak equivalence of the r-model structure of Top. • A map of flows f : X → Y is a fibration if and only if for all (α, β) ∈ X 0 × X 0 , the continuous map P α,β X → P f (α),f (β) Y is a fibration of the r-model structure of Top.

This model structure is accessible and all objects are fibrant. Moreover, this model structure is simplicial. It is called the r-model structure of Flow.

Proof. This is [START_REF] Gaucher | Six model categories for directed homotopy[END_REF]Theorem 7.4] except the "moreover" part. The fact that Flow is enriched, tensored and cotensored over simplicial sets is proved in [START_REF] Gaucher | Globular realization and cubical underlying homotopy type of time flow of process algebra[END_REF]Section 3.3]. The q-model structure of flows is simplicial by [START_REF] Gaucher | Globular realization and cubical underlying homotopy type of time flow of process algebra[END_REF]Theorem 3.3.15]. It remains to prove the compatibility with the m-model structure and the h-model structure. It suffices to prove (see the very end of the proof of [START_REF] Gaucher | Globular realization and cubical underlying homotopy type of time flow of process algebra[END_REF]Proposition 3.3.14]) that the lift k ′ of the commutative square

(D n × {0} × |∆[1]|) ∪ (D n × [0, 1] × {-1, 1}) / / P α,β X D n × [0, 1] × |∆[1]| / / k ′ 3 3 P α,β Y exists if the map P α,β X → P α,β
Y is an m-fibration of spaces or an h-fibration of spaces. Since every m-fibration of spaces and every h-fibration of spaces is a q-fibration of spaces, the proof is complete.

By [START_REF] Gaucher | Six model categories for directed homotopy[END_REF]Theorem 7.7], the m-model structure is the mixing of the qmodel structure and the h-model structure in the sense of [START_REF] Cole | Mixing model structures[END_REF]Theorem 2.1]. The q-model structure is not only accessible, but also combinatorial. A set of generating cofibrations is the set of maps {Glob(S n-1 ) ⊂ Glob(D n ) | n ≥ 0} ∪ {C : ∅ → {0}, R : {0, 1} → {0}} by e.g. [START_REF] Gaucher | Six model categories for directed homotopy[END_REF]Theorem 7.6]. Every q-cofibration of flows is an m-cofibration and every m-cofibration of flows is an h-cofibration by [START_REF] Cole | Mixing model structures[END_REF]Proposition 3.6].

There exists a flow which is not cofibrant in any of the three model structures by [START_REF] Gaucher | Six model categories for directed homotopy[END_REF]Proposition 7.9]. This behavior differs from the behavior of the h-model structure of topological spaces for which all spaces are h-cofibrant (and h-fibrant). The reason is that the h-model structure of flows does not coincide with the Hurewicz model structure given by [START_REF] Barthel | On the construction of functorial factorizations for model categories[END_REF]Corollary 5.23]. This one exists as well because Flow satisfies the monomorphism hypothesis, being locally presentable, and because Flow is topologically bicomplete (the proof is similar to the proof that it is simplicial as given in [10, Section 3.3]) since a ∆-generated space is homeomorphic to the disjoint sum of its path-connected components by [START_REF] Gaucher | Homotopical interpretation of globular complex by multipointed d-space[END_REF]Proposition 2.8]. This Hurewicz model structure is not used in this paper. 

Let δ α

i : [n -1] → [n] be the coface map defined for 1 ≤ i ≤ n and α ∈ {0, 1} by δ α i (ϵ 1 , . . . , ϵ n-1 ) = (ϵ 1 , . . . , ϵ i-1 , α, ϵ i , . . . , ϵ n-1 ). The small category □ is by definition the subcategory of the category of sets with the set of objects {[n] | n ≥ 0} and is generated by the morphisms δ α i . They satisfy the cocubical relations δ β j δ α i = δ α i δ β j-1 for i < j and for all (α, β) ∈ {0, 1} 2 . If p > q ≥ 0, then the set of morphisms □([p], [q]) is empty. If p = q, then the set □([p], [p]) is the singleton {Id [p] }. For 0 ≤ p ≤ q, all maps of □ from [p] to [q] are one-to-one. A good reference for presheaves is [START_REF] Lane | Sheaves in Geometry and Logic, A First Introduction to Topos Theory[END_REF].

Definition 3.2 ([3]

). The category of presheaves over □, denoted by □ op Set, is called the category of precubical sets. A precubical set K consists of a family of sets (K n ) n≥0 and of set maps

∂ α i : K n → K n-1 with 1 ≤ i ≤ n and α ∈ {0, 1} satisfying the cubical relations ∂ α i ∂ β j = ∂ β j-1 ∂ α i for any α, β ∈ {0, 1} and for i < j. An element of K n is called an n-cube. Let dim(c) = n if c ∈ K n . An element of K 0 is also called a vertex of K.
Let K be a precubical set. There exists a functor □(K) : (□↓K) → □ op Set which takes the map of precubical sets ). Let C be a cocomplete category. The mapping X → X induces an equivalence of categories between the category of cocubical objects of C and the colimit-preserving functors from □ op Set to C. Definition 3.6 below is new. Moreover, only q-realization functors were implicitly studied in [START_REF] Gaucher | Towards a homotopy theory of process algebra[END_REF] because the h-model structure and the m-model structure of flows were not yet known: they were introduced 13 years later in [START_REF] Gaucher | Six model categories for directed homotopy[END_REF]. Definition 3.6. Let r ∈ {q, m, h}. A functor F : □ op Set → Flow is an r-realization functor if it has the following properties:

□[n] → K to □[n]. It is a general property of presheaves that K = lim -→ □(K),
• F is colimit-preserving. • For all n ≥ 0, the map of flows F (∂□[n]) → F (□[n]) is an r-cofibration.
• There is an objectwise weak equivalence of cocubical flows F (□[ * ]) → {0 < 1} * in the r-model structure of Flow.

Proposition 3.7. Let r ∈ {q, m, h}. Let F : □ op Set → Flow be an r-realization functor. Then for all precubical sets K, the flow F (K) is r-cofibrant and there is a natural bijection

K 0 ∼ = F (K) 0 . Proof. Let K be a precubical set. Then the canonical map ∅ → K is a transfinite composition of pushouts of the maps ∂□[n] → □[n] for n ≥ 0. Consequently, the canonical map ∅ → F (K) is a transfinite composition of pushouts of the maps F (∂□[n]) → F (□[n]) for n ≥ 0. This implies that F (K) is r-cofibrant. From the objectwise weak equivalence of cocubical flows F (□[ * ]) → {0 < 1} * , we deduce the objectwise bijection of cocubical sets F (□[ * ]) 0 ∼ = {0, 1} * ∼ = □[ * ] 0 . We obtain the natural bijection F (K) 0 ∼ = K 0 . Theorem 3.8. Let r ∈ {q, m, h}. Consider two r-realization functors F 1 , F 2 : □ op Set → Flow.
Then there exists a natural transformation µ :

F 1 ⇒ F 2 such that there is a commutative diagram of cocubical flows F 1 (□[ * ]) µ □[ * ] / / F 2 (□[ * ]) {0 < 1} * {0 < 1} *
and for all precubical sets K, the map µ K : F 1 (K) → F 2 (K) natural with respect to K is a weak equivalence of the r-model structure of Flow. Moreover, for all (α, β)

∈ K 0 × K 0 , the natural map P α,β F 1 (K) ≃ -→ P α,β F 2 (K) is a homotopy equivalence of spaces.
Proof. The maps of cocubical flows

F i (□[ * ]) → {0 < 1} * for i = 1, 2
are objectwise fibrations since P α,β {0 < 1} * is empty or equal to a singleton and because all topological spaces are fibrant. Consequently, they are objectwise trivial fibrations by definition of an r-realization functor. By [START_REF] Gaucher | Globular realization and cubical underlying homotopy type of time flow of process algebra[END_REF]Theorem 2.3.3], there exists a natural transformation µ : F 1 ⇒ F 2 such that there is the commutative diagram of cocubical flows depicted in the statement of the theorem, and for all precubical sets K, the natural map µ K : F 1 (K) ⇒ F 2 (K) is a simplicial homotopy equivalence, and therefore a weak equivalence of the r-model structure by [START_REF] Hirschhorn | Model Categories and Their Localizations[END_REF]Proposition 9.5.16], between two r-cofibrant flows. If r = h, then the natural map P α,β F 1 (K) → P α,β F 2 (K) is a homotopy equivalence of spaces by definition of the weak equivalences of the h-model structure of flows. If r = q, then the flows F 1 (K) and F 2 (K) are q-cofibrant by Proposition 3.7. Therefore, the spaces P α,β F 1 (K) and P α,β F 2 (K) are q-cofibrant by [START_REF] Gaucher | Left properness of flows[END_REF]Theorem 5.7]. Using the Whitehead theorem [20, Theorem 7.5.10], we deduce that the natural map P α,β F 1 (K) → P α,β F 2 (K) is a homotopy equivalence of spaces. It remains to consider the case r = m. The flows F 1 (K) and F 2 (K) are m-cofibrant by Proposition 3.7. We deduce that the spaces P α,β F 1 (K) and P α,β F 2 (K) are m-cofibrant by [START_REF] Gaucher | Six model categories for directed homotopy[END_REF]Theorem 8.7]. By [START_REF] Cole | Mixing model structures[END_REF]Corollary 3.4], we conclude that the weak homotopy equivalence P α,β F 1 (K) → P α,β F 2 (K) is a homotopy equivalence of spaces as well.

Theorem 3.9. There exists a q-realization functor | -| q : □ op Set → Flow.

Proof. Let (-) cof be a q-cofibrant replacement functor of Flow. Let

|K| q := lim -→ □[n]→K ({0 < 1} n ) cof .
It is a q-realization functor by [START_REF] Gaucher | Towards a homotopy theory of process algebra[END_REF]Proposition 7.4].

Remark 3.10. The functor

|-| bad : K → lim -→ □[n]→K {0 < 1} n
is not a q-realization functor since the map of flows |∂□ [START_REF] Barthel | On the construction of functorial factorizations for model categories[END_REF]| bad → |□ [START_REF] Barthel | On the construction of functorial factorizations for model categories[END_REF]| bad is not a q-cofibration of flows.

Moreover, there is the isomorphism

|∂□[n]| bad ∼ = |□[n]
| bad for all n ≥ 3 by [11, Theorem 7.1], which is not the expected behavior for a realization functor.

Proposition 3.11. Every q-realization functor is an m-realization functor. Every m-realization functor is an h-realization functor.

Proof. Every q-realization functor is an m-realization functor because every q-cofibration of flows is an m-cofibration of flows by [16, Proposition 7.8] and because the weak equivalences are the same in the two model structures. Let F : □ op Set → Flow be an m-realization functor. Then for all n ≥ 0, the map of flows

F (∂□[n]) → F (□[n]
) is an m-cofibration, and therefore an h-cofibration by [START_REF] Cole | Mixing model structures[END_REF]Proposition 3.6]. The map of flows

F (□[n]) → {0 < 1} n is a weak equivalence of the m-model structure for all n ≥ 0. Since F (□[n]
) is m-cofibrant by Proposition 3.7, by [START_REF] Cole | Mixing model structures[END_REF]Corollary 3.7] there exists a q-cofibrant flow C n and a weak equivalence of the h-model structure of flows C n → F (□[n]) for all n ≥ 0. By [15, Theorem 5.7], for all α, β ∈ C 0 n = {0, 1} n , the topological space P α,β C n is q-cofibrant. This means that for all α, β ∈ {0, 1} n , the space P α,β F (□[n]) is homotopy equivalent to a q-cofibrant space, which in turn means that P α,β F (□[n]) is m-cofibrant. Thus the map P α,β F (□[n]) → P α,β {0 < 1} n is for all α, β ∈ {0, 1} n a weak homotopy equivalence between m-cofibrant spaces, and therefore a homotopy equivalence by [START_REF] Cole | Mixing model structures[END_REF]Corollary 3.4]. In other terms, the map of flows F (□[n]) → {0 < 1} n is a weak equivalence of the h-model structure of flows for all n ≥ 0. We have proved that F is an h-realization functor.

The drawback of the construction of Theorem 3.9 is that it depends on the noncanonical choice of a q-cofibrant replacement. It is one of the purposes of the paper to fix this issue. The following theorem is not used later. It helps the reader to understand the geometric contents of a q-realization functor. Theorem 3.12 ([10, Theorems 4.2.4 and 4.2.6]). For all n ≥ 1, there is a homotopy pushout diagram of flows for the q-model structure

Glob(S n-2 ) 0 →0n 1 →1n / / |∂□[n]| q Glob(D n-1 ) / / |□[n]| q h
There exists a q-realization functor such that the pushout diagram above is moreover strict.

4. Natural d-paths. We want to use the notion of natural d-path introduced by Raussen [START_REF] Raussen | Trace spaces in a pre-cubical complex[END_REF]Definition 2.14] to build the natural realization functor from precubical sets to flows.

This new realization functor is natural in the sense that it uses natural d-paths, and also natural in the sense that it is more canonical than the q-realization functor of Theorem 3.9. Indeed, the latter depends on the noncanonical choice of a q-cofibrant replacement functor for the category of flows. The new one is independent of such a noncanonical choice.

Notation 4.1. Let δ α i : [0, 1] n-1 → [0, 1] n be the continuous map defined for 1 ≤ i ≤ n and α ∈ {0, 1} by δ α i (ϵ 1 , . . . , ϵ n-1 ) = (ϵ 1 , . . . , ϵ i-1 , α, ϵ i , . . . , ϵ n-1 ). By convention, let [0, 1] 0 = {()}.
We obtain a cocubical topological space [0, 1] * , and the associated colimit-preserving functor from precubical sets to topological spaces is denoted by

|K| geom = lim -→ □[n]→K [0, 1] n .
The topological space |K| geom is a CW-complex, and Hausdorff. Every point of |K| geom admits a unique presentation [c; x] = |c| geom (x) where c is a cube of K and such that x ∈ ]0, 1[ dim(c) . A point of |K| geom may belong to several cubes and therefore admits several presentations [c; x] with x ∈ [0, 1] dim(c) . Definition 4.2. Let U be a topological space. A (Moore) path in U consists of a continuous map [0, ℓ] → U with ℓ > 0. The real number ℓ > 0 is called the length of the path.

Definition 4.3. Let γ 1 : [0, ℓ 1 ] → U and γ 2 : [0, ℓ 2 ] → U be two paths in a topological space U such that γ 1 (ℓ 1 ) = γ 2 (0). The Moore composition γ 1 * γ 2 : [0, ℓ 1 + ℓ 2 ] → U is the Moore path defined by (γ 1 * γ 2 )(t) = γ 1 (t) for t ∈ [0, ℓ 1 ], γ 2 (t -ℓ 1 ) for t ∈ [ℓ 1 , ℓ 1 + ℓ 2 ].
The Moore composition of Moore paths is strictly associative. Remark 4.6. All d-paths are tame and nonconstant in this paper. In particular, they start and end at a vertex of K. The adjective "tame" is added everywhere. The adjective "nonconstant" is often omitted. 

Definition 4.4. Let n ≥ 1. A (nonconstant) tame d-path of |□[n]| geom = [0, 1] n is a nonconstant continuous map γ : [0, ℓ] → [0, 1] n with ℓ > 0 and γ(0), γ(ℓ) ∈ {0, 1} n
= 0 [c 1 ; γ 1 ] t 1 * • • • t n-1 * [c n ; γ n ] tn or γ = [c 1 ; γ 1 ] * • • • * [c n ; γ n ] with 0 = t 0 < t 1 < • • • < t n = ℓ such that for all 1 ≤ i ≤ n and t ∈ [t i-1 , t i ], γ(t) = [c i ; γ i (t)] with dim(c i ) ≥ 1, and γ(t i ) ∈ K 0 for 0 ≤ i ≤ n. The sequence (c 1 , . . . , c n ) is called a carrier of γ.
The notation Carrier(γ) means that a carrier of γ is chosen: it is not unique.

The adjective "tame" corresponds to the condition γ(t i ) ∈ K 0 for 0 ≤ i ≤ n. An important feature shared by all d-paths (tame or not) of a precubical set K is that they have a well-defined L 1 -arc length (see [24, Section 2.2.1] and [26, Section 2.2]). Intuitively, the natural d-paths are the d-paths whose speed corresponds to the L 1 -arc length. We give an explicit definition of a tame natural d-path which is sufficient for this paper by starting from the tame d-paths in the topological n-cube [0, 1] n . It is equivalent to Raussen's definition of a nonconstant tame natural d-path. Proof. The compact-open topology is metrizable with the distance of the uniform convergence by [START_REF] Hatcher | Algebraic Topology[END_REF]Proposition A.13]. Therefore it is first countable. Consider a ball B(γ, ϵ) for this metric. Let γ ′ ∈ B(γ, ϵ). Then each convex combination (1 -u)γ + uγ ′ is a tame natural d-path since (1 -u)t + ut = t and for all t ∈ [0, n] and all i ∈ {1, . . . , n}, one has

Definition 4.8. Let n ≥ 1. A tame natural d-path of the topological n-cube [0, 1] n is a d-path γ = (γ 1 , . . . , γ n ) : [0, n] → [0, 1] n such that for all t ∈ [0, n], one has t = γ 1 (t) + • • • + γ n (t).
|((1 -u)γ i + uγ ′ i )(t) -γ i (t)| = u|γ ′ i (t) -γ i (t)| < uϵ ≤ ϵ.
This means that the space N n is locally path-connected. By [4, Proposition 3.11], it is ∆-generated, and also ∆-Hausdorff, being metrizable. It is contractible since there is a homotopy H : [0, 1] × N n → N n between the identity of N n and the constant map taking each tame natural d-path to the tame natural d-path δ : t → (t/n, t/n, . . . , t/n) given by the convex combination H(u, γ) = uδ +(1-u)γ. It is compact by [START_REF] Ziemiański | Spaces of directed paths on pre-cubical sets II[END_REF]Proposition 9.5] applied to the sequence n = (n). We want to give a different argument which does not use Lipschitz maps on metric spaces. Let (γ k ) k≥0 = (γ k 1 , . . . , γ k n ) k≥0 be a sequence of N n . By a Cantor diagonalization argument, one can suppose that the sequence

(γ k (r)) k≥0 of [0, 1] n converges to (γ ∞ 1 (r), . . . , γ ∞ n (r)) for all r ∈ Q ∩ [0, n]. Let γ - i (x) = sup {γ ∞ i (r) | r ∈ Q ∩ [0, x]} and γ + i (x) = inf {γ ∞ i (r) | r ∈ Q ∩ [x, n]}.
Then, by density of Q, for all x ∈ [0, n], one has

(γ + 1 (x) -γ - 1 (x)) + • • • + (γ + n (x) -γ - n (x)) = 0.
Thus, for all x ∈ [0, n] and for all 1

≤ i ≤ n, since γ + i (x) -γ - i (x) ≥ 0, we deduce that γ + i (x) = γ - i (x). This means that γ + i = γ - i : [0, n] → [0, 1]
is continuous for all i ∈ {1, . . . , n}. Consequently, each sequence (γ k i ) k≥0 converges pointwise for 1 ≤ i ≤ n. By the second Dini theorem, the convergence is uniform. Using [14, Lemma 6.10], we deduce that (γ k ) k≥0 has a convergent subsequence. We deduce that N n is sequentially compact, hence compact, being metrizable.

Notation 4.11. Let x = (x 1 , . . . , x n ) and x ′ = (x ′ 1 , . . . , x ′ n ) be two ele- ments of [0, 1] n . Let d ∞ (x, x ′ ) = max 1≤i≤n |x i -x ′ i |. Definition 4.12. Let n ≥ 2. Let V n = {0, 1} n \{0 n , 1 n }. Consider the con- tinuous map ϕ : N n → [0, 1] defined by ϕ(γ) = min (t,v)∈[0,n]×Vn d ∞ (γ(t), v).
Let ∂N n = ϕ -1 (0) equipped with the relative topology. 

[0, 1] n whose image intersects V n . Let γ = (γ 1 , . . . , γ n ) ∈ ∂N n and let t 0 ∈ ]0, n[ be such that γ(t 0 ) = (ϵ 1 , . . . , ϵ n ) ∈ V n . Since γ is natural, one has t 0 = ϵ 1 + • • • + ϵ n , which is therefore an integer between 1 and n -1. Then γ = γ a * γ b with γ a (0) = 0 n , γ(t 0 ) = γ a (t 0 ) = γ b (0) ∈ V n and γ b (n -t 0 ) = 1 n . Therefore, for all t ∈ [0, t 0 ], t = γ 1 (t) + • • • + γ n (t) = γ a 1 (t) + • • • + γ a n (t). Let J = {j ∈ {1, . . . , n} | ϵ j = 0}.
Since the paths are nondecreasing with respect to each axis of coordinates, it follows that γ a j (t) = 0 for all j ∈ J. Thus for all t ∈ [0, t 0 ], t = j / ∈J γ a j (t). This means that γ a is a natural path in the subcube from 0 n to γ a (t 0 ). For all t ∈ [t 0 , n], one has

t = γ 1 (t) + • • • + γ n (t) = γ b 1 (t -t 0 ) + • • • + γ b n (t -t 0 )
, the first equality since γ is natural, the second equality by definition of the Moore composition of paths. We deduce that t -

t 0 = (γ b 1 (t -t 0 ) -ϵ 1 ) + • • • + (γ b n (t -t 0 ) -ϵ n ) for all t ∈ [t 0 , n]. If ϵ i = 1
for some i ∈ {1, . . . , n}, then γ b i = 1 since the paths are nondecreasing with respect to each axis of coordinates. We obtain t -t 0 = j∈J γ b j (t -t 0 ) for all t ∈ [t 0 , n]. This means that γ b is a natural path in the subcube going from γ(t 0 ) to 1 n . We deduce that the underlying set of ∂N n is exactly the set of Moore compositions of tame natural d-paths in subcubes of [0, 1] n . The second assertion is a consequence of this fact. Consider γ ∈ ∂N n . There exists To summarize, ∂N n is a closed subset of N n which remains ∆-generated and also ∆-Hausdorff when equipped with the relative topology. Both ∂N n and N n are equipped with the compact-open topology and are metrizable, compact, and sequentially compact.

t 0 ∈ ]0, n[ such that γ(t 0 ) ∈ V n . Since V n is discrete, there exists an open subset U of [0, 1] n such that U ∩ V n = {γ(t 0 )}. Then W ({t 0 }, U ) = {γ ′ ∈ ∂N n | γ ′ (t 0 ) ∈ U } is
The presentation chosen for ∂N n and N n is due to the fact that [32, Proposition 10.2] is used in the proof of Proposition 5.4 and that [32, Proposition 10.3] is used in the proof of Proposition 5.5. However, [START_REF] Ziemiański | Spaces of directed paths on pre-cubical sets II[END_REF] uses the compact-open topology. It turns out that the ∆-kelleyfication functor does not preserve compactness and that it is a right Quillen equivalence, not a left Quillen equivalence. Since ∂N n and N n equipped with the compact-open topology are metrizable for all n ≥ 0, they are k-spaces. An additional argument is necessary to prove that they are ∆-generated as well to get rid of this issue. Proof. This is a straightforward consequence of the definitions. 

P 0n,1n |□[n]| nat P 0n,1n |□[n]| nat P ϕ 2 (0n),ϕ 2 (1n) |□[n + 1]| nat P ψ 2 (0n),ψ 2 (1n) |□[n + 1]| nat P ϕ 1 ϕ 2 (0n),ϕ 1 ϕ 2 (1n) |□[n + 2]| nat P ψ 1 ψ 2 (0n),ψ 1 ψ 2 (1n) |□[n + 2]| nat
By Proposition 5.1 and by definition of | -| nat , the two vertical composite maps are equal to the identity of N n . This means that the diagram is commutative and that the cocubical relations are satisfied.

Using Proposition 3.5, we obtain:

Definition 5.3. Let K be a precubical set. Consider the colimit-preserving functor

|K| nat = lim -→ □[n]→K |□[n]| nat .
It is called the natural realization of K as a flow.

Proposition 5.4. Let n ≥ 0. There is a homeomorphism

∂N n ∼ = P 0n,1n |∂□[n]| nat .
Proof. Using [32, Proposition 10.2] applied to the sequence (n), we deduce that this map is a homeomorphism: the idea of the proof is that there is a continuous bijection from P 0n,1n |∂□[n]| nat to ∂N n and that both P 0n,1n |∂□[n]| nat and ∂N n are compact.

Proposition 5.5. The continuous map ∂N n ⊂ N n is an h-cofibration of spaces for all n ≥ 0.

Proof. Applying [32, Proposition 10.3] to the sequence (n), we deduce that this map is a strong neighborhood deformation retract, i.e. an h-cofibration by [29, Theorem 2].

Corollary 5.6. The map of flows Glob(∂N n ) ⊂ Glob(N n ) is an h-cofibration of flows for all n ≥ 0.

Proof. A map of flows of the form Glob(U ) → Glob(V ) has the left lifting property with respect to a map of flows f : X → Y if and only if the map U → V has the left lifting property with respect to all maps P α,β X → P f (α),f (β) Y for all (α, β) ∈ X 0 × X 0 . Using the characterization of the trivial h-fibrations of flows (see Theorem 2.4) and Proposition 5.5, we deduce that the map Glob(∂N n ) → Glob(N n ) is an h-cofibration of flows. Theorem 5.8. There exists a natural transformation µ : |-| q ⇒ |-| nat such that for all precubical sets K, the natural map µ K : |K| q → |K| nat induces a bijection on states and a homotopy equivalence P α,β |K| q ≃ P α,β |K| nat for all α, β ∈ K 0 .

Proof. The map |□[ * ]| nat → {0 < 1} * is an objectwise weak equivalence for the h-model structure of Flow since all spaces N n for n ≥ 1 are contractible by Proposition 4.10. By Proposition 5.7, the natural realization functor is then an h-realization functor. Since |-| q is also an h-realization functor by Proposition 3.11, the proof is complete thanks to Theorem 3.8.

The statement of Theorem 3.8 being symmetric, there is also a natural transformation ν : |-| nat ⇒ |-| q such that, for all precubical sets K, the natural map ν K : |K| nat → |K| q induces a bijection on states and a homotopy equivalence P α,β |K| nat ≃ P α,β |K| q for all α, β ∈ K 0 . This statement is less intuitive because the natural realization contains more execution paths than the q-realization. Proposition 5.7 means that the natural realization functor is an h-realization functor. In fact, it is possible to do better. For all precubical sets K and all (α, β) ∈ K 0 ×K 0 , there is a homotopy equivalence P α,β |K| nat ≃ P α,β |K| q . Since |K| q is q-cofibrant, the space P α,β |K| q is q-cofibrant by [START_REF] Gaucher | Left properness of flows[END_REF]Theorem 5.7]. This means that the spaces of execution paths P α,β |K| nat are m-cofibrant for all (α, β) ∈ K 0 × K 0 . This suggests that the natural realization |K| nat is an m-cofibrant flow. Indeed we have the following theorem: 

8). Since |∂□[n]

| q is a q-cofibrant flow by Proposition 3.7, the space P 0n,1n |∂□[n]| q is q-cofibrant by [START_REF] Gaucher | Left properness of flows[END_REF]Theorem 5.7]. Moreover, N n is contractible by Proposition 4.10, hence m-cofibrant. It implies that all maps ∂N n → N n for n ≥ 0 are h-cofibrations of spaces between m-cofibrant spaces [START_REF] Cole | Mixing model structures[END_REF]Corollary 3.7]. By [5, Corollary 3.12], the maps ∂N n → N n are therefore m-cofibrations of spaces for all n ≥ 0. Thus, the map of flows Glob(∂N n ) → Glob(N n ) is an m-cofibration of flows for all n ≥ 0 by the same argument as in the proof of Corollary 5.6. Using the pushout diagram in the proof of Proposition 5.7, we deduce that the natural realization functor is an m-realization functor. By Proposition 3.7, we deduce that the flow |K| nat is m-cofibrant. 

∂ ϵ A = ∂ ϵ a 1 . . . ∂ ϵ a k . Definition 6.1. Let n ∈ Seq(n). The n-cube is the precubical set □[n] = □[n 1 ] * • • • * □[n p ]
where the notation * means that the final state

1 n i of the precubical set □[n i ] is identified with the initial state 0 n i+1 of the precubical set □[n i+1 ] for 1 ≤ i ≤ p -1.
Let K be a precubical set. Let α, β be two vertices of K. Let n ≥ 1. The category Ch α,β (K, n) is defined as follows. The objects are the maps of precubical sets □[n] → K with |n| = n where the initial state of □[n 1 ] is mapped to α and the final state of □[n p ] is mapped to β. Let A ⊔ B = {1, . . . , m 1 + m 2 } be a partition with the cardinality of A equal to m 1 > 0 and the cardinality of B equal to m 2 > 0. Let

ϕ A,B : □[m 1 ] * □[m 2 ] → □[m 1 + m 2 ]
be the unique map of precubical sets such that

ϕ A,B (Id [m 1 ] ) = ∂ 0 B (Id [m 1 +m 2 ] ), ϕ A,B (Id [m 2 ] ) = ∂ 1 A (Id [m 1 +m 2 ] ). For i ∈ {1, . . . , ℓ(n)} and a partition A ⊔ B = {1, . . . , n i }, let δ i,A,B = Id □[n 1 ] * • • • * Id □[n i-1 ] * ϕ A,B * Id □[n i+1 ] * • • • * Id □[n ℓ(n) ] .
The morphisms are the commutative diagrams

□[n a ] a / / K □[n b ] b / / K
where the left vertical map is the composition of maps of precubical sets of the form δ i,A,B .

From a precubical set K, we are going to define a flow ∥K∥ as follows. The set of states is K 0 . Consider the small diagram of spaces

D α,β (K, n) : Ch α,β (K, n) → Top defined on objects by D α,β (K, n)(□[n] → K) = N n 1 × • • • × N np
and on morphisms by using the maps

P|ϕ A,B | nat : P(□[m 1 ] * □[m 2 ]) → P(□[m 1 + m 2 ]) which induce maps N m 1 × N m 2 → N m 1 +m 2
given by the Moore composition of tame natural d-paths. The space of execution spaces P α,β ∥K∥ is defined as follows:

P α,β ∥K∥ = n≥1 lim -→ D α,β (K, n).
It is easy to see that the concatenation of tuples induces functors

D α,β (K, m 1 ) × D β,γ (K, m 2 ) → D α,γ (K, m 1 + m 2 ),
and, using [15, Proposition A.4], continuous maps

lim -→ D α,β (K, m 1 ) × lim -→ D β,γ (K, m 2 ) → lim -→ D α,γ (K, m 1 + m 2 )
for all m 1 , m 2 ≥ 1. We obtain an associative composition map

P α,β ∥K∥ × P β,γ ∥K∥ → P α,γ ∥K∥ for all (α, β, γ) ∈ K 0 × K 0 × K 0 . Proposition 6.2.
There is an isomorphism of cocubical flows

∥□[ * ]∥ ∼ = |□[ * ]| nat .
Proof. At first, we prove the isomorphism of flows ∥□

[n]∥ ∼ = |□[n]| nat by induction on n ≥ 0. The statement is obvious for n = 0. Let n ≥ 1 and α, β ∈ {0, 1} n with α < β. Let α = (α 1 , . . . , α n ) and β = (β 1 , . . . , β n ). Let I = {i ∈ {1, . . . , n} | α i ̸ = β i }.
By hypothesis, I is nonempty. Let m be the cardinality of I. Then α (β resp.) is the initial (final resp.) state of an m-subcube c of □[n]. We deduce that the category Ch α,β (□[n], p) is empty for p ̸ = m and that it has a terminal object c : □[m] → □[n] for p = m corresponding to the subcube from α to β. We deduce the homeomorphisms We do not know yet that the functor ∥-∥ is colimit-preserving. An additional argument based on Proposition 5.1 as well is necessary for proving Theorem 6.3. 

P α,β ∥□[n]∥ = lim -→ n=(n 1 ,...,np), ℓ(n)=m □[n]→□[n]∈Ch α,β (□[n],m) N n 1 × • • • × N np ∼ = N m = P α,β |□[n]| nat
N n 1 × • • • × N np → P|K| nat . Let ϕ A,B : □[m 1 ] * □[m 2 ] → □[m 1 + m 2 ] as above. A composite map of pre- cubical sets □[m 1 ] * □[m 2 ] → □[m 1 +m 2 ] → K gives rise to the commutative diagram of flows |□[m 1 ] * □[m 2 ]| nat / / |K| nat |□[m 1 + m 2 ]| nat / / |K| nat
and therefore to the commutative diagram of spaces

N m 1 × N m 2 / / P|K| nat N m 1 +m 2 / / P|K| nat
Consequently, we obtain a cocone

(N n 1 × • • • × N np ) □[n]→K ∈Ch α,β (K,n) • - → P|K| nat
and then a map of flows ∥K∥ → |K| nat which is bijective on states. For each map of precubical sets □[n] → K, we obtain by Proposition 6.2 a map of flows

|□[n]| nat ∼ = ∥□[n]∥ → ∥K∥.
Using Proposition 5.1, we obtain a cocone of flows

(|□[n]| nat ) □[n]→K • - → ∥K∥
and therefore a map of flows |K| nat → ∥K∥ such that the composite map |K| nat → ∥K∥ → |K| nat is the identity. Thus, the map ∥K∥ → |K| nat is onto on execution paths, and the map |K| nat → ∥K∥ is one-to-one on execution paths. Consider an execution path γ of ∥K∥. It belongs to a colimit and therefore has a representative (γ 1 , . . . , γ p ) in a space of the form

N n 1 × • • • × N np corresponding to some map of precubical sets □[n] → K with n = (n 1 , . . . , n p )
. By Proposition 5.1, there exists an execution path

γ 1 * • • • * γ p of |K| nat which is mapped to (γ 1 , . . . , γ p ) by the map of flows |K| nat → ∥K∥.
The latter is therefore surjective on execution paths, and the proof is complete.

7.

Comparing execution paths and d-paths. The fact that the Moore composition of tame natural d-paths in the geometric realization of a precubical set is strictly associative entails the following definition. Definition 7.1. Let K be a precubical set. The tame concrete realization of K is the flow |K| tc such that the set of states is K 0 , the space of execution paths P α,β |K| tc for (α, β) ∈ K 0 × K 0 is the space of nonconstant tame natural d-paths from α to β in |K| geom equipped with the ∆-kelleyfication Proposition 7.2. Let K be a precubical set. The natural map of flows |K| nat → |K| tc is bijective on states. For all (α, β) ∈ K 0 ×K 0 , the continuous map P α,β |K| nat → P α,β |K| tc is onto. The following assertions are equivalent:

(1) For all (α, β) ∈ K 0 × K 0 , the continuous map P α,β |K| nat → P α,β |K| tc is one-to-one. (2) For all (α, β) ∈ K 0 × K 0 , the continuous map P α,β |K| nat → P α,β |K| tc is bijective.
Finally, for all (α, β) ∈ K 0 × K 0 , the space of execution paths P α,β |K| tc is Hausdorff.

Proof. The first assertion follows from the definition of |K| nat and |K| tc . Notation 4.7). Let n = i dim(c i ) and n = (dim(c 1 ), . . . , dim(c p )). The sequence (c 1 , . . . , c p ) of cubes gives rise to a map □[n] → K. Then

Let (α, β) ∈ K 0 × K 0 . Consider a tame natural d-path [c 1 ; γ 1 ] * • • • * [c p ; γ p ] of P α,β |K| tc (cf.
(γ 1 , . . . , γ p ) ∈ D α,β (K, n)(□[n] → K) = N dim(c 1 ) × • • • × N dim(cp)
is the representative of an element of P α,β |K| nat ∼ = P α,β ∥K∥ which is taken to [c 1 ; γ 1 ] * • • • * [c n ; γ n ] ∈ P α,β |K| tc . This means that, for all (α, β) ∈ K 0 ×K 0 , the continuous map P α,β |K| nat → P α,β |K| tc is onto. This implies (1)⇔(2). From the sequence of one-to-one continuous maps

P α,β |K| tc ⊂ n≥1 TOP([0, n], |K| geom ) ⊂ n≥1 Top co ([0, n], |K| geom ) ⊂ n≥1 [0,n]
|K| geom for all (α, β) ∈ K 0 × K 0 , Top co ([0, n], |K| geom ) being the set of continuous maps from [0, n] to |K| geom equipped with the compact-open topology, and the product being equipped with the pointwise topology (i.e. the product topology), we deduce that the space of execution paths P α,β |K| tc is Hausdorff for all (α, β) ∈ K 0 × K 0 , |K| geom being Hausdorff. Definition 7.3. A precubical set K is spatial if for all (α, β) ∈ K 0 × K 0 , the continuous map P α,β |K| nat → P α,β |K| tc is bijective.

A characterization of spatial precubical sets as a small orthogonality class is postponed to Appendix A. We want to give some examples of spatial precubical sets before expounding the main theorems of the section. c) is one-to-one. For all n ≥ 0, the precubical sets ∂□[n] and □[n] are proper. The precubical sets associated to all PV-programs are proper. Every geometric precubical set in the sense of [START_REF] Goubault | Directed homotopy in non-positively curved spaces[END_REF]Definition 1.18] is proper. In particular, every nonpositively curved precubical set in the sense of [START_REF] Goubault | Directed homotopy in non-positively curved spaces[END_REF]Definition 1.28] is proper since it is geometric by definition. Indeed, let K be a geometric precubical set. Let c 1 , c 2 be two cubes of K such that (∂ 0 {1,...,dim(c 1 )} c 1 , ∂ 1 {1,...,dim(c 1 )} c 1 ) = (∂ 0 {1,...,dim(c 2 )} c 2 , ∂ 1 {1,...,dim(c 2 )} c 2 ). Suppose that dim(c 1 ) = 0. Since K has no self-intersection, c 2 is 0-dimensional as well and c 1 = c 2 . Assume that dim(c 1 ) ≥ 1. Then c 2 cannot be 0-dimensional because K has no selfintersection. The cubes c 1 and c 2 have a maximal common face which is necessarily c 1 = c 2 . Thus K is proper. Proposition 7.5. We have two strict inclusions {proper precubical sets} ⊂ {spatial precubical sets} ⊂ {precubical sets}.

Proof. Let K be a proper precubical set. Let (α, β) ∈ K 0 × K 0 . Let ξ 1 and ξ 2 be two execution paths of P α,β |K| nat . Suppose that ξ 1 and ξ 2 are taken to the same tame natural d-path

γ = [c 1 ; γ 1 ] * • • • * [c p ; γ p ] in |K| geom with p ≥ 1 and 0 = t 0 < t 1 < • • • < t p = ℓ such that for all 1 ≤ i ≤ p and t ∈ [t i-1 , t i ] we have γ(t) = [c i ; γ i (t)] with dim(c i ) ≥ 1, and γ(t i ) ∈ K 0 for 0 ≤ i ≤ p. Choose the presentation [c 1 ; γ 1 ] * • • • * [c p ; γ p ] so that γ([0, 1]) ∩ K 0 = {γ(t i ) | 0 ≤ i ≤ p} and γ(]t i-1 , t i [) ∩ K 0 = ∅ for 1 ≤ i ≤ p.
Let n = i dim(c i ) and n = (dim(c 1 ), . . . , dim(c p )). There exist maps of precubical sets a k : □

[n] → K for k = 1, 2 such that (γ 1 , . . . , γ p ) ∈ D α,β (K, n)(a k ) = N dim(c 1 ) × • • • × N dim(cp)
is identified to ξ k for k = 1, 2 in the colimit P α,β ∥K∥. Since K is proper and since γ(]t i-1 , t i [) ∩ K 0 = ∅ for 1 ≤ i ≤ p, we deduce that a 1 = a 2 . Therefore, ξ 1 = ξ 2 . This means that K is spatial. Consider the precubical set K such that K 0 = K 1 is a singleton and K n = ∅ for n ≥ 2; K is a loop. Then K is spatial but not proper (see [START_REF] Ziemiański | Spaces of directed paths on pre-cubical sets[END_REF]Example (1.5)]). This means that the left-hand inclusion is strict.

Consider the precubical set K = □[3] ⊔ ∂□ [START_REF] Brown | On the algebra of cubes[END_REF] □ [START_REF] Brown | On the algebra of cubes[END_REF]. Any tame natural d-path from 0 3 to 1 3 lying in the common boundary |∂□ [START_REF] Brown | On the algebra of cubes[END_REF]| geom that does not contain other vertices than 0 3 and 1 3 is represented by two distinct elements of P 0 3 ,1 3 |K| nat . Thus, □[3] ⊔ ∂□ [START_REF] Brown | On the algebra of cubes[END_REF] □ [START_REF] Brown | On the algebra of cubes[END_REF] is not spatial. This means that the right-hand inclusion is strict.

It is necessary to recall a basic fact about ∆-inclusions before proceeding to the proof of Theorem 7.7. 

k ≥ M , f (t k ) ∈ V c
, the complement of V , the latter being closed in P α,β |K| nat . Thus, (f (t k )) k≥M cannot have a limit point, a contradiction. We deduce that f : [0, 1] → P α,β |K| nat is sequentially continuous, hence continuous. This means that the continuous bijection P α,β |K| nat → P α,β |K| tc is a ∆-inclusion. Therefore, the latter is a homeomorphism by Proposition 7.6. The proof is complete.

Note that the functor |-| tc : □ op Set → Flow is not colimit-preserving. Otherwise, there would be an isomorphism |K| nat → |K| tc for all precubical sets K, which would contradict Proposition 7.5.

As already noticed at the end of Section 4, the spaces of d-paths of precubical sets are equipped in [START_REF] Ziemiański | Spaces of directed paths on pre-cubical sets II[END_REF] with the compact-open topology instead of some kind of kelleyfication of the compact-open topology. The latter is the correct internal hom, both for k-spaces and ∆-generated spaces, except in very specific situations like Propositions 4.10 and 4.14. Since the ∆-kelleyfication functor takes (weak resp.) homotopy equivalences to (weak resp.) homotopy equivalences, this point is not an issue. 

n 1 × • • • × N np ∼ = P 0n 1 ,1n p |□[n]| nat , the identity map □[n] → □[n]
being the final object of the small category Ch 0n 1 ,1n p (□[n], n) (the proof is similar to that of Proposition 6.2). The precubical set □[n] is spatial by Proposition 7.5, being proper. Thus the topological space There exists a continuous bijection between Hausdorff ∆-generated spaces which is a homotopy equivalence and not a homeomorphism: consider X = S 1 , the discretization X δ and the map between unreduced cones C(X δ ) → C(X) [START_REF]Continuous bijection between two homotopy equivalent ∆-generated spaces[END_REF]. Consequently, it is not possible to deduce Theorem 7.7 from Theorem 7.8 and Proposition 7.2 without any additional assumption.

D α,β (K, n)(c) = N n 1 × • • • × N np ∼ = P 0n 1 ,1n p |□[n]| nat
The phrase "weak homotopy equivalence" can be replaced by "homotopy equivalence" in the statements of [START_REF] Ziemiański | Spaces of directed paths on pre-cubical sets II[END_REF]Theorems 7.5 and 7.6] because all maps of [32, (7.5)] are homotopy equivalences. Indeed, it is proved in [START_REF] Ziemiański | Spaces of directed paths on pre-cubical sets II[END_REF]Proposition 10.3] that some specific map is an h-cofibration. Therefore the diagram of [START_REF] Ziemiański | Spaces of directed paths on pre-cubical sets II[END_REF]Proposition 10.4] is Reedy h-cofibrant, and the map Q K n is a homotopy equivalence. Corollary 7.9. Let K be a precubical set. Let α, β be two vertices of K. Then the space of execution paths P α,β |K| q is homotopy equivalent to the space of nonconstant d-paths from α to β in the geometric realization of K equipped with the ∆-kelleyfication of the compact-open topology.

Proof. This is a consequence of Theorems 5.8, 7.8 and [START_REF] Ziemiański | Spaces of directed paths on pre-cubical sets II[END_REF]Theorem 7.6].

Since the natural realization functor is an m-realization functor, Theorem 7.8 provides a model category explanation of the known fact that the space of nonconstant d-paths in the geometric realization of a precubical set between two vertices of the precubical set has the homotopy type of a CW-complex.

Appendix A. Characterization of spatial precubical sets. The purpose of this appendix is to characterize spatial precubical sets without using any realization functor from precubical sets to flows. This result is unnecessary for the understanding of the core of the paper. This is the reason why it is expounded here. We have ξ 1 ̸ = ξ 2 in the colimit P f (0n),f (1n) ∥K∥ (this is the same argument as in the proof of Proposition 7.5). This means that K is not spatial.

Conversely, let K be a precubical set which is injective with respect to □[n] ⊔ A □[n] → □[n] for all n ≥ 3 and all A ∈ B n . Let (α, β) ∈ K 0 × K 0 . Let ξ 1 and ξ 2 be two execution paths of P α,β |K| nat which are taken to the same tame natural d-path γ = [c 1 ; γ 1 ] * • • • * [c p ; γ p ] in |K| geom with p ≥ 1 and 0 = t 0 < t 1 < • • • < t p = ℓ such that for all 1 ≤ i ≤ p and t ∈ [t i-1 , t i ], γ(t) = [c i ; γ i (t)] with dim(c i ) ≥ 1, γ([0, 1]) ∩ K 0 = {γ(t i ) | 0 ≤ i ≤ p} and γ(]t i-1 , t i [) ∩ K 0 = ∅ for 1 ≤ i ≤ p. This implies that γ i (]t i-1 , t i [) ∩ {0, 1} dim(c i ) = ∅ for 1 ≤ i ≤ p. Let m = i dim(c i ) and m = (dim(c 1 ), . . . , dim(c p )). For k ∈ {1, 2}, there exists a map of precubical sets a k : □[m] → K such that (γ 1 , . . . , γ p ) ∈ D α,β (K, m)(a k ) = N dim(c 1 ) × • • • × N dim(cp)

Definition 2 . 1 ([ 8 ,

 218 Definition 4.11]). A flow is a small semicategory enriched over the closed monoidal category (Top, ×). The corresponding category is denoted by Flow.

Notation 2 . 3 .

 23 Let n ≥ 1. Denote by D n = {b ∈ R n | |b| ≤ 1} the ndimensional disk, and by S n-1 = {b ∈ R n | |b| = 1} the (n -1)-dimensional sphere. By convention, let D 0 = {0} and S -1 = ∅.

3 .

 3 Realization functors from precubical sets to flows Notation 3.1. Let [0] = {()} and [n] = {0, 1} n for n ≥ 1. By convention, one has {0, 1} 0 = [0] = {()}. The set [n] is equipped with the product ordering {0 < 1} n . Let 0 n = (0, . . . , 0) ∈ {0, 1} n and 1 n = (1, . . . , 1) ∈ {0, 1} n .

  that is nondecreasing with respect to each axis of coordinates.Definition 4.5. Let K be a precubical set. A nonconstant tame d-path of K is a path [0, ℓ] → |K| geom which is the Moore composition γ 1 * • • • * γ n of nonconstant tame d-paths in cubes of |K| geom . We call γ(0) ∈ K 0 the initial state of γ and γ(ℓ) ∈ K 0 the final state of γ.

Notation 4 . 7 .

 47 With the notations of Definition 4.5, a tame d-path γ : [0, ℓ] → |K| geom can be written γ

  The set of tame natural d-paths in [0, 1] n is denoted by N n . It is equipped with the compact-open topology. Definition 4.9. A tame d-path γ of a precubical set K is natural if it can be written γ = [c 1 ; γ 1 ] * • • • * [c n ; γ n ] where each γ i is a tame natural d-path in the cube c i for all i ∈ {1, . . . , n}. Proposition 4.10. Let n ≥ 1. The topological space N n is ∆-generated and ∆-Hausdorff. It is metrizable, contractible, compact and sequentially compact.

Notation 4 .

 4 13. Let ∂N 0 = N 0 = ∂N 1 = ∅. Proposition 4.14. Let n ≥ 2. The underlying set of ∂N n is exactly the set of Moore compositions of tame natural d-paths in subcubes of [0, 1] n . For every γ ∈ ∂N n , γ([0, n]) is included in the boundary of [0, 1] n . The topology of ∂N n is ∆-generated and ∆-Hausdorff. It is metrizable, compact and sequentially compact. Proof. The set ∂N n is exactly the set of tame natural d-paths in

  an open subset of ∂N n for the compact-open topology. The latter being metrizable, take a ball B(γ, ϵ) ⊂ W ({t 0 }, U ) and repeat the reasoning of Proposition 4.10: we deduce that ∂N n is locally path-connected as well, hence ∆-generated (and also ∆-Hausdorff, being metrizable) by[START_REF] Christensen | The D-topology for diffeological spaces[END_REF] Proposition 3.11].

5 .

 5 Natural realization from precubical sets to flows. We define a flow |□[n]| nat for n ≥ 0 called the natural n-cube as follows. The set of states is {0,1} n . Let n ≥ 1 and α, β ∈ {0, 1} n . Let α = (α 1 , . . . , α n ) and β = (β 1 , . . . , β n ). Assume that α < β in the product order {0 < 1} n . Let I = {i ∈ {1, . . . , n} | α i ̸ = β i }.By hypothesis, I is nonempty. Let m be the cardinality of I. Then α (β resp.) is the initial (final resp.) state of an m-subcube of □[n]. Then let P α,β |□[n]| nat = N m viewed as the space of tame natural d-paths in the m-subcube from α to β. Assume that α ≥ β. Let P α,β |□[n]| nat = ∅. The composition law is defined by the Moore composition of tame natural d-paths, which is still a tame natural d-path. Proposition 5.1. Let ϕ : [n] → [n+1] be a map of the small category □. Then the continuous map P 0n,1n |□[n]| nat → P ϕ(0n),ϕ(1n) |□[n + 1]| nat induced by ϕ is the identity of N n .

Corollary 5 . 2 .

 52 We obtain a well-defined cocubical flow |□[ * ]| nat . Proof. Consider an algebraic relation ϕ 1 ϕ 2 = ψ 1 ψ 2 : [n] → [n + 2] in the small category □. Consider the diagram of topological spaces

Proposition 5 . 7 .

 57 For all n ≥ 0, the map |∂□[n]| nat → |□[n]| nat is an h-cofibration of flows. Proof. From the homeomorphism of Proposition 5.4 and by definition of N n , we deduce that the commutative diagram of spaces ∂N n ∼ = / / P 0n,1n |∂□[n]| nat N n ∼ = / / P 0n,1n |□[n]| nat is a pushout diagram of spaces. The top homeomorphism yields a map of flows Glob(∂N n ) → |∂□[n]| nat taking 0 to 0 n and 1 to 1 n for all n ≥ 0. We obtain the pushout diagram of flows Glob(∂N n ) / / |∂□[n]| nat Glob(N n ) / / |□[n]| nat Using Corollary 5.6, we deduce that the map |∂□[n]| nat → |□[n]| nat is an h-cofibration of flows for all n ≥ 0.

Theorem 5 . 9 .

 59 The natural realization functor is an m-realization functor. For any precubical set K, the flow |K| nat is m-cofibrant. Proof. The map |□[ * ]| nat → {0 < 1} * is an objectwise weak equivalence for the h-model structure of Flow, and therefore for the m-model structure of Flow as well. There is a homeomorphism ∂N n ∼ = P 0n,1n |∂□[n]| nat (Proposition 5.4) and a homotopy equivalence P 0n,1n |∂□[n]| nat ≃ P 0n,1n |∂□[n]| q (Theorem 3.

6 .

 6 Natural realization and cube chains. Cube chains are introduced in [31, Definition 1.1]. We use the presentation given in [32, Section 7] instead. Let Seq(n) be the set of sequences of positive integers n = (n 1 , . . . , n p ) with n 1 + • • • + n p = n. Let n = (n 1 , . . . , n p ) ∈ Seq(n). Then |n| = n is the length of n, and ℓ(n) = p is the number of elements of n. Let K be a precubical set and A = a 1 < • • • < a k ⊂ {1, . . . , n} and ϵ ∈ {0, 1}. The iterated face map is defined by

,

  the first equality by definition of ∥□[n]∥, the homeomorphism because of the unique map c : □[m] → □[n] which is the terminal object of Ch α,β (□[n], m), and the last equality by Proposition 5.1 applied to the map c : □[m] → □[n]. By Proposition 5.1 again, the isomorphism ∥□[n]∥ ∼ = |□[n]| nat is natural with respect to [n].

Theorem 6 . 3 .

 63 There is a natural isomorphism of flows ∥K∥ ∼ = |K| nat for all precubical sets K. Proof. Let n = (n 1 , . . . , n p ) ∈ Seq(n). Every map of precubical sets □[n] → K gives rise to a map of flows |□[n]| nat → |K| nat , and therefore to a continuous map

  of the relative topology induced by the compact-open topology, and the composition of execution paths is induced by the Moore composition. This construction yields a well-defined functor |-| tc : □ op Set → Flow. By definition of |□[n]| nat (see the beginning of Section 5), there is a natural isomorphism of flows |□[n]| nat ∼ = |□[n]| tc for all [n] ∈ □. Since the natural realization functor is colimit-preserving, the universal property of the colimit provides a natural map of flows |K| nat → |K| tc .

Definition 7 . 4 (

 74 [31, p. 499]). A precubical set K is proper if the map n≥0 K n → K 0 × K 0 which takes an n-cube c of K to (∂ 0 {1,...,n} c, ∂ 1 {1,...,n}

Theorem 7 . 8 .

 78 Let K be a precubical set. The natural map of flows |K| nat → |K| tc is a weak equivalence of the h-model structure of flows. In particular, for all (α, β) ∈ K 0 ×K 0 , the continuous map P α,β |K| nat → P α,β |K| tc is a homotopy equivalence. Proof. The map of flows |K| nat → |K| tc induces the identity on K 0 . Let (α, β) ∈ K 0 × K 0 . Let c = □[n] → K be an object of Ch α,β (K, n) with ℓ(n) = p and n = (n 1 , . . . , n p ). Since there is an isomorphism of flows ∥□[n]∥ ∼ = |□[n]| nat by Theorem 6.3, there is the homeomorphism N

  is homeomorphic to the space of tame natural d-paths in |□[n]| geom from the initial state 0 n 1 of □[n 1 ] to the final state 1 np of □[n p ] equipped with the ∆-kelleyfication of the relative topology induced by the compact-open topology by Theorem 7.7. This implies that the map P α,β ∥K∥ → P α,β |K| tc is the homotopy equivalence n≥1 F K n of [32, Proposition 9.7]. The proof is complete thanks to the isomorphism of flows ∥K∥ ∼ = |K| nat .

Notation A. 1 .

 1 Let n ≥ 1. Let B n be the set of precubical sets A such that A ⊂ ∂□[n] and |A| geom ⊂ [0, 1] n contains a natural d-path from 0 n to 1 n in [0, 1] n which does not intersect {0, 1} n \{0 n , 1 n }. In particular, 0 n , 1 n are two vertices of A. One has B 1 = B 2 = ∅, and for all n ≥ 3, one has∂□[n] ∈ B n .Since every d-path of [0, 1] n has a naturalization [24, Definition 2.14], the adjective "natural" is superfluous in the definition of B n .Theorem A.2. The class of spatial precubical sets is a small orthogonality class. More precisely, it is the class of precubical sets which are orthogonal with respect to the set of maps of precubical sets{□[n] ⊔ A □[n] → □[n] | n ≥ 3 and A ∈ B n }. Every map □[n] ⊔ A □[n] → □[n]for n ≥ 3 and A ∈ B n being an epimorphism of precubical sets, injective is equivalent to orthogonal. Recall that the injectivity (orthogonality resp.) condition means that any map□[n] ⊔ A □[n] → K factors (uniquely resp.) as a composite map □[n] ⊔ A □[n] → □[n] → K [1, Definitions 4.1 and 1.32].Proof of Theorem A.2. Let K be a precubical set which is not injective with respect to□[n] ⊔ A □[n] → □[n]for some n ≥ 3 and some A ∈ B n . This means that there exists a map of precubical sets f :□[n] ⊔ A □[n] → K which does not factor as a composite □[n]⊔ A □[n] → □[n] → K. By definition of B n , there exists a tame natural d-path γ from 0 n to 1 n such that γ([0, n]) ⊂ |A| geom ⊂ [0, 1] n and γ([0, n]) ∩ {0, 1} n = {0 n , 1 n }. Let c 1 ⊔ c 2 : □[n] ⊔ □[n] Id □[n] ⊔ Id □[n] / / □[n] ⊔ A □[n] f --→ K.One obtains a composite map of spacesP 0n,1n |□[n] ⊔ A □[n]| nat → P f (0n),f (1n) |K| nat → TOP([0, n],|K| geom ) such that ξ k ∈ P f (0n),f (1n) ∥K∥ represented by γ ∈ D f (0n),f (1n) (K, n)(c k ) = N n for k = 1, 2 is taken to the natural d-path [c 1 ; γ] = [c 2 ; γ] in |K| geom .

  Proposition 7.6 ([14, Proposition 2.2 and Corollary 2.3]). A continuous bijection f : U → V of Top is a homeomorphism if and only if it is a ∆-inclusion, i.e. a set map [0, 1] → A is continuous if and only if the composite set map [0, 1] → A → B is continuous.Theorem 7.7 states intuitively that the ∆-generated spaces P α,β |K| nat for (α, β) running over K 0 × K 0 do not contain too many open subsets when K is a spatial precubical set.Theorem 7.7. Let K be a spatial precubical set. The natural map of flows |K| nat → |K| tc is an isomorphism. In particular, for all (α, β) ∈ K 0 × K 0 , the continuous bijection P α,β |K| nat → P α,β |K| tc is a homeomorphism.Proof. The map of flows |K| nat → |K| tc induces the identity on K 0 . For all (α, β) ∈ K 0 × K 0 , the space P α,β |K| nat is Hausdorff, the space P α,β |K| tc being Hausdorff. Consider a set map f : [0, 1] → P α,β |K| nat such that the composite set map [0, 1] → P α,β |K| nat → P α,β |K| tc is continuous. Since [0, 1] is path-connected, there exists a commutative diagram of spaces of the form By adjunction, we obtain a continuous map [0, 1] × [0, n 0 ] → |K| geom . Since the topological space |K| geom is a CWcomplex, the image of the compact [0, 1] × [0, n 0 ] is a closed compact subset of |K| geom which, by [18, Proposition A.1], intersects N interiors of cubes and vertices with N > 0 finite. We want to prove that the set map f : [0, 1] → P α,β |K| nat is continuous. Since the ∆-generated spaces are sequential, it suf-Suppose that the sequence (Carrier(f (t k )) k≥0 ) is constant and equal to (c 1 , . . . , c p ). Then the sequence (f (t k )) k≥0 of paths belongs to the image of the continuous mapN dim(c 1 ) × • • • × N dim(cp) → P α,β ∥K∥ ∼ = P α,β |K| nat . The product N dim(c 1 ) × • • • × N dim(cp) is a finite product in Top of compact metrizable spaces by Proposition 4.10. By [14, Lemma 6.9], this product coincides with the product taken in the category of general topological spaces. This means that N dim(c 1 ) × • • • × N dim(cp) is compact metrizable, and hence sequentially compact. Consequently, the image of N dim(c 1 ) × • • • × N dim(cp) → P α,β |K| nat is sequentially compact, and also closed in P α,β |K| nat , the latter being Hausdorff. We deduce that the sequence (f (t k )) k≥0 has a limit point which is necessarily f (t ∞ ) by continuity of the composite map [0, 1] → P α,β |K| nat → P α,β |K| tc . In fact, we have proved that every subsequence of (f (t k )) k≥0 has a subsequence that has a limit point, which is necessarily f (t ∞ ). Suppose that the sequence (f (t k )) k≥0 does not converge to f (t ∞ ). Then there exists an open neighborhood V of f (t ∞ ) in P α,β |K| nat such that for some M ≥ 0, and for all

	[0, 1]

/ / P α,β |K| nat → P α,β |K| tc / / n≥1 TOP([0, n], |K| geom ) [0, 1] / / TOP([0, n 0 ], |K| geom ) / / n≥1 TOP([0, n], |K| geom )

for some integer n 0 ≥ 1. fices to prove the sequential continuity of f :

[0, 1] → P α,β |K| nat . Let (t k ) k≥0 be a sequence of [0, 1] which converges to t ∞ ∈ [0, 1]. For all t ∈ [0, 1], Carrier(f (t)) is of the form (c 1 , . . . , c p ) with dim(c i ) + • • • + dim(c p ) = n 0 .

We deduce that the set {Carrier(γ(t)) | t ∈ [0, 1]} has at most (N + 1) n 0 elements, i.e. it is finite. Thus the sequence (Carrier(f (t k )) k≥0 ) of carriers has a constant subsequence.
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is identified with ξ k in the colimit P α,β ∥K∥. Let ) ). However, there is a bijection of sets

It follows that for all c ∈ G, we have

for all c ∈ G and all their iterated faces, i.e. on the cubes c of the precubical set

There are two mutually exclusive cases:

In the second case, we have

by definition of the latter set. This means that the map of precubical sets

and therefore as a composite

for all i ∈ {1, . . . , p}. We deduce that a 1 = a 2 : □[m] → K are the same map of precubical sets. Thus ξ 1 = ξ 2 in the colimit P α,β ∥K∥. This means that K is spatial.

Corollary A.3. Let K be a precubical set of dimension 2 (i.e. K n = ∅ for all n ≥ 3). Then K is spatial.

Proof. There are no maps from □[n] ⊔ A □[n] to K for all n ≥ 3 and all A ∈ B n .