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COMPARING CUBICAL AND GLOBULAR DIRECTED PATHS

PHILIPPE GAUCHER

Abstract. A flow is a directed space structure on a homotopy type. It is already

known that the underlying homotopy type of the realization of a precubical set as a flow

is homotopy equivalent to the realization of the precubical set as a topological space.

This realization depends on the non-canonical choice of a q-cofibrant replacement. We

construct a new realization functor from precubical sets to flows which is homotopy

equivalent to the previous one and which does not depend on the choice of any cofi-

brant replacement functor. The main tool is the notion of natural d-path introduced

by Raussen. The flow we obtain for a given precubical set is not anymore q-cofibrant

but is still m-cofibrant. As an application, we prove that the space of execution paths

of the realization of a precubical set as a flow is homotopy equivalent to the space of

nonconstant d-paths between vertices in the geometric realization of the precubical set.
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1. Introduction

Presentation. Precubical sets are a prominent geometric model for concurrency theory

[6]. The n-cube represents the concurrent execution of n actions. The space of d-paths in

the geometric realization of a precubical set is studied in many papers, such as a series of

papers [24–26, 31, 32] by Raussen and Ziemiański (the list of references is not exhaustive).

Precubical sets can also be realized as flows in the sense of [8]. The realization functor

of a precubical set as a flow is first introduced in [11, Definition 7.2].

The two approaches (let us call them the cubical one of Raussen and Ziemiański and

the globular one of the author) do not coincide up to homeomorphism. In the cubical

approach, the d-paths of the topological n-cube [0, 1]n are the continuous paths which are

nondecreasing with respect to each axis of coordinates. Raussen and Ziemiański study

also several variants (tame, strict, natural etc...) which give rise to homotopy equivalent

2020 Mathematics Subject Classification. 55U35,68Q85.
Key words and phrases. directed path, precubical set, directed homotopy, Reedy category, combinatorial
model category, accessible model category.
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spaces of d-paths between two fixed vertices in the geometric realization of the precubical

set. None of these definitions give rise to spaces of d-paths from the initial to the final

states of the n-cube [0, 1]n which are homeomorphic to the spaces of execution paths

from the initial to the final states of the n-cube [0, 1]n viewed as a flow. In the latter

case, the space of execution paths from the initial to the final states of the n-cube is

the (n − 1)-dimensional disk Dn−1 (see Theorem 3.12). It means that the latter space

depends on a non-canonical choice of an achronal slice in the middle of the topological

n-cube and on a non-canonical choice of a homeomorphism between this achronal slice

and Dn−1.

The underlying homotopy type of a flow is the homotopy type obtained after removing

the temporal information contained in a flow. It is defined in [9, Section 6] and a more

conceptual construction is provided in [14, Proposition 8.16] using Moore flows. It is

already known in full generality that the underlying homotopy type of the realization

of a precubical set as a flow is isomorphic to the homotopy type of the realization of a

precubical set as a topological space [10, Theorem 6.2.1]. One of the purposes of this

paper is to prove the directed version of this result.

At first, using the notion of natural d-path introduced by Raussen in [24, Defini-

tion 2.14], we improve the realization functor from precubical sets to flows |−|q : �opSet →

Flow introduced in [11, Definition 7.2] as follows.

Theorem. (Theorem 5.8) There exist a colimit preserving functor

|−|nat : �opSet −→ Flow

which does not depend on any cofibrant replacement and a natural transformation µ :

|−|q ⇒ |−|nat such that for all precubical sets K, the natural map µK : |K|q → |K|nat
induces a bijection on states and a homotopy equivalence Pα,β|K|q ≃ Pα,β|K|nat for all

α, β ∈ K0.

Theorem 5.8 implies that Pα,β|K|nat is m-cofibrant, Pα,β|K|q being q-cofibrant. The

interest of the natural realization functor is that it does not depend anymore on the arbi-

trary choice on any cofibrant replacement functor for the category of flows. Surprisingly,

it does not even depend on an m-cofibrant replacement or on an h-cofibrant replacement

of the category of flows. The geometric properties of the natural d-paths enable us in

Section 6 to give another description of the natural realization functor using Ziemiański’s

notion of cube chain. As an application of Theorem 5.8 and of Section 6, we prove the

following theorems:

Theorem. (Theorem 7.7 and Theorem 7.8) Let K be a precubical set. Let α, β be two

vertices of K. The space of execution paths Pα,β|K|nat is homotopy equivalent to the set

of nonconstant tame natural d-paths from α to β equipped with the ∆-kelleyfication of the

relative topology induced by the compact-open topology in the geometric realization of K.

When moreover K is spatial (e.g. proper), the homotopy equivalence is a homeomorphism.

Theorem. (Corollary 7.9) Let K be a precubical set. Let α, β be two vertices of K. Then

the space of execution paths Pα,β|K|q is homotopy equivalent to the space of nonconstant

d-paths from α to β in the geometric realization of K equipped with the ∆-kelleyfication

of the compact-open topology.
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Corollary 7.9 is not surprising. However, until a proof was known, it was not sure

that the statement was true for all precubical sets in full generality, and not only e.g. for

non-positively curved precubical sets in the sense of [17], notion which brings together the

properties satisfied by the precubical sets coming from a lot of real concurrent systems

by [17, Proposition 1.29].

Outline of the paper. Section 2 is a reminder about the three model structures of

flows: Quillen (q), Hurewicz (h) and mixed (m) introduced in [16]. It contains, as a

new and easy remark, the proof that these three model structures on flows are simplicial.

Section 3 recalls some basic facts about cocubical objects, gives the definition of an r-

realization functor with r ∈ {q,m, h} in Definition 3.6, adapts in Theorem 3.8 some tools

coming from [10], and finally gives the example of the q-realization functor expounded in

[11]. Section 4 recalls the notion of tame natural d-path of a precubical set and proves

some basic facts about their topology, in relation with the ∆-generated spaces which are

the setting of this work. Section 5 expounds the construction of the natural realization

functor in Definition 5.3. It does not depend on any cofibrant replacement functor. It

is a new realization functor which is proved to be equivalent in some sense to the one of

[11] in Theorem 5.8. This section also proves that this new realization functor is an m-

realization functor. Section 6 gives an equivalent definition in Theorem 6.3 of the natural

realization functor in terms of cube chains in the sense of Ziemiański. In Section 7, the

tame concrete realization of a precubical set as a flow and the notion of spatial precubical

set are introduced in Definition 7.1 and in Definition 7.3 respectively. Theorem 7.7 proves

that the natural realization and the tame concrete realization coincide in the spatial case.

Then the latter theorem is generalized to the non-spatial case in Theorem 7.8. Finally it

is described the connexion with the q-realization functor in Corollary 7.9. Appendix A

is devoted to the proof that the class of spatial precubical sets is a small orthogonality

class.

Prerequisites and notations. We refer to [1] for locally presentable categories, to [27]

for combinatorial model categories. We refer to [21] and to [20] for more general model

categories, and to [7, 19, 28] for accessible model categories. The main tools used in

this paper are the {q,m, h}-model structures of flows [16], the homotopical results of [10]

about the realization functors of precubical sets as flows, and some topological results

due to Ziemiański about natural d-paths and the technique of cube chains coming from

[32]. The initial object of a category is denoted by ∅. The terminal object of a category

is denoted by 1. The set of maps from X to Y in a category C is denoted by C(X, Y ). IdX
denotes the identity map of X. The category Top denotes the category of ∆-generated

spaces or of ∆-Hausdorff ∆-generated spaces (cf. [15, Section 2 and Appendix B]). The

inclusion functor from the full subcategory of ∆-generated spaces to the category of

general topological spaces together with the continuous maps has a right adjoint called

the ∆-kelleyfication functor. The latter functor does not change the underlying set. The

category Top is locally presentable and cartesian closed. The internal hom TOP(X, Y ) is

given by taking the ∆-kelleyfication of the compact-open topology on the set Top(X, Y ).

The category Top is equipped with its q-model structure. The m-model structure [5] and

the h-model structure [2] of Top are also used in various places of the paper. The q-model

structure of Top is combinatorial. The m-model structure and the h-model structure of
3



Top are accessible 1. The three model structures are monoidal and simplicial. Compact

means quasicompact Hausdorff (French convention).

Warning. All d-paths in a geometric realization of a precubical set considered in this

paper are tame and nonconstant: see Remark 4.6. The adjective tame is added on purpose

everywhere. The adjective nonconstant is often omitted (but always understood), except

in Corollary 7.9 to avoid any confusion.

Acknowledgment. I thank Krzysztof Ziemiański for helpful discussions about [32]. I

am grateful to the anonymous referee for pointing out the flaw in the proof of the main

theorem, which also led me to many improvements in the exposition of the results.

2. Three simplicial model structures of flows

2.1. Definition. [8, Definition 4.11] A flow is a small semicategory enriched over the

closed monoidal category (Top,×). The corresponding category is denoted by Flow.

A flow X consists of a topological space PX of execution paths, a discrete space X0

of states, two continuous maps s and t from PX to X0 called the source and target

map respectively, and a continuous and associative map ∗ : {(x, y) ∈ PX × PX; t(x) =

s(y)} −→ PX such that s(x ∗ y) = s(x) and t(x ∗ y) = t(y). Let Pα,βX = {x ∈ PX |

s(x) = α and t(x) = β}: it is the space of execution paths from α to β, α is called the

initial state and β is called the final state. Note that the composition is denoted by x ∗ y,

not by y ◦ x. The category Flow is locally presentable by [13, Theorem 6.11].

Every set can be viewed as a flow with an empty space of execution paths. Every poset

can be viewed as a flow with one execution path from α to β if and only if α < β. The

obvious functor Set ⊂ Flow from the category of sets to that of flows is limit-preserving

and colimit-preserving. The following example of flows is important for the sequel:

2.2. Example. For a topological space Z, let Glob(Z) be the flow defined by

Glob(Z)0 = {0, 1}, PGlob(Z) = P0,1Glob(Z) = Z, s = 0, t = 1.

This flow has no composition law.

2.3. Notation. Let n > 1. Denote by Dn = {b ∈ Rn, |b| 6 1} the n-dimensional disk, and

by Sn−1 = {b ∈ Rn, |b| = 1} the (n− 1)-dimensional sphere. By convention, let D0 = {0}

and S−1 = ∅.

We need to recall:

2.4. Theorem. Let r ∈ {q,m, h}. Then there exists a unique model structure on Flow

such that:

• A map of flows f : X → Y is a weak equivalence if and only if f 0 : X0 → Y 0 is a

bijection and for all (α, β) ∈ X0 × X0, the continuous map Pα,βX → Pf(α),f(β)Y

is a weak equivalence of the r-model structure of Top.

• A map of flows f : X → Y is a fibration if and only if for all (α, β) ∈ X0 × X0,

the continuous map Pα,βX → Pf(α),f(β)Y is a fibration of the r-model structure of

Top.

1It is unlikely that they are combinatorial but no proof is known. The proof of [23, Remark 4.7] that the
h-model structure is not cofibrantly generated works only for the category of general topological spaces.
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This model structure is accessible and all objects are fibrant. Moreover, this model struc-

ture is simplicial. It is called the r-model structure of Flow.

Proof. It is [16, Theorem 7.4] except the last sentence. The fact that Flow is enriched,

tensored and cotensored over simplicial sets is proved in [10, Section 3.3]. The q-model

structure of flows is simplicial by [10, Theorem 3.3.15]. It remains to prove the compat-

ibility with the m-model structure and the h-model structure. It suffices to prove (see

the very end of the proof of [10, Proposition 3.3.14]) that the lift k′ of the commutative

square

(Dn × {0} × |∆[1]|) ∪ (Dn × [0, 1] × {−1, 1}) //

��

Pα,βX

��

Dn × [0, 1] × |∆[1]| //

k′

33
❤

❤

❤

❤

❤

❤

❤

❤

❤

❤

❤

❤

Pα,βY

exists if the map Pα,βX → Pα,βY is an m-fibration of spaces or an h-fibration of spaces.

Since every m-fibration of spaces and every h-fibration of spaces is a q-fibration of spaces,

the proof is complete. �

By [16, Theorem 7.7], the m-model structure is the mixing of the q-model structure

and the h-model structure in the sense of [5, Theorem 2.1]. The q-model structure is

not only accessible, but also combinatorial. A set of generating cofibrations is the set of

maps {Glob(Sn−1) ⊂ Glob(Dn) | n > 0} ∪ {C : ∅ → {0}, R : {0, 1} → {0}} by e.g. [16,

Theorem 7.6]. Every q-cofibration of flows is an m-cofibration and every m-cofibration of

flows is an h-cofibration by [5, Proposition 3.6].

There exists a flow which is not cofibrant in any of the three model structures by [16,

Proposition 7.9]. This behaviour differs from the behaviour of the h-model structure of

topological spaces for which all spaces are h-cofibrant (and h-fibrant). The reason is that

the h-model structure of flows does not coincide with the Hurewicz model structure given

by [2, Corollary 5.23]. This one exists as well because Flow satisfies the monomorphism

hypothesis, being locally presentable, and because Flow is topologically bicomplete (the

proof is similar to the proof that it is simplicial as given in [10, Section 3.3]) since a ∆-

generated space is homeomorphic to the disjoint sum of its path-connected components

by [12, Proposition 2.8]. This Hurewicz model structure is not used in this paper.

3. Realization functors from precubical sets to flows

3.1. Notation. Let [0] = {()} and [n] = {0, 1}n for n > 1. By convention, one has

{0, 1}0 = [0] = {()}. The set [n] is equipped with the product ordering {0 < 1}n. Let

0n = (0, . . . , 0) ∈ {0, 1}n and 1n = (1, . . . , 1) ∈ {0, 1}n

Let δαi : [n − 1] → [n] be the coface map defined for 1 6 i 6 n and α ∈ {0, 1} by

δαi (ǫ1, . . . , ǫn−1) = (ǫ1, . . . , ǫi−1, α, ǫi, . . . , ǫn−1). The small category � is by definition the

subcategory of the category of sets with the set of objects {[n], n > 0} and generated by

the morphisms δαi . They satisfy the cocubical relations δβj δ
α
i = δαi δ

β
j−1 for i < j and for

all (α, β) ∈ {0, 1}2. If p > q > 0, then the set of morphisms �([p], [q]) is empty. If p = q,

then the set �([p], [p]) is the singleton {Id[p]}. For 0 6 p 6 q, all maps of � from [p] to

[q] are one-to-one. A good reference for presheaves is [22].
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3.2. Definition. [3] The category of presheaves over �, denoted by �opSet, is called the

category of precubical sets. A precubical set K consists of a family of sets (Kn)n>0 and of

set maps ∂αi : Kn → Kn−1 with 1 6 i 6 n and α ∈ {0, 1} satisfying the cubical relations

∂αi ∂
β
j = ∂βj−1∂

α
i for any α, β ∈ {0, 1} and for i < j. An element of Kn is called a n-cube.

Let dim(c) = n if c ∈ Kn. An element of K0 is also called a vertex of K.

Let K be a precubical set. There exists a functor �(K) : (�↓K) → �opSet which

takes the map of precubical sets �[n] → K to �[n]. It is a general property of presheaves

that K = lim
−→

�(K), and the latter colimit is denoted by lim
−→�[n]→K

�[n]. Let

K6n = lim
−→

�[p]→K
p6n

�[p].

Let �[n] := �(−, [n]). The boundary of �[n] is the precubical set �[n]6n−1 also denoted

by ∂�[n]. In particular, one has ∂�[0] = ∅.

3.3. Definition. A cocubical object of a category C is a functor � → C.

3.4. Notation. Let C be a cocomplete category. Let X : � → C be a cocubical object of

C. Let

X̂(K) = lim
−→

�[n]→K

X([n]).

3.5. Proposition. [10, Proposition 2.3.2] Let C be a cocomplete category. The mapping

X 7→ X̂ induces an equivalence of categories between the category of cocubical objects of

C and the colimit-preserving preserving functors from �opSet to C.

Definition 3.6 is new. Moreover, only q-realization functors are implicitly studied in [11]

because the h-model structure and the m-model structure of flows were not yet known:

they are introduced 13 years later in [16].

3.6. Definition. Let r ∈ {q,m, h}. A functor F : �opSet → Flow is a r-realization

functor if it satisfies the following properties:

• F is colimit-preserving.

• For all n > 0, the map of flows F (∂�[n]) → F (�[n]) is an r-cofibration.

• There is an objectwise weak equivalence of cocubical flows F (�[∗]) → {0 < 1}∗ in the

r-model structure of Flow.

3.7. Proposition. Let r ∈ {q,m, h}. Let F : �opSet → Flow be an r-realization functor.

Then for all precubical sets K, the flow F (K) is r-cofibrant and there is a natural bijection

K0
∼= F (K)0.

Proof. Let K be a precubical set. Then the canonical map ∅ → K is a transfinite compo-

sition of pushouts of the maps ∂�[n] → �[n] for n > 0. Consequently, the canonical map

∅ → F (K) is a transfinite composition of pushouts of the maps F (∂�[n]) → F (�[n])

for n > 0. It implies that F (K) is r-cofibrant. From the objectwise weak equivalence of

cocubical flows F (�[∗]) → {0 < 1}∗, we deduce the objectwise bijection of cocubical sets

F (�[∗])0 ∼= {0, 1}∗ ∼= �[∗]0. We obtain the natural bijection F (K)0 ∼= K0. �

3.8. Theorem. Let r ∈ {q,m, h}. Consider two r-realization functors

F1, F2 : �opSet −→ Flow.
6



Then there exists a natural transformation µ : F1 ⇒ F2 such that there is a commutative

diagram of cocubical flows

F1(�[∗])

��

µ�[∗]
// F2(�[∗])

��

{0 < 1}∗ {0 < 1}∗

and such that for all precubical sets K, the map µK : F1(K) → F2(K) natural with

respect to K is a weak equivalence of the r-model structure of Flow. Moreover, for all

(α, β) ∈ K0 × K0, the natural map Pα,βF1(K)
≃

−→ Pα,βF2(K) is a homotopy equivalence

of spaces.

Proof. The maps of cocubical flows Fi(�[∗]) → {0 < 1}∗ for i = 1, 2 are objectwise

fibrations since Pα,β{0 < 1}∗ is empty or equal to a singleton and because all topological

spaces are fibrant. Consequently, they are objectwise trivial fibrations by definition of

an r-realization functor. By [10, Theorem 2.3.3], there exists a natural transformation

µ : F1 ⇒ F2 such that there is the commutative diagram of cocubical flows depicted

in the statement of the theorem and such that, for all precubical sets K, the natural

map µK : F1(K) ⇒ F2(K) is a simplicial homotopy equivalence, and therefore a weak

equivalence of the r-model structure by [20, Proposition 9.5.16], between two r-cofibrant

flows. If r = h, then the natural map Pα,βF1(K) → Pα,βF2(K) is a homotopy equivalence

of spaces by definition of the weak equivalences of the h-model structure of flows. If r = q,

then the flows F1(K) and F2(K) are q-cofibrant by Proposition 3.7. Therefore, the spaces

Pα,βF1(K) and Pα,βF2(K) are q-cofibrant by [15, Theorem 5.7]. Using the Whitehead

theorem [20, Theorem 7.5.10], we deduce that the natural map Pα,βF1(K) → Pα,βF2(K)

is a homotopy equivalence of spaces. It remains the case r = m. The flows F1(K) and

F2(K) are m-cofibrant by Proposition 3.7. We deduce that the spaces Pα,βF1(K) and

Pα,βF2(K) are m-cofibrant by [16, Theorem 8.7]. By [5, Corollary 3.4], we deduce that

the weak homotopy equivalence Pα,βF1(K) → Pα,βF2(K) is a homotopy equivalence of

spaces as well. �

3.9. Theorem. There exists a q-realization functor |−|q : �opSet → Flow.

Proof. Let (−)cof be a q-cofibrant replacement functor of Flow. Let

|K|q := lim
−→

�[n]→K

({0 < 1}n)cof .

It is a q-realization functor by [11, Proposition 7.4]. �

3.10. Remark. The functor

|−|bad : K 7→ lim
−→

�[n]→K

{0 < 1}n

is not a q-realization functor since the map of flows |∂�[2]|bad → |�[2]|bad is not a q-

cofibration of flows.

Moreover, there is the isomorphism |∂�[n]|bad ∼= |�[n]|bad for all n > 3 by [11, Theo-

rem 7.1], which is not the expected behavior for a realization functor.

7



3.11. Proposition. Every q-realization functor is an m-realization functor. Every m-

realization functor is an h-realization functor.

Proof. Every q-realization functor is an m-realization functor because every q-cofibration

of flows is an m-cofibration of flows by [16, Proposition 7.8] and because the weak equiv-

alences are the same in the two model structures. Let F : �opSet → Flow be an

m-realization functor. Then for all n > 0, the map of flows F (∂�[n]) → F (�[n]) is an

m-cofibration, and therefore an h-cofibration by [5, Proposition 3.6]. The map of flows

F (�[n]) → {0 < 1}n is a weak equivalence of the m-model structure for all n > 0. Since

F (�[n]) is m-cofibrant by Proposition 3.7, there exists by [5, Corollary 3.7] a q-cofibrant

flow Cn and a weak equivalence of the h-model structure of flows Cn → F (�[n]) for all

n > 0. By [15, Theorem 5.7], for all α, β ∈ C0
n = {0, 1}n, the topological space Pα,βCn

is q-cofibrant. It means that for all α, β ∈ {0, 1}n, the space Pα,βF (�[n]) is homotopy

equivalent to a q-cofibrant space, which means that Pα,βF (�[n]) is m-cofibrant. Thus the

map Pα,βF (�[n]) → Pα,β{0 < 1}n is for all α, β ∈ {0, 1}n a weak homotopy equivalence

between m-cofibrant spaces, and therefore a homotopy equivalence by [5, Corollary 3.4].

In other terms, the map of flows F (�[n]) → {0 < 1}n is a weak equivalence of the h-model

structure of flows for all n > 0. We have proved that F is an h-realization functor. �

The drawback of the construction of Theorem 3.9 is that it depends on the non-

canonical choice of a q-cofibrant replacement. It is one of the purpose of the paper

to fix this issue. The following theorem is not used in the sequel. It helps the reader to

understand the geometric contents of a q-realization functor.

3.12. Theorem. [10, Theorem 4.2.4 and Theorem 4.2.6] For all n > 1, there is a homo-

topy pushout diagram of flows for the q-model structure

Glob(Sn−2)

07→0n
17→1n

//

��

|∂�[n]|q

��

Glob(Dn−1) // |�[n]|q.
h

There exists a q-realization functor such that the pushout diagram above is moreover strict.

4. Natural d-paths

We want to use the notion of natural d-path introduced by Raussen in [24, Defini-

tion 2.14] to build the natural realization functor from precubical sets to flows.

This new realization functor is natural in the sense that it uses natural d-paths, and also

natural in the sense that it is more canonical than the q-realization functor of Theorem 3.9.

Indeed, the latter depends on the non-canonical choice of a q-cofibrant replacement func-

tor for the category of flows. The new one is independent of such a non-canonical choice.

4.1. Notation. Let δαi : [0, 1]n−1 → [0, 1]n be the continuous map defined for 1 6 i 6 n

and α ∈ {0, 1} by δαi (ǫ1, . . . , ǫn−1) = (ǫ1, . . . , ǫi−1, α, ǫi, . . . , ǫn−1). By convention, let
8



[0, 1]0 = {()}. We obtain a cocubical topological space [0, 1]∗ and the associated colimit-

preserving functor from precubical sets to topological spaces is denoted by

|K|geom = lim
−→

�[n]→K

[0, 1]n.

The topological space |K|geom is a CW-complex, and therefore it is Hausdorff. Every

point of |K|geom admits a unique presentation [c; x] = |c|geom(x) where c is a cube of K

and such that x ∈]0, 1[dim(c). A point of |K|geom may belong to several cubes and therefore

admits several presentations [c; x] with x ∈ [0, 1]dim(c).

4.2. Definition. Let U be a topological space. A (Moore) path in U consists of a con-

tinuous map [0, ℓ] → U with ℓ > 0. The real number ℓ > 0 is called the length of the

path.

4.3. Definition. Let γ1 : [0, ℓ1] → U and γ2 : [0, ℓ2] → U be two paths in a topological

space U such that γ1(ℓ1) = γ2(0). The Moore composition γ1 ∗ γ2 : [0, ℓ1 + ℓ2] → U is the

Moore path defined by

(γ1 ∗ γ2)(t) =




γ1(t) for t ∈ [0, ℓ1]

γ2(t− ℓ1) for t ∈ [ℓ1, ℓ1 + ℓ2].

The Moore composition of Moore paths is strictly associative.

4.4. Definition. Let n > 1. A (nonconstant) tame d-path of |�[n]|geom = [0, 1]n is a

nonconstant continuous map γ : [0, ℓ] → [0, 1]n with ℓ > 0 such that γ(0), γ(ℓ) ∈ {0, 1}n

and such that γ is nondecreasing with respect to each axis of coordinates.

4.5. Definition. Let K be a precubical set. A nonconstant tame d-path of K is a path

[0, ℓ] → |K|geom which is the Moore composition γ1 ∗ · · · ∗ γn of nonconstant tame d-paths

in cubes of |K|geom. γ(0) ∈ K0 is called the initial state of γ and γ(ℓ) ∈ K0 is called the

final state of γ.

4.6. Remark. All d-paths are tame and nonconstant in this paper. In particular, they

start and end at a vertex of K. The adjective tame is added everywhere. The adjective

nonconstant is often omitted.

4.7. Notation. With the notations of Definition 4.5. A tame d-path γ : [0, ℓ] → |K|geom

can be written γ = 0[c1; γ1]
t1
∗ . . .

tn−1

∗ [cn; γn]tn or γ = [c1; γ1] ∗ · · · ∗ [cn; γn] with 0 = t0 <

t1 < · · · < tn = ℓ such that for all 1 6 i 6 n and t ∈ [ti−1, ti], γ(t) = [ci; γi(t)] with

dim(ci) > 1 and such that γ(ti) ∈ K0 for 0 6 i 6 n. The sequence (c1, . . . , cn) is called

a carrier of γ. The notation Carrier(γ) means that a carrier of γ is chosen: it is not

unique.

The adjective tame corresponds to the condition γ(ti) ∈ K0 for 0 6 i 6 n. An

important feature shared by all d-paths (tame or not) of a precubical set K is that

they have a well-defined L1-arc length [24, Section 2.2.1] [26, Section 2.2]. Intuitively, the

natural d-paths are the d-paths whose speed corresponds to the L1-arc length. We give an

explicit definition of a tame natural d-path which is sufficient for this paper by starting

from the tame d-paths in the topological n-cube [0, 1]n. It is equivalent to Raussen’s

definition of nonconstant tame natural d-path.
9



4.8. Definition. Let n > 1. A tame natural d-path of the topological n-cube [0, 1]n is

a d-path γ = (γ1, . . . , γn) : [0, n] → [0, 1]n such that for all t ∈ [0, n], one has t =

γ1(t) + · · · + γn(t). The set of tame natural d-paths in [0, 1]n is denoted by Nn. It is

equipped with the compact-open topology.

4.9. Definition. A tame d-path γ of a precubical set K is natural if it can be written

γ = [c1; γ1] ∗ · · · ∗ [cn; γn] such that each γi is a tame natural d-path in the cube ci for all

i ∈ {1, . . . , n}.

4.10. Proposition. Let n > 1. The topological space Nn is ∆-generated and ∆-Hausdorff.

It is metrizable, contractible, compact and sequentially compact.

Proof. The compact-open topology is metrizable with the distance of the uniform conver-

gence by [18, Proposition A.13]. Therefore it is first countable. Consider a ball B(γ, ǫ)

for this metric. Let γ′ ∈ B(γ, ǫ). Then each convex combination (1 −u)γ+ uγ′ is a tame

natural d-path since (1 − u)t+ ut = t and for all t ∈ [0, n] and all i ∈ {1, . . . , n}, one has

|((1 − u)γi + uγ′
i)(t) − γi(t)| = u|γ′

i(t) − γi(t)| < uǫ 6 ǫ.

It means that the space Nn is locally path-connected. By [4, Proposition 3.11], it is

∆-generated, and also ∆-Hausdorff, being metrizable. It is contractible since there is a

homotopy H : [0, 1] ×Nn → Nn between the identity of Nn and the constant map taking

each tame natural d-path to the tame natural d-path δ : t 7→ (t/n, t/n, . . . , t/n) given by

the convex combination H(u, γ) = uδ + (1 − u)γ. It is compact by [32, Proposition 9.5]

applied to the sequence n = (n). We want to give a different argument which does not

use Lipschitz maps on metric spaces. Let (γk)k>0 = (γk1 , . . . , γ
k
n)k>0 be a sequence of Nn.

By a Cantor diagonalization argument, one can suppose that the sequence (γk(r))k>0 of

[0, 1]n converges to (γ∞
1 (r), . . . , γ∞

n (r)) for all r ∈ Q ∩ [0, n]. Let γ−
i (x) = sup{γ∞

i (r) |

r ∈ Q ∩ [0, x]} and γ+
i (x) = inf{γ∞

i (r) | r ∈ Q ∩ [x, n]}. Then, by density of Q, for all

x ∈ [0, n], one has (γ+
1 (x)−γ−

1 (x))+ · · ·+(γ+
n (x)−γ−

n (x)) = 0. Thus, for all x ∈ [0, n] and

for all 1 6 i 6 n, since γ+
i (x) − γ−

i (x) > 0, we deduce that γ+
i (x) = γ−

i (x). It means that

γ+
i = γ−

i : [0, n] → [0, 1] is continuous for all i ∈ {1, . . . , n}. Consequently, each sequence

(γki )k>0 converges pointwise for 1 6 i 6 n. By the second Dini theorem, the convergence

is uniform. Using [14, Lemma 6.10], we deduce that (γk)k>0 has a convergent subsequence.

We deduce that Nn is sequentially compact, hence compact, being metrizable. �

4.11. Notation. Let x = (x1, . . . , xn) and x′ = (x′
1, . . . , x

′
n) be two elements of [0, 1]n. Let

d∞(x, x′) = max
16i6n

|xi − x′
i|.

4.12. Definition. Let n > 2. Let Vn = {0, 1}n\{0n, 1n}. Consider the continuous map

φ : Nn → [0, 1] defined by φ(γ) = min(t,v)∈[0,n]×Vn
d∞(γ(t), v). Let ∂Nn = φ−1(0) equipped

with the relative topology.

4.13. Notation. Let ∂N0 = N0 = ∂N1 = ∅.

There is the proposition:

4.14. Proposition. Let n > 2. The underlying set of ∂Nn is exactly the set of Moore

compositions of tame natural d-paths in subcubes of [0, 1]n. For every γ ∈ ∂Nn, γ([0, n]) is

included in the boundary of [0, 1]n. The topology of ∂Nn is ∆-generated and ∆-Hausdorff.

It is metrizable, compact and sequentially compact.
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Proof. The set ∂Nn is exactly the set of tame natural d-paths in [0, 1]n whose image

intersects Vn. Let γ = (γ1, . . . , γn) ∈ ∂Nn and let t0 ∈]0, n[ such that γ(t0) = (ǫ1, . . . , ǫn) ∈

Vn. Since γ is natural, one has t0 = ǫ1 + · · · + ǫn which is therefore an integer between

1 and n − 1. Then γ = γa ∗ γb with γa(0) = 0n, γ(t0) = γa(t0) = γb(0) ∈ Vn and

γb(n − t0) = 1n. Therefore, for all t ∈ [0, t0], t = γ1(t) + · · · + γn(t) = γa1 (t) + · · · + γan(t).

Let J = {j ∈ {1, . . . , n} | ǫj = 0}. Since the paths are nondecreasing with respect to

each axis of coordinates, it implies that γaj (t) = 0 for all j ∈ J . Thus for all t ∈ [0, t0],

t =
∑
j /∈J γ

a
j (t). It means that γa is a natural path in the subcube from 0n to γa(t0). For

all t ∈ [t0, n], on has t = γ1(t) + · · ·+γn(t) = γb1(t− t0) + · · ·+γbn(t− t0), the first equality

since γ is natural, the second equality by definition of the Moore composition of paths.

We deduce that t−t0 = (γb1(t−t0)−ǫ1)+· · ·+(γbn(t−t0)−ǫn) for all t ∈ [t0, n]. If for some

i ∈ {1, . . . , n}, ǫi = 1, then γbi = 1 since the paths are nondecreasing with respect to each

axis of coordinates. We obtain t− t0 =
∑
j∈J γ

b
j (t− t0) for all t ∈ [t0, n]. It means that γb

is a natural path in the subcube going from γ(t0) to 1n. We deduce that the underlying

set of ∂Nn is exactly the set of Moore compositions of tame natural d-paths in subcubes

of [0, 1]n. The second assertion is a consequence of this fact. Consider γ ∈ ∂Nn. There

exists t0 ∈]0, n[ such that γ(t0) ∈ Vn. Since Vn is discrete, there exists an open U of

[0, 1]n such that U ∩ Vn = {γ(t0)}. Then W ({t0}, U) = {γ′ ∈ ∂Nn | γ′(t0) ∈ U} is an

open subset of ∂Nn for the compact-open topology. The latter being metrizable, take a

ball B(γ, ǫ) ⊂ W ({t0}, U) and repeat the reasoning of Proposition 4.10: we deduce that

∂Nn is locally path-connected as well, hence ∆-generated (and also ∆-Hausdorff, being

metrizable) by [4, Proposition 3.11]. �

To summarize, ∂Nn is a closed subset of Nn which remains ∆-generated and also ∆-

Hausdorff when equipped with the relative topology. Both ∂Nn and Nn are equipped

with the compact-open topology and are metrizable, compact, and sequentially compact.

The presentation chosen for ∂Nn and Nn is due to the fact that [32, Proposition 10.2]

is used in the proof of Proposition 5.4 and that [32, Proposition 10.3] is used in the

proof of Proposition 5.5. However, [32] uses the compact-open topology. It turns out

that the ∆-kelleyfication functor does not preserve compactness and that it is a right

Quillen equivalence, not a left Quillen equivalence. Since ∂Nn and Nn equipped with the

compact-open topology are metrizable for all n > 0, they are k-spaces. An additional

argument is necessary to prove that they are ∆-generated as well to get rid of this issue.

5. Natural realization from precubical sets to flows

We define a flow |�[n]|nat for n > 0 called the natural n-cube as follows. The set of

states is {0, 1}n. Let n > 1 and α, β ∈ {0, 1}n. Let α = (α1, . . . , αn) and β = (β1, . . . , βn).

Assume that α < β in the product order {0 < 1}n. Let I = {i ∈ {1, . . . , n} | αi 6= βi}.

By hypothesis, I is nonempty. Let m be the cardinality of I. Then α (β resp.) is the

initial (final resp.) state of a m-subcube of �[n]. Then let Pα,β|�[n]|nat = Nm viewed as

the space of tame natural d-paths in the m-subcube from α to β. Assume that α > β.

Let Pα,β|�[n]|nat = ∅. The composition law is defined by the Moore composition of tame

natural d-paths, which is still a tame natural d-path.
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5.1. Proposition. Let φ : [n] → [n + 1] be a map of the small category �. Then the

continuous map P0n,1n
|�[n]|nat → Pφ(0n),φ(1n)|�[n + 1]|nat induced by φ is the identity of

Nn.

Proof. It is a straightforward consequence of the definitions. �

5.2. Corollary. We obtain a well-defined cocubical flow |�[∗]|nat.

Proof. Consider an algebraic relation φ1φ2 = ψ1ψ2 : [n] → [n + 2] in the small category

�. Consider the diagram of topological spaces

P0n,1n
|�[n]|nat // Pφ2(0n),φ2(1n)|�[n+ 1]|nat // Pφ1φ2(0n),φ1φ2(1n)|�[n+ 2]|nat

P0n,1n
|�[n]|nat // Pψ2(0n),ψ2(1n)|�[n+ 1]|nat // Pψ1ψ2(0n),ψ1ψ2(1n)|�[n+ 2]|nat

By Proposition 5.1 and by definition of |−|nat, the two horizontal composite maps are

equal to the identity of Nn. It means that the diagram is commutative and that the

cocubical relations are satisfied. �

Using Proposition 3.5, we obtain:

5.3. Definition. Let K be a precubical set. Consider the colimit-preserving functor

|K|nat = lim
−→

�[n]→K

|�[n]|nat.

It is called the natural realization of K as a flow.

5.4. Proposition. Let n > 0. There is a homeomorphism ∂Nn
∼= P0n,1n

|∂�[n]|nat.

Proof. Using [32, Proposition 10.2] applied with the sequence (n), we deduce that this

map is a homeomorphism: the idea of the proof is that there is a continuous bijection

from P0n,1n
|∂�[n]|nat to ∂Nn and that both P0n,1n

|∂�[n]|nat and ∂Nn are compact. �

5.5. Proposition. The continuous map ∂Nn ⊂ Nn is an h-cofibration of spaces for all

n > 0.

Proof. Using [32, Proposition 10.3] applied with the sequence (n), we deduce that this

map is a strong neighborhood deformation retract, i.e. an h-cofibration by [29, Theo-

rem 2]. �

5.6. Corollary. The map of flows Glob(∂Nn) ⊂ Glob(Nn) is an h-cofibration of flows for

all n > 0.

Proof. A map of flows of the form Glob(U) → Glob(V ) satisfies the left lifting property

with respect to a map of flows f : X → Y if and only if the map U → V satisfies

the left lifting property with respect to all maps Pα,βX → Pf(α),f(β)Y for all (α, β) ∈

X0 ×X0. Using the characterization of the trivial h-fibrations of flows (see Theorem 2.4)

and Proposition 5.5, we deduce that the map Glob(∂Nn) → Glob(Nn) is an h-cofibration

of flows. �

5.7. Proposition. For all n > 0, the map |∂�[n]|nat → |�[n]|nat is an h-cofibration of

flows.
12



Proof. From the homeomorphism of Proposition 5.4 and by definition of Nn, we deduce

that the commutative diagram of spaces

∂Nn

∼=
//

��

P0n,1n
|∂�[n]|nat

��

Nn

∼=
// P0n,1n

|�[n]|nat

is a pushout diagram of spaces. The top homeomorphism yields a map of flows

Glob(∂Nn) −→ |∂�[n]|nat

taking 0 to 0n and 1 to 1n for all n > 0. We obtain the pushout diagram of flows

Glob(∂Nn) //

��

|∂�[n]|nat

��

Glob(Nn) // |�[n]|nat

Using Corollary 5.6, we deduce that the map |∂�[n]|nat → |�[n]|nat is an h-cofibration of

flows for all n > 0. �

5.8. Theorem. There exists a natural transformation µ : |−|q ⇒ |−|nat such that for all

precubical sets K, the natural map µK : |K|q → |K|nat induces a bijection on states and

a homotopy equivalence Pα,β|K|q ≃ Pα,β|K|nat for all α, β ∈ K0.

Proof. The map |�[∗]|nat → {0 < 1}∗ is an objectwise weak equivalence for the h-model

structure of Flow since all spaces Nn for n > 1 are contractible by Proposition 4.10. By

Proposition 5.7, the natural realization functor is then an h-realization functor. Since

|−|q is also an h-realization functor by Proposition 3.11, the proof is complete thanks to

Theorem 3.8. �

The statement of Theorem 3.8 being symmetric, there is also a natural transformation

ν : |−|nat ⇒ |−|q such that, for all precubical sets K, the natural map νK : |K|nat → |K|q
induces a bijection on states and a homotopy equivalence Pα,β|K|nat ≃ Pα,β|K|q for

all α, β ∈ K0. This statement is less intuitive because, morally speaking, the natural

realization contains more execution paths than the q-realization.

Proposition 5.7 means that the natural realization functor is an h-realization functor.

In fact, it is possible to prove better. For all precubical sets K and all (α, β) ∈ K0 ×K0,

there is a homotopy equivalence Pα,β|K|nat ≃ Pα,β|K|q. Since |K|q is q-cofibrant, the

space Pα,β|K|q is q-cofibrant by [15, Theorem 5.7]. It means that the spaces of execution

paths Pα,β|K|nat are m-cofibrant for all (α, β) ∈ K0 ×K0. This suggests that the natural

realization |K|nat is an m-cofibrant flow. Indeed we have the following theorem:

5.9. Theorem. The natural realization functor is an m-realization functor. For any

precubical set K, the flow |K|nat is m-cofibrant.

Proof. The map |�[∗]|nat → {0 < 1}∗ is an objectwise weak equivalence for the h-model

structure of Flow, and therefore for the m-model structure of Flow as well. There is a

homeomorphism ∂Nn
∼= P0n,1n

|∂�[n]|nat (Proposition 5.4) and a homotopy equivalence
13



P0n,1n
|∂�[n]|nat ≃ P0n,1n

|∂�[n]|q (Theorem 3.8). Since |∂�[n]|q is a q-cofibrant flow by

Proposition 3.7, the space P0n,1n
|∂�[n]|q is q-cofibrant by [15, Theorem 5.7]. Moreover, Nn

is contractible by Proposition 4.10, hence m-cofibrant. It implies that all maps ∂Nn → Nn

for n > 0 are h-cofibrations of spaces between m-cofibrant spaces [5, Corollary 3.7]. By [5,

Corollary 3.12], the maps ∂Nn → Nn are therefore m-cofibrations of spaces for all n > 0.

Thus, the map of flows Glob(∂Nn) → Glob(Nn) is an m-cofibration of flows for all n > 0

by the same argument as in the proof of Corollary 5.6. Using the pushout diagram in the

proof of Proposition 5.7, we deduce that the natural realization functor is an m-realization

functor. By Proposition 3.7, we deduce that the flow |K|nat is m-cofibrant. �

6. Natural realization and cube chains

Cube chains are introduced in [31, Definition 1.1]. We use the presentation given in [32,

Section 7] instead. Let Seq(n) be the set of sequences of positive integers n = (n1, . . . , np)

with n1 + · · · + np = n. Let n = (n1, . . . , np) ∈ Seq(n). Then |n| = n is the length

of n and ℓ(n) = p is the number of elements of n. Let K be a precubical set and

A = a1 < · · · < ak ⊂ {1, . . . , n} and ǫ ∈ {0, 1}. The iterated face map is defined by

∂ǫA = ∂ǫa1
∂ǫa2

. . . ∂ǫak
.

6.1. Definition. Let n ∈ Seq(n). The n-cube is the precubical set

�[n] = �[n1] ∗ · · · ∗ �[np]

where the notation ∗ means that the final state 1ni
of the precubical set �[ni] is identified

with the initial state 0ni+1
of the precubical set �[ni+1] for 1 6 i 6 p− 1.

Let K be a precubical set. Let α, β be two vertices of K. Let n > 1. The category

Chα,β(K,n) is defined as follows. The objects are the maps of precubical sets �[n] → K

with |n| = n where the initial state of �[n1] is mapped to α and the final state of �[np] is

mapped to β. Let A⊔B = {1, . . . , m1 +m2} be a partition with the cardinal of A equal

to m1 > 0 and the cardinal of B equal to m2 > 0. Let

φA,B : �[m1] ∗ �[m2] −→ �[m1 +m2]

be the unique map of precubical sets such that

φA,B(Id[m1]) = ∂0
B(Id[m1+m2]),

φA,B(Id[m2]) = ∂1
A(Id[m1+m2]).

For i ∈ {1, . . . , ℓ(n)} and a partition A ⊔ B = {1, . . . , ni}, let

δi,A,B = Id�[n1] ∗ · · · ∗ Id�[ni−1] ∗φA,B ∗ Id�[ni+1] ∗ · · · ∗ Id�[nℓ(n)] .

The morphisms are the commutative diagrams

�[na]

��

a
// K

�[nb]
b

// K

where the left vertical map is a composite of maps of precubical sets of the form δi,A,B.
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From a precubical set K, we are going to define a flow ||K|| as follows. The set of

states is K0. Consider the small diagram of spaces

Dα,β(K,n) : Chα,β(K,n) −→ Top

defined by on objects by

Dα,β(K,n)(�[n] → K) = Nn1 × . . .×Nnp

and on morphisms by using the maps

P|φA,B|nat : P(�[m1] ∗ �[m2]) → P(�[m1 +m2])

which induce maps Nm1 × Nm2 → Nm1+m2 given by the Moore composition of tame

natural d-paths. The space of execution spaces Pα,β||K|| is defined as follows:

Pα,β||K|| =
∐

n>1

lim
−→

Dα,β(K,n).

It is easy to see that the concatenation of tuples induces functors

Dα,β(K,m1) × Dβ,γ(K,m2) → Dα,γ(K,m1 +m2),

and, using [15, Proposition A.4], continuous maps

lim
−→

Dα,β(K,m1) × lim
−→

Dβ,γ(K,m2) → lim
−→

Dα,γ(K,m1 +m2)

for all m1, m2 > 1. We obtain an associative composition map

Pα,β||K|| × Pβ,γ||K|| → Pα,γ ||K||

for all (α, β, γ) ∈ K0 ×K0 ×K0.

6.2. Proposition. There is an isomorphism of cocubical flows

||�[∗]|| ∼= |�[∗]|nat.

Proof. At first, we prove the isomorphism of flows ||�[n]|| ∼= |�[n]|nat by induction on

n > 0. The statement is obvious for n = 0. Let n > 1 and α, β ∈ {0, 1}n with α < β.

Let α = (α1, . . . , αn) and β = (β1, . . . , βn). Let

I = {i ∈ {1, . . . , n} | αi 6= βi}.

By hypothesis, I is nonempty. Let m be the cardinality of I. Then α (β resp.) is

the initial (final resp.) state of a m-subcube c of �[n]. We deduce that the category

Chα,β(�[n], p) is empty for p 6= m and that it has a terminal object c : �[m] → �[n] for

p = m corresponding to the subcube from α to β. We deduce the homeomorphisms

Pα,β||�[n]|| = lim
−→

n=(n1,...,np),ℓ(n)=m
�[n]→�[n]∈Chα,β(�[n],m)

Nn1 × . . .×Nnp

∼= Nm

= Pα,β|�[n]|nat,

the first equality by definition of ||�[n]||, the homeomorphism because of the unique map

c : �[m] → �[n] which is the terminal object of Chα,β(�[n], m), and the last equality

by Proposition 5.1 applied to the map c : �[m] → �[n]. By Proposition 5.1 again, the

isomorphism ||�[n]|| ∼= |�[n]|nat is natural with respect to [n]. �
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We do not know yet that the functor ||−|| is colimit-preserving. An additional argument

based on Proposition 5.1 as well is necessary for proving Theorem 6.3.

6.3. Theorem. There is a natural isomorphism of flows

||K|| ∼= |K|nat

for all precubical sets K.

Proof. Let n = (n1, . . . , np) ∈ Seq(n). Every map of precubical sets �[n] → K gives rise

to a map of flows |�[n]|nat → |K|nat, and therefore to a continuous map

Nn1 × . . .×Nnp
−→ P|K|nat.

Let φA,B : �[m1] ∗ �[m2] → �[m1 + m2] as above. A composite map of precubical sets

�[m1] ∗ �[m2] → �[m1 +m2] → K gives rise to the commutative diagram of flows

|�[m1] ∗ �[m2]|nat

��

// |K|nat

|�[m1 +m2]|nat // |K|nat

and therefore to the commutative diagram of spaces

Nm1 ×Nm2

��

// P|K|nat

Nm1+m2
// P|K|nat

Consequently, we obtain a cocone

(Nn1 × . . .×Nnp
) �[n]→K

∈Chα,β(K,n)

•
−→ P|K|nat

and then a map of flows ||K|| → |K|nat which is bijective on states. For each map of

precubical sets �[n] → K, we obtain by Proposition 6.2 a map of flows

|�[n]|nat ∼= ||�[n]|| −→ ||K||.

Using Proposition 5.1, we obtain a cocone of flows

(|�[n]|nat)�[n]→K
•

−→ ||K||

and therefore a map of flows |K|nat → ||K|| such that the composite map |K|nat →

||K|| → |K|nat is the identity. Thus, the map ||K|| → |K|nat is onto on execution paths

and the map |K|nat → ||K|| is one-to-one on execution paths. Consider an execution

path γ of ||K||. It belongs to a colimit and therefore has a representative (γ1, . . . , γp) in a

space of the form Nn1 × . . .×Nnp
corresponding to some map of precubical set �[n] → K

with n = (n1, . . . , np). By Proposition 5.1, there exists an execution path γ1 ∗ · · · ∗ γp of

|K|nat which is mapped to (γ1, . . . , γp) by the map of flows |K|nat → ||K||. The latter is

therefore surjective on execution paths. And the proof is complete. �
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7. Comparing execution paths and d-paths

The fact that the Moore composition of tame natural d-paths in the geometric realiza-

tion of a precubical set is strictly associative entails the following definition.

7.1. Definition. Let K be a precubical set. The tame concrete realization of K is the

flow |K|tc such that the set of states is K0, the space of execution paths Pα,β|K|tc for

(α, β) ∈ K0 ×K0 is the space of nonconstant tame natural d-paths from α to β in |K|geom
equipped with the ∆-kelleyfication of the relative topology induced by the compact-open

topology and the composition of execution paths is induced by the Moore composition.

This construction yields a well-defined functor |−|tc : �opSet → Flow. By definition

of |�[n]|nat (see the beginning of Section 5), there is a natural isomorphism of flows

|�[n]|nat ∼= |�[n]|tc for all [n] ∈ �. Since the natural realization functor is colimit-

preserving, the universal property of the colimit provides a natural map of flows |K|nat →

|K|tc.

7.2. Proposition. Let K be a precubical set. The natural map of flows |K|nat → |K|tc is

bijective on states. For all (α, β) ∈ K0 ×K0, the continuous map Pα,β|K|nat → Pα,β|K|tc
is onto. The following assertions are equivalent.

(1) For all (α, β) ∈ K0 × K0, the continuous map Pα,β|K|nat → Pα,β|K|tc is one-to-

one.

(2) For all (α, β) ∈ K0 ×K0, the continuous map Pα,β|K|nat → Pα,β|K|tc is bijective.

Finally, for all (α, β) ∈ K0 ×K0, the space of execution paths Pα,β|K|tc is Hausdorff.

Proof. The first assertion is by definition of |K|nat and |K|tc. Let (α, β) ∈ K0 × K0.

Consider a tame natural d-path [c1; γ1] ∗ · · · ∗ [cp; γp] of Pα,β|K|tc (cf. Notation 4.7). Let

n =
∑
i dim(ci) and n = (dim(c1), . . . , dim(cp)). The sequence of cubes (c1, . . . , cp) gives

rise to a map �[n] → K. Then

(γ1, . . . , γp) ∈ Dα,β(K,n)(�[n] → K) = Ndim(c1) × . . .×Ndim(cp)

is the representative of an element of Pα,β|K|nat ∼= Pα,β||K|| which is taken to [c1; γ1] ∗

· · · ∗ [cn; γn] ∈ Pα,β|K|tc. It means that, for all (α, β) ∈ K0 × K0, the continuous map

Pα,β|K|nat → Pα,β|K|tc is onto. It implies (1) ⇔ (2). From the sequence of one-to-one

continuous maps

Pα,β|K|tc ⊂
∐

n>1

TOP([0, n], |K|geom) ⊂
∐

n>1

Topco([0, n], |K|geom) ⊂
∐

n>1

∏

[0,n]

|K|geom

for all (α, β) ∈ K0 ×K0, Topco([0, n], |K|geom) being the set Top([0, n], |K|geom) equipped

with the compact-open topology, and the product being equipped with the pointwise

topology (i.e. the product topology), we deduce that the space of execution paths

Pα,β|K|tc is Hausdorff for all (α, β) ∈ K0 ×K0, |K|geom being Hausdorff. �

7.3. Definition. A precubical set K is spatial if for all (α, β) ∈ K0 ×K0, the continuous

map Pα,β|K|nat → Pα,β|K|tc is bijective.

A characterization of spatial precubical sets as a small orthogonality class is postponed

to Appendix A. We want to give some examples of spatial precubical sets before expound-

ing the main theorems of the section.
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7.4. Definition. [31, page 499] A precubical set K is proper if the map
∐

n>0

Kn −→ K0 ×K0

which takes an n-cube c of K to (∂0
{1,...,n}c, ∂

1
{1,...,n}c) is one-to-one.

For all n > 0, the precubical sets ∂�[n] and �[n] are proper. The precubical sets

associated to all PV-programs are proper. Every geometric precubical set in the sense

of [17, Definition 1.18] is proper. In particular, every non-positively curved precubi-

cal set in the sense of [17, Definition 1.28] is proper since it is geometric by definition.

Indeed, let K be a geometric precubical set. Let c1, c2 be two cubes of K such that

(∂0
{1,...,dim(c1)}c1, ∂

1
{1,...,dim(c1)}c1) = (∂0

{1,...,dim(c2)}c2, ∂
1
{1,...,dim(c2)}c2). Suppose that dim(c1) =

0. Since K has no self-intersection, c2 is 0-dimensional as well and c1 = c2. Assume that

dim(c1) > 1. Then c2 cannot be 0-dimensional because K has no self-intersection. The

cubes c1 and c2 have a maximal common face which is necessarily c1 = c2. Thus K is

proper.

7.5. Proposition. There are two strict inclusions

{proper precubical sets} ⊂ {spatial precubical sets} ⊂ {precubical sets}.

Proof. Let K be a proper precubical set. Let (α, β) ∈ K0 × K0. Let ξ1 and ξ2 be two

execution paths of Pα,β|K|nat. Suppose that ξ1 and ξ2 are taken to the same tame natural

d-path

γ = [c1; γ1] ∗ · · · ∗ [cp; γp]

in |K|geom with p > 1 and 0 = t0 < t1 < · · · < tp = ℓ such that for all 1 6 i 6 p and

t ∈ [ti−1, ti], γ(t) = [ci; γi(t)] with dim(ci) > 1 and such that γ(ti) ∈ K0 for 0 6 i 6 p.

Choose the presentation [c1; γ1]∗· · ·∗[cp; γp] so that γ([0, 1])∩K0 = {γ(ti) | 0 6 i 6 p} and

γ(]ti−1, ti[) ∩ K0 = ∅ for 1 6 i 6 p. Let n =
∑
i dim(ci) and n = (dim(c1), . . . , dim(cp)).

There exist maps of precubical sets ak : �[n] → K for k = 1, 2 such that

(γ1, . . . , γp) ∈ Dα,β(K,n)(ak) = Ndim(c1) × . . .×Ndim(cp)

is identified to ξk for k = 1, 2 in the colimit Pα,β||K||. Since K is proper and since

γ(]ti−1, ti[) ∩K0 = ∅ for 1 6 i 6 p, we deduce that a1 = a2. Therefore, ξ1 = ξ2. It means

that K is spatial. Consider the precubical set K such that K0 = K1 is a singleton and

Kn = ∅ for n > 2: K is a loop. Then K is spatial but not proper (see [31, Example (1.5)]).

It means that the left-hand inclusion is strict.

Consider the precubical set K = �[3] ⊔∂�[3] �[3]. Any tame natural d-path from 03 to

13 lying in the common boundary |∂�[3]|geom that does not contain other vertices than

03 and 13 is represented by two distinct elements of P03,13 |K|nat. Thus, �[3] ⊔∂�[3] �[3] is

not spatial. It means that the right-hand inclusion is strict. �

It is necessary to recall a basic fact about ∆-inclusions before proceeding to the proof

of Theorem 7.7.

7.6. Proposition. [14, Proposition 2.2 and Corollary 2.3] A continuous bijection f : U →

V of Top is a homeomorphism if and only if it is a ∆-inclusion, i.e. a set map [0, 1] → A

is continuous if and only if the composite set map [0, 1] → A → B is continuous.
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Theorem 7.7 states intuitively that the ∆-generated spaces Pα,β|K|nat for (α, β) running

over K0 ×K0 do not contain too many open subsets when K is a spatial precubical set.

7.7. Theorem. Let K be a spatial precubical set. The natural map of flows |K|nat → |K|tc
is an isomorphism. In particular, for all (α, β) ∈ K0 × K0, the continuous bijection

Pα,β|K|nat → Pα,β|K|tc is a homeomorphism.

Proof. The map of flows |K|nat → |K|tc induces the identity on K0. For all (α, β) ∈ K0 ×

K0, the space Pα,β|K|nat is Hausdorff, the space Pα,β|K|tc being Hausdorff. Consider a set

map f : [0, 1] −→ Pα,β|K|nat such that the composite set map [0, 1] −→ Pα,β|K|nat −→

Pα,β|K|tc is continuous. Since [0, 1] is path-connected, there exists a commutative diagram

of spaces of the form

[0, 1] // Pα,β|K|nat → Pα,β|K|tc //
∐

n>1

TOP([0, n], |K|geom)

[0, 1] // TOP([0, n0], |K|geom) //
∐

n>1

TOP([0, n], |K|geom)

for some integer n0 > 1. By adjunction, we obtain a continuous map [0, 1] × [0, n0] −→

|K|geom. Since the topological space |K|geom is a CW-complex, the image of the compact

[0, 1] × [0, n0] is a closed compact subset of |K|geom which, by [18, Proposition A.1],

intersects N interiors of cubes and vertices with N > 0 finite. We want to prove that

the set map f : [0, 1] → Pα,β|K|nat is continuous. Since the ∆-generated spaces are

sequential, it suffices to prove the sequential continuity of f : [0, 1] → Pα,β|K|nat. Let

(tk)k>0 be a sequence of [0, 1] which converges to t∞ ∈ [0, 1]. For all t ∈ [0, 1], Carrier(f(t))

is of the form (c1, . . . , cp) with dim(ci) + · · · + dim(cp) = n0. We deduce that the set

{Carrier(γ(t)) | t ∈ [0, 1]} has at most (N + 1)n0 elements, i.e. that it is finite. Thus

the sequence of carriers (Carrier(f(tk))k>0 has a constant subsequence. Suppose that the

sequence (Carrier(f(tk))k>0 is constant and equal to (c1, . . . , cp). Then the sequence of

paths (f(tk))k>0 belongs to the image of the continuous map Ndim(c1) × . . .×Ndim(cp) →

Pα,β||K|| ∼= Pα,β|K|nat. The product Ndim(c1) × . . . × Ndim(cp) is a finite product in Top

of compact metrizable spaces by Proposition 4.10. By [14, Lemma 6.9], this product

coincides with the product taken in the category of general topological spaces. It means

that Ndim(c1) × . . . × Ndim(cp) is compact metrizable, and hence sequentially compact.

Consequently, the image of Ndim(c1) × . . .×Ndim(cp) → Pα,β|K|nat is sequentially compact,

and also closed in Pα,β|K|nat, the latter being Hausdorff. We deduce that the sequence

(f(tk))k>0 has a limit point which is necessarily f(t∞) by continuity of the composite map

[0, 1] −→ Pα,β|K|nat −→ Pα,β|K|tc. In fact, we have proved that every subsequence of

(f(tk))k>0 has a subsequence which has a limit point which is necessarily f(t∞). Suppose

that the sequence (f(tk))k>0 does not converge to f(t∞). Then there exists an open

neighborhood V of f(t∞) in Pα,β|K|nat such that for some M > 0, and for all k > M ,

f(tk) ∈ V c, the complement of V , the latter being closed in Pα,β|K|nat. Thus, (f(tk))k>M
cannot have a limit point: contradiction. We deduce that f : [0, 1] −→ Pα,β|K|nat
is sequentially continuous, hence continuous. It means that the continuous bijection

Pα,β|K|nat → Pα,β|K|tc is a ∆-inclusion. Therefore, the latter is a homeomorphism by

Proposition 7.6. The proof is complete. �
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Note that the functor |−|tc : �opSet → Flow is not colimit-preserving. Otherwise,

there would be an isomorphism |K|nat → |K|tc for all precubical sets K, which would

contradict Proposition 7.5.

As already noticed at the very end of Section 4, the spaces of d-paths of precubical

sets are equipped in [32] with the compact-open topology instead of some kind of kelley-

fication of the compact-open topology. The latter is the correct internal hom, both for

k-spaces and ∆-generated spaces, except in very specific situations like Proposition 4.10

and Proposition 4.14. Since the ∆-kelleyfication functor takes (weak resp.) homotopy

equivalences to (weak resp.) homotopy equivalences, this point is not an issue.

7.8. Theorem. Let K be a precubical set. The natural map of flows |K|nat → |K|tc is a

weak equivalence of the h-model structure of flows. In particular, for all (α, β) ∈ K0 ×K0,

the continuous map Pα,β|K|nat → Pα,β|K|tc is a homotopy equivalence.

Proof. The map of flows |K|nat → |K|tc induces the identity on K0. Let (α, β) ∈ K0 ×K0.

Let c = �[n] → K be an object of Chα,β(K,n) with ℓ(n) = p and n = (n1, . . . , np).

Since there is an isomorphism of flows ||�[n]|| ∼= |�[n]|nat by Theorem 6.3, there is the

homeomorphism Nn1 × . . .×Nnp
∼= P0n1 ,1np

|�[n]|nat, the identity map �[n] → �[n] being

the final object of the small category Ch0n1 ,1np
(�[n], n) (the proof is similar to the one

of Proposition 6.2). The precubical set �[n] is spatial by Proposition 7.5, being proper.

Thus the topological space

Dα,β(K,n)(c) = Nn1 × . . .×Nnp
∼= P0n1 ,1np

|�[n]|nat

is homeomorphic to the space of tame natural d-paths in |�[n]|geom from the initial state

0n1 of �[n1] to the final state 1np
of �[np] equipped with the ∆-kelleyfication of the relative

topology induced by the compact-open topology by Theorem 7.7. It implies that the map

Pα,β||K|| → Pα,β|K|tc is the homotopy equivalence
∐
n>1 F

K
n of [32, Proposition 9.7]. The

proof is complete thanks to the isomorphism of flows ||K|| ∼= |K|nat. �

There exists a continuous bijection between Hausdorff ∆-generated spaces which is a

homotopy equivalence and not a homeomorphism: consider X = S1, the discretization

Xδ and the map between unreduced cones C(Xδ) → C(X) [30]. Consequently, it is

not possible to deduce Theorem 7.7 from Theorem 7.8 and Proposition 7.2 without any

additional assumption.

The word “weak homotopy equivalence” can be replaced by “homotopy equivalence”

in the statements of [32, Theorem 7.5 and Theorem 7.6] because all maps of [32, Equa-

tion 7.5] are homotopy equivalences. Indeed, it is proved in [32, Proposition 10.3] that

some specific map is an h-cofibration. Therefore the diagram of [32, Proposition 10.4] is

Reedy h-cofibrant and the map QK
n is a homotopy equivalence.

7.9. Corollary. Let K be a precubical set. Let α, β be two vertices of K. Then the space

of execution paths Pα,β|K|q is homotopy equivalent to the space of nonconstant d-paths

from α to β in the geometric realization of K equipped with the ∆-kelleyfication of the

compact-open topology.

Proof. It is a consequence of Theorem 5.8, Theorem 7.8 and [32, Theorem 7.6]. �

Since the natural realization functor is an m-realization functor, Theorem 7.8 provides

a model category explanation of the known fact that the space of nonconstant d-paths
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in the geometric realization of a precubical set between two vertices of the precubical set

has the homotopy type of a CW-complex.

Appendix A. Characterization of spatial precubical sets

The purpose of this appendix is to characterize spatial precubical sets without using

any realization functor from precubical sets to flows. This result is unnecessary for the

understanding of the core of the paper. It is the reason why it is expounded here.

A.1. Notation. Let n > 1. Let Bn be the set of precubical sets A such that A ⊂ ∂�[n]

and such that |A|geom ⊂ [0, 1]n contains a natural d-path from 0n to 1n in [0, 1]n which

does not intersect {0, 1}n\{0n, 1n}. In particular, it means that 0n, 1n are two vertices of

A. One has B1 = B2 = ∅ and for all n > 3, one has ∂�[n] ∈ Bn.

Since every d-path of [0, 1]n has a naturalization [24, Definition 2.14], the adjective

“natural” is superfluous in the definition of Bn.

A.2. Theorem. The class of spatial precubical sets is a small orthogonality class. More

precisely, it is the class of precubical sets which are orthogonal with respect to the set of

maps of precubical sets
{
�[n] ⊔A �[n] −→ �[n] | n > 3 and A ∈ Bn

}
.

Every map �[n] ⊔A�[n] → �[n] for n > 3 and A ∈ Bn being an epimorphism of precu-

bical sets, injective is equivalent to orthogonal. Recall that the injectivity (orthogonality

resp.) condition means that any map �[n] ⊔A �[n] → K factors (uniquely resp.) as a

composite map �[n] ⊔A �[n] → �[n] → K [1, Definition 4.1 and Definition 1.32].

Proof. Let K be a precubical set which is not injective with respect to �[n]⊔A�[n] → �[n]

for some n > 3 and some A ∈ Bn. It means that there exists a map of precubical sets

f : �[n] ⊔A �[n] → K which does not factor as a composite �[n] ⊔A �[n] → �[n] →

K. By definition of Bn, there exists a tame natural d-path γ from 0n to 1n such that

γ([0, n]) ⊂ |A|geom ⊂ [0, 1]n and such that γ([0, n]) ∩ {0, 1}n = {0n, 1n}. Let

c1 ⊔ c2 : �[n] ⊔ �[n]
Id�[n] ⊔ Id�[n]

// �[n] ⊔A �[n]
f

// K.

One obtains a composite map of spaces

P0n,1n
|�[n] ⊔A �[n]|nat −→ Pf(0n),f(1n)|K|nat −→ TOP([0, n], |K|geom)

such that ξk ∈ Pf(0n),f(1n)||K|| represented by γ ∈ Df(0n),f(1n)(K,n)(ck) = Nn for k = 1, 2

is taken to the natural d-path [c1; γ] = [c2; γ] in |K|geom. We have ξ1 6= ξ2 in the colimit

Pf(0n),f(1n)||K|| (it is the same argument as in the proof of Proposition 7.5). It means

that K is not spatial.

Conversely, let K be a precubical set which is injective with respect to �[n]⊔A�[n] →

�[n] for all n > 3 and all A ∈ Bn. Let (α, β) ∈ K0 ×K0. Let ξ1 and ξ2 be two execution

paths of Pα,β|K|nat which are taken to the same tame natural d-path γ = [c1; γ1] ∗ · · · ∗

[cp; γp] in |K|geom with p > 1 and 0 = t0 < t1 < · · · < tp = ℓ such that for all 1 6 i 6 p

and t ∈ [ti−1, ti], γ(t) = [ci; γi(t)] with dim(ci) > 1, γ([0, 1]) ∩ K0 = {γ(ti) | 0 6 i 6 p}

and γ(]ti−1, ti[) ∩K0 = ∅ for 1 6 i 6 p. This implies that γi(]ti−1, ti[) ∩ {0, 1}dim(ci) = ∅
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for 1 6 i 6 p. Let m =
∑
i dim(ci) and m = (dim(c1), . . . , dim(cp)). For k ∈ {1, 2}, there

exists a map of precubical sets ak : �[m] → K such that

(γ1, . . . , γp) ∈ Dα,β(K,m)(ak) = Ndim(c1) × . . .×Ndim(cp)

is identified to ξk in the colimit Pα,β||K||. Let ak = a1
k ∗ · · · ∗ apk for k = 1, 2 with

aik : �[dim(ci)] → K.

Choose i ∈ {1, . . . , p}. Let G be the set of p-cubes c of �[dim(ci)] with p > 1 such

that γi(]ti−1, ti[) intersects |c|geom(]0, 1[dim(c)), say in γi(tc). By hypothesis, there are the

equalities

[ai1; γi(tc)] = [ai2; γi(tc)] = [ci; γi(tc)]

in |K|geom. It implies that

[ci; γi(tc)] ∈ |ai1(c)|geom(]0, 1[dim(c)) ∩ |ai2(c)|geom(]0, 1[dim(c)).

However, there is a bijection of sets

(P) |K|geom ∼= K0 ⊔
∐

p>1

∐

e∈Kp

|e|geom(]0, 1[p).

It implies that for all c ∈ G, there is the equality ai1(c) = ai2(c). Since ai1, a
i
2 : �[dim(ci)] →

K are maps of precubical sets, we deduce that ai1(c) = ai2(c) for all c ∈ G and all their

iterated faces, i.e. on the cubes c of the precubical set Ĝ ⊂ �[dim(ci)] generated by

G. Let x ∈ γi(]ti−1, ti[). By (P) applied to the precubical set �[dim(ci)] and since

γ(]ti−1, ti[) ∩ {0, 1}dim(ci) = ∅, there exist p > 1 and a p-cube c of �[dim(ci)] such that

x ∈ |c|geom(]0, 1[dim(c)). Such a p-cube c thus belongs to G. It implies that γi([ti−1, ti]) ⊂

|Ĝ|geom.

There are two mutually exclusive cases: Id[dim(ci)] ∈ G and Id[dim(ci)] /∈ G. In the first

case, there is the equality Ĝ = �[dim(ci)]. We obtain ai1 = ai2. In the second case, there is

the inclusion γi([ti−1, ti]) ⊂ |Ĝ|geom ⊂ |∂�[dim(ci)]|geom. Since γ(]ti−1, ti[)∩{0, 1}dim(ci) =

∅, we deduce that Ĝ ∈ Bdim(ci) by definition of the latter set. It means that the map of

precubical sets ai1 ⊔ ai2 : �[dim(ci)] ⊔ �[dim(ci)] → K factors as a composite

�[dim(ci)] ⊔ �[dim(ci)] −→ �[dim(ci)] ⊔
Ĝ
�[dim(ci)] −→ K,

and therefore as a composite

�[dim(ci)] ⊔ �[dim(ci)] −→ �[dim(ci)] ⊔
Ĝ
�[dim(ci)] −→ �[dim(ci)] → K.

It implies that ai1 = ai2 for all i ∈ {1, . . . , p}.

We deduce that a1 = a2 : �[m] → K are the same map of precubical sets. Thus ξ1 = ξ2

in the colimit Pα,β||K||. It means that K is spatial. �

A.3. Corollary. Let K be a precubical set of dimension 2 (i.e. Kn = ∅ for all n > 3).

Then K is spatial.

Proof. There are no maps from �[n] ⊔A �[n] to K for all n > 3 and all A ∈ Bn. �
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[7] R. Garner, M. Kȩdziorek, and E. Riehl. Lifting accessible model structures. J. Topol.,

13(1):59–76, 2020. https://doi.org/10.1112/topo.12123.

[8] P. Gaucher. A model category for the homotopy theory of

concurrency. Homology Homotopy Appl., 5(1):p.549–599, 2003.

https://doi.org/10.4310/hha.2003.v5.n1.a20.

[9] P. Gaucher. T-homotopy and refinement of observation (IV): Invariance of the un-

derlying homotopy type. New York J. Math., 12:63–95, 2006.

[10] P. Gaucher. Globular realization and cubical underlying homotopy type of time flow

of process algebra. New York J. Math., 14:101–137, 2008.

[11] P. Gaucher. Towards a homotopy theory of process algebra. Homology Homotopy

Appl., 10(1):353–388, 2008. https://doi.org/10.4310/HHA.2008.v10.n1.a16.

[12] P. Gaucher. Homotopical interpretation of globular complex by multipointed d-space.

Theory Appl. Categ., 22(22):588–621, 2009.

[13] P. Gaucher. Homotopy theory of Moore flows (I). Compositionality, 3(3), 2021.

https://doi.org/10.32408/compositionality-3-3.

[14] P. Gaucher. Homotopy theory of Moore flows (II). Extr. Math., 36(2):157–239, 2021.

https://doi.org/10.17398/2605-5686.36.2.157.

[15] P. Gaucher. Left properness of flows. Theory Appl. Categ., 37(19):562–612, 2021.

[16] P. Gaucher. Six model categories for directed homotopy. Categ. Gen. Algebr. Struct.

Appl., 15(1):145–181, 2021. https://doi.org/10.52547/cgasa.15.1.145.

[17] E. Goubault and S. Mimram. Directed homotopy in non-positively

curved spaces. Log. Methods Comput. Sci., 16(3):55, 2020. Id/No 4.

https://doi.org/10.23638/LMCS-16(3:4)2020.

[18] A. Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.

[19] K. Hess, M. Kȩdziorek, E. Riehl, and B. Shipley. A necessary and suffi-

cient condition for induced model structures. J. Topol., 10(2):324–369, 2017.

https://doi.org/10.1112/topo.12011.

[20] P. S. Hirschhorn. Model categories and their localizations, volume 99 of Mathematical

Surveys and Monographs. American Mathematical Society, Providence, RI, 2003.

https://doi.org/10.1090/surv/099.

23

https://doi.org/10.2140/agt.2013.13.1089
https://doi.org/10.1016/0022-4049(81)90018-9
https://doi.org/10.2140/pjm.2014.272.87
https://doi.org/10.1016/j.topol.2005.02.004
https://doi.org/10.1007/978-3-319-15398-8
https://doi.org/10.1112/topo.12123
https://doi.org/10.4310/hha.2003.v5.n1.a20
https://doi.org/10.4310/HHA.2008.v10.n1.a16
https://doi.org/10.32408/compositionality-3-3
https://doi.org/10.17398/2605-5686.36.2.157
https://doi.org/10.52547/cgasa.15.1.145
https://doi.org/10.23638/LMCS-16(3:4)2020
https://doi.org/10.1112/topo.12011
https://doi.org/10.1090/surv/099


[21] M. Hovey. Model categories. American Mathematical Society, Providence, RI, 1999.

https://doi.org/10.1090/surv/063.

[22] S. Mac Lane and I. Moerdijk. Sheaves in geometry and logic. Universitext. Springer-

Verlag, New York, 1994. A first introduction to topos theory, Corrected reprint of

the 1992 edition. https://doi.org/10.1007/978-1-4612-0927-0.

[23] G. Raptis. Homotopy theory of posets. Homology Homotopy Appl., 12(2):211–230,

2010. https://doi.org/10.4310/HHA.2010.v12.n2.a7.

[24] M. Raussen. Trace spaces in a pre-cubical complex. Topology Appl., 156(9):1718–

1728, 2009. https://doi.org/10.1016/j.topol.2009.02.003.

[25] M. Raussen. Simplicial models of trace spaces. 10(3):1683–1714, August 2010.

https://doi.org/10.2140/agt.2010.10.1683.

[26] M. Raussen. Simplicial models for trace spaces II: General

higher dimensional automata. 12(3):1745–1765, August 2012.

https://doi.org/10.2140/agt.2012.12.1745.

[27] J. Rosický. On combinatorial model categories. Appl. Categ. Structures, 17(3):303–

316, 2009. https://doi.org/10.1007/s10485-008-9171-2.

[28] J. Rosický. Accessible model categories. Appl. Categ. Struct., 25(2):187–196, 2017.

https://doi.org/10.1007/s10485-015-9419-6.

[29] A. Strøm. Note on cofibrations. Math. Scand., 19:11–14, 1966.

https://doi.org/10.7146/math.scand.a-10791.

[30] user168706. Continuous bijection between two homotopy equivalent ∆-generated

spaces. MathOverflow. URL:https://mathoverflow.net/q/376474 (version: 2020-11-

14). https://mathoverflow.net/q/376474.

[31] K. Ziemiański. Spaces of directed paths on pre-cubical sets.

Appl. Algebra Engrg. Comm. Comput., 28(6):497–525, 2017.

https://doi.org/10.1007/s00200-017-0316-0.

[32] K. Ziemiański. Spaces of directed paths on pre-cubical sets II. J. Appl. Comput.

Topol., 4(1):45–78, 2020. https://doi.org/10.1007/s41468-019-00040-z.

Université Paris Cité, CNRS, IRIF, F-75013, Paris, France

URL: http://www.irif.fr/˜gaucher

24

https://doi.org/10.1090/surv/063
https://doi.org/10.1007/978-1-4612-0927-0
https://doi.org/10.4310/HHA.2010.v12.n2.a7
https://doi.org/10.1016/j.topol.2009.02.003
https://doi.org/10.2140/agt.2010.10.1683
https://doi.org/10.2140/agt.2012.12.1745
https://doi.org/10.1007/s10485-008-9171-2
https://doi.org/10.1007/s10485-015-9419-6
https://doi.org/10.7146/math.scand.a-10791
https://mathoverflow.net/q/376474
https://doi.org/10.1007/s00200-017-0316-0
https://doi.org/10.1007/s41468-019-00040-z

	1. Introduction
	2. Three simplicial model structures of flows
	3. Realization functors from precubical sets to flows
	4. Natural Lg-paths
	5. Natural realization from precubical sets to flows
	6. Natural realization and cube chains
	7. Comparing execution paths and Lg-paths
	Appendix A. Characterization of spatial precubical sets

