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COMPARING CUBICAL AND GLOBULAR DIRECTED PATHS

PHILIPPE GAUCHER

Abstract. A flow is a directed space structure over a homotopy type. It is already

known that the underlying homotopy type of the realization of a precubical set as a flow

is homotopy equivalent to the realization of the precubical set as a topological space.

This realization depends on the non-canonical choice of a q-cofibrant replacement. We

construct a new realization functor from precubical sets to flows which is homotopy

equivalent to the previous one and which does not depend on the choice of any cofi-

brant replacement functor. The main tool is the notion of natural d-path introduced by

Raussen. The flow we obtain for a given precubical set is not anymore q-cofibrant but

is still m-cofibrant. As an application, we prove that the space of execution paths of the

realization of a precubical set as a flow is homotopy equivalent to the space of d-paths

of the geometric realization of the precubical set as a Grandis d-space.
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1. Introduction

Presentation. Precubical sets are a prominent geometric model for concurrency theory

[5]. The n-cube represents the concurrent execution of n actions. The space of d-paths

of the geometric realization of a precubical set as a Grandis d-space in the sense of

[16, 26], is studied in many papers, such as a series of papers [21–23, 25, 26] by Raussen

and Ziemiański. Precubical sets can also be realized as flows in the sense of [6]. The

realization functor of a precubical set as a flow is first introduced in [10, Definition 7.2].

The two approaches (let us call them the cubical one of Raussen and Ziemiański and

the globular one of the author) do not coincide up to homeomorphism. In the cubical

approach, the d-paths from the initial to the final states of the topological n-cube [0, 1]n

are the continuous paths from (0, . . . , 0) to (1, . . . , 1) which are nondecreasing with respect

to each axis of coordinates. Raussen and Ziemiański study also several variants (tame,
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strict, natural etc...) which give rise to homotopy equivalent spaces of paths between

two fixed vertices of a general precubical set viewed as a Grandis d-space. None of

these definitions give rise to spaces of d-paths which are homeomorphic to the spaces

of execution paths from the initial to the final states of the n-cube [0, 1]n viewed as a

flow. In the latter case, the space of execution paths from the initial to the final states

of the n-cube is the (n − 1)-dimensional disk Dn−1 (see Theorem 3.11). It means that

the latter space depends on a non-canonical choice of an achronal slice in the middle of

the topological n-cube and on a non-canonical choice of a homeomorphism between this

achronal slice and Dn−1.

The underlying homotopy type of a flow is the homotopy type obtained after removing

its execution paths. It is defined in [8, Section 6] and a more conceptual construction

is provided in [12, Proposition 8.16] using Moore flows. It is already known in full

generality that the underlying homotopy type of the realization of a precubical set as a

flow is homotopy equivalent to the realization of a precubical set as a topological space [9,

Theorem 6.2.1], which is of course the underlying space of the realization of the precubical

set as a Grandis d-space. The purpose of this paper is to prove the directed version of

this result.

At first, using the notion of natural d-path introduced by Raussen in [21, Defini-

tion 2.14], we improve the realization functor from precubical sets to flows | − |q :

�opSet → Flow introduced in [10, Definition 7.2] as follows.

Theorem. (Theorem 5.8) There exist a colimit preserving functor

| − |nat : �opSet −→ Flow

which does not depend on any cofibrant replacement and a natural transformation µ :

| − |q ⇒ | − |nat such that for all precubical sets K, the natural map µK : |K|q → |K|nat
induces a bijection on states and a homotopy equivalence Pα,β|K|q ≃ Pα,β|K|nat for all

α, β ∈ K0.

Theorem 5.8 implies that Pα,β|K|nat is m-cofibrant, Pα,β|K|q being q-cofibrant. The

interest of the natural realization functor is that it does not depend anymore on the arbi-

trary choice on any cofibrant replacement functor for the category of flows. Surprisingly,

it does not even depend on a m-cofibrant replacement or on a h-cofibrant replacement

of the category of flows. The geometric properties of the natural d-paths enable us in

Section 6 to give another description of the natural realization functor using Ziemiański’s

notion of cube chain. As an application of Theorem 5.8 and of Section 6, we prove the

following two theorems:

Theorem. (Theorem 7.5) Let K be a precubical set. Let α, β ∈ K0. The topology of

Pα,β|K|nat is the correct topology, i.e. the ∆-kelleyfication of the relative topology induced

by the compact-open topology.

The underlying set of Pα,β|K|nat being exactly the set of tame natural d-paths of K

from α to β, Theorem 7.5 provides another point of view on its topology.

Theorem. (Corollary 7.6) Let K be a precubical set. Let α, β ∈ K0. Then the space

of execution paths Pα,β|K|q is homotopy equivalent to the space of d-paths from α to β
2



equipped with the ∆-kelleyfication of the compact-open topology in the geometric realization

of K as a Grandis d-space.

Corollary 7.6 is not surprising. However, until a proof was known, it was not sure that

the statement was true for all precubical sets in full generality, and not only e.g. for

non-positively curved precubical sets in the sense of [15], notion which brings together

the properties satisfied by the precubical sets coming from real concurrent systems.

Prerequisites. The main tools used in this paper are the {q,m, h}-model structures of

flows [14], the homotopical results of [9] about the realization functors of precubical sets

as flows, and some topological results due to Ziemiański’s about natural d-paths and the

technique of cube chains coming from [26]. At the very end of this paper, [26, Theorem 7.5

and Theorem 7.6] are used for the proof of Corollary 7.6. The necessary reminders are

made throughout the paper.

Outline of the paper. Section 2 is a reminder about the three model structures of

flows: Quillen (q), Hurewicz (h) and mixed (m) introduced in [14]. It contains, as a

new and easy remark, the proof that these three model structures on flows are simplicial.

Section 3 recalls some basic facts about cocubical objects, gives the definition of a r-

realization functor with r ∈ {q,m, h} in Definition 3.6, adapts in Theorem 3.8 some tools

coming from [9], and finally gives the example of the q-realization functor expounded

in [10]. Section 4 recalls the notion of natural (tame) d-path of a precubical set and

proves some basic facts about their topology, in relation with the ∆-generated spaces

which are the setting of this work. Section 5 expounds the construction of the natural

realization functor. It does not depend on any cofibrant replacement functor. It is a new

realization functor which is proved to be equivalent in some sense to the one of [10] in

Theorem 5.8. This section also proves that this new realization functor is a m-realization

functor. Section 6 gives an equivalent definition of the natural realization functor in

terms of cube chains in the sense of Ziemiański. This construction is possible thanks to a

specific property of the natural realization functor, namely Proposition 5.1 which is used

in the proofs of Proposition 6.2 and Theorem 6.3. Finally, Section 7 gives the applications

of these results, namely an alternative description of the topology of the space of natural

d-paths of a precubical set in Theorem 7.5 and a proof that all these spaces of execution

paths coincide up to homotopy with the spaces of d-paths of the geometric realization of

the precubical set as a Grandis d-space in Corollary 7.6.

Acknowledgment. I thank Krzysztof Ziemiański for helpful discussions about [26].

2. Three simplicial model structures of flows

We work with a locally presentable convenient category of topological spaces Top

for doing algebraic topology. The category of ∆-generated spaces or of ∆-Hausdorff

∆-generated spaces (cf. [13, Section 2 and Appendix B]) are two such examples. The

category Top is equipped with its q-model structure (we use the terminology of [20]).

The m-model structure [4] and the h-model structure [1] of Top are also used in various

places of the paper. Compact means compact Hausdorff (French convention). The initial

object of a category is denoted by ∅. The terminal object of a category is denoted by

1. A cellular object of a combinatorial model category is an object X such that the
3



canonical map ∅ → X is a transfinite composition of pushouts of generating cofibrations.

We summarize some basic properties of Top used in this paper for the convenience of the

reader:

• Top is locally presentable.

• All objects of Top are sequential topological spaces.

• A closed subset of a ∆-generated space equipped with the relative topology is not

necessarily ∆-generated (e.g. the Cantor set), but it is always sequential.

• All locally path-connected first-countable topological spaces are ∆-generated by [3,

Proposition 3.11], in particular all locally path-connected metrizable topological spaces

are ∆-generated.

• The inclusion functor from the full subcategory of ∆-generated spaces to the category

of general topological spaces together with the continuous maps has a right adjoint

called the ∆-kelleyfication functor. The latter functor does not change the underlying

set.

• Let A ⊂ B be a subset of a space B of Top. Then A equipped with the ∆-kelleyfication

of the relative topology belongs to Top.

• The colimit in Top is given by the final topology in the following situations:

– A transfinite compositions of one-to-one maps.

– A pushout along a closed inclusion.

– A quotient by a closed subset or by an equivalence relation having a closed graph.

In these cases, the underlying set of the colimit is therefore the colimit of the underly-

ing sets. In particular, the CW-complexes, and more generally all cellular spaces are

equipped with the final topology.

• Cellular spaces are Hausdorff.

• Top is cartesian closed. The internal hom TOP(X, Y ) is given by taking the ∆-

kelleyfication of the compact-open topology on the set TOP(X, Y ) of all continuous

maps from X to Y .

2.1. Definition. [6, Definition 4.11] A flow is a small semicategory enriched over the

closed monoidal category (Top,×). The corresponding category is denoted by Flow.

A flow X consists of a topological space PX of execution paths, a discrete space X0

of states, two continuous maps s and t from PX to X0 called the source and target

map respectively, and a continuous and associative map ∗ : {(x, y) ∈ PX × PX; t(x) =

s(y)} −→ PX such that s(x ∗ y) = s(x) and t(x ∗ y) = t(y). Let Pα,βX = {x ∈ PX |

s(x) = α and t(x) = β}: it is the space of execution paths from α to β, α is called the

initial state and β is called the final state. Note that the composition is denoted by x ∗ y,

not by y ◦ x. The category Flow is locally presentable.

Every set can be viewed as a flow with an empty space of execution paths. Every poset

can be viewed as a flow with one execution path from α to β if and only if α < β. The

obvious functor Set ⊂ Flow from the category of sets to that of flows is limit-preserving

and colimit-preserving. The following example of flows is important for the sequel:

2.2. Example. For a topological space Z, let Glob(Z) be the flow defined by

Glob(Z)0 = {0, 1}, PGlob(Z) = P0,1Glob(Z) = Z, s = 0, t = 1.

This flow has no composition law.
4



2.3. Notation. Let n > 1. Denote by Dn = {b ∈ Rn, |b| 6 1} the n-dimensional disk, and

by Sn−1 = {b ∈ Rn, |b| = 1} the (n− 1)-dimensional sphere. By convention, let D0 = {0}

and S−1 = ∅.

We need to recall:

2.4. Theorem. With r ∈ {q,m, h}. Then there exists a unique model structure on Flow

such that:

• A map of flows f : X → Y is a weak equivalence if and only if f 0 : X0 → Y 0 is a

bijection and for all (α, β) ∈ X0 × X0, the continuous map Pα,βX → Pf(α),f(β)Y

is a weak equivalence of the r-model structure of Top.

• A map of flows f : X → Y is a fibration if and only if for all (α, β) ∈ X0 × X0,

the continuous map Pα,βX → Pf(α),f(β)Y is a fibration of the r-model structure of

Top.

This model structure is accessible and all objects are fibrant. Moreover, this model struc-

ture is simplicial. It is called the r-model structure of Flow.

Proof. It is [14, Theorem 7.4] except the last sentence. The fact that Flow is enriched,

tensored and cotensored over simplicial sets is proved in [9, Section 3.3]. The q-model

structure of flows is simplicial by [9, Theorem 3.3.15]. It remains to prove the compati-

bility with the m-model structure and the h-model structure. It suffice to prove (see the

very end of the proof of [9, Proposition 3.3.14]) that the lift k′ of the commutative square

(Dn × |∆[1]|) ∪ (Dn × [0, 1] × {−1, 1}) //

��

Pα,βX

��

Dn × [0, 1] × |∆[1]| //

k′

44
✐

✐

✐

✐

✐

✐

✐

✐

✐

✐

Pα,βY

exists if the map Pα,βX → Pα,βY is a m-fibration of spaces or a h-fibration of spaces.

Since every m-fibration of spaces and every h-fibration of spaces is a q-fibration of spaces,

the proof is complete. �

By [14, Theorem 7.7], the m-model structure is the mixing of the q-model structure

and the h-model structure in the sense of [4, Theorem 2.1]. The q-model structure is

not only accessible, but also combinatorial. A set of generating cofibrations is the set of

maps {Glob(Sn−1) ⊂ Glob(Dn) | n > 0} ∪ {C : ∅ → {0}, R : {0, 1} → {0}} by e.g. [14,

Theorem 7.6]. Every q-cofibration of flows is a m-cofibration and every m-cofibration of

flows is a h-cofibration by [4, Proposition 3.6].

There exists a flow which is not cofibrant in any of the three model structures by [4,

Proposition 7.9]. This behaviour differs from the behaviour of the h-model structure of

topological spaces for which all spaces are h-cofibrant (and h-fibrant). The reason is that

the h-model structure of flows does not coincide with the Hurewicz model structure given

by [1, Corollary 5.23]. This one exists as well because Flow satisfies the monomorphism

hypothesis, being locally presentable, and because Flow is topologically bicomplete (the

proof is similar to the proof that it is simplicial as given in [9, Section 3.3]) since a ∆-

generated space is homeomorphic to the disjoint sum of its path-connected components

by [11, Proposition 2.8]. This Hurewicz model structure is not used in this paper.
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3. Realization functors from precubical sets to flows

3.1. Notation. Let [0] = {()} and [n] = {0, 1}n for n > 1. By convention, one has

{0, 1}0 = [0] = {()}. The set [n] is equipped with the product ordering {0 < 1}n. Let

0n = (0, . . . , 0) ∈ {0, 1}n and 1n = (1, . . . , 1) ∈ {0, 1}n

Let δαi : [n − 1] → [n] be the set map defined for 1 6 i 6 n and α ∈ {0, 1} by

δαi (ǫ1, . . . , ǫn−1) = (ǫ1, . . . , ǫi−1, α, ǫi, . . . , ǫn−1). The small category � is by definition the

subcategory of the category of sets with the set of objects {[n], n > 0} and generated by

the morphisms δαi . They satisfy the cocubical relations δβj δ
α
i = δαi δ

β
j−1 for i < j and for

all (α, β) ∈ {0, 1}2. If p > q > 0, then the set of morphisms �([p], [q]) is empty. If p = q,

then the set �([p], [p]) is the singleton {Id[p]}. For 0 6 p 6 q, all maps of � from [p] to

[q] are one-to-one. A good reference for presheaves is [19].

3.2. Definition. [2] The category of presheaves over �, denoted by �opSet, is called the

category of precubical sets. A precubical set K consists of a family of sets (Kn)n>0 and of

set maps ∂αi : Kn → Kn−1 with 1 6 i 6 n and α ∈ {0, 1} satisfying the cubical relations

∂αi ∂
β
j = ∂βj−1∂

α
i for any α, β ∈ {0, 1} and for i < j. An element of Kn is called a n-cube.

Let dim(x) = n if x ∈ Kn.

Let �[n] := �(−, [n]). The boundary of �[n] is the precubical set denoted by ∂�[n]

defined by removing the interior of �[n]: (∂�[n])k := (�[n])k for k < n and (∂�[n])k = ∅

for k > n. In particular, one has ∂�[0] = ∅.

3.3. Definition. A cocubical object of a category C is a functor � → C.

3.4. Notation. Let C be a cocomplete category. Let X : � → C be a functor. Let

X̂(K) = lim
−→

�[n]→K

X(�[n]).

3.5. Proposition. [9, Proposition 2.3.2] Let C be a cocomplete category. The mapping

X 7→ X̂ induces an equivalence of categories between the category of cocubical objects of

C and the colimit-preserving preserving functors from �opSet to C.

Definition 3.6 is new. Moreover, only q-realization functors are implicitly studied in [10]

because the h-model structure and the m-model structure of flows were not yet known:

they are introduced 13 years later in [14].

3.6. Definition. With r ∈ {q,m, h}. A functor F : �opSet → Flow is a r-realization

functor if it satisfies the following properties:

• F is colimit-preserving.

• For all n > 0, the map of flows F (∂�[n]) → F (�[n]) is a r-cofibration.

• There is an objectwise weak equivalence of cocubical flows F (�[∗]) → {0 < 1}∗ in the

r-model structure of Flow.

3.7. Proposition. With r ∈ {q,m, h}. Let F : �opSet → Flow be a r-realization functor.

Then for all precubical sets K, the flow F (K) is r-cofibrant and there is a natural bijection

K0
∼= F (K)0.

Proof. Let K be a precubical set. Then the canonical map ∅ → K is a transfinite compo-

sition of pushouts of the maps ∂�[n] → �[n] for n > 0. Consequently, the canonical map
6



∅ → F (K) is a transfinite composition of pushouts of the maps F (∂�[n]) → F (�[n])

for n > 0. It implies that F (K) is r-cofibrant. From the objectwise weak equivalence of

cocubical flows F (�[∗]) → {0 < 1}∗, we deduce the objectwise bijection of cocubical sets

F (�[∗])0 ∼= {0, 1}∗ ∼= �[∗]0. We obtain the natural bijection F (K)0 ∼= K0. �

3.8. Theorem. With r ∈ {q,m, h}. Consider two r-realization functors

F1, F2 : �opSet −→ Flow.

Then there exists a natural transformation µ : F1 ⇒ F2 such that there is a commutative

diagram of cocubical flows

F1(�[∗])

��

µ�[∗]
// F2(�[∗])

��

{0 < 1}∗ {0 < 1}∗

and such that for all precubical sets K, the map µK : F1(K) → F2(K) natural with

respect to K is a weak equivalence of the r-model structure of Flow. Moreover, for all

(α, β) ∈ K0 ×K0, the natural map

Pα,βF1(K)
≃

−→ PµK(α),µK (β)F2(K)

is a homotopy equivalence of spaces.

Proof. The maps of cocubical flows Fi(�[∗]) → {0 < 1}∗ for i = 1, 2 are objectwise

fibrations since Pα,β{0 < 1}∗ is empty or equal to a singleton and because all topologi-

cal spaces are fibrant. Consequently, they are objectwise trivial fibrations by definition

of a realization functor. By [9, Theorem 2.3.3], there exists a natural transformation

µ : F1 ⇒ F2 such that there is the commutative diagram of cocubical flows depicted

in the statement of the theorem and such that, for all precubical sets K, the natural

map µK : F1(K) → F2(K) is a weak equivalence of the r-model structure between two

r-cofibrant flows. If r = h, then the natural map Pα,βF1(K) → PµK(α),µK (β)F2(K) is a

homotopy equivalence of spaces by definition of the weak equivalences of the h-model

structure of flows. If r = q, then the flows F1(K) and F2(K) are q-cofibrant by Propo-

sition 3.7. Therefore, the spaces Pα,βF1(K) and PµK(α),µK (β)F2(K) are q-cofibrant by

[13, Theorem 5.7]. Using Whitehead [18, Theorem 7.5.10], we deduce that the natu-

ral map Pα,βF1(K) → PµK(α),µK (β)F2(K) is a homotopy equivalence of spaces. It re-

mains the case r = m. The flows F1(K) and F2(K) are m-cofibrant by Proposition 3.7.

We deduce that the spaces Pα,βF1(K) and PµK(α),µK (β)F2(K) are m-cofibrant by [14,

Theorem 8.7]. By [4, Corollary 3.4], we deduce that the weak homotopy equivalence

Pα,βF1(K) → PµK(α),µK (β)F2(K) is a homotopy equivalence of spaces as well. �

3.9. Theorem. There exists a q-realization functor | − |q : �opSet → Flow.

Proof. Let (−)cof be a q-cofibrant replacement functor of Flow. Let

|K|q := lim
−→

�[n]→K

({0 < 1}n)cof .

It is a q-realization functor by [10, Proposition 7.4]. �
7



3.10. Remark. The functor

| − |bad : K 7→ lim
−→

�[n]→K

{0 < 1}n

is not a q-realization functor since the map of flows |∂�[2]|bad → |�[2]|bad is not a q-

cofibration of flows.

Moreover, there is the isomorphism |∂�[n]|bad ∼= |∂�[n]|bad for all n > 3 by [10, Theo-

rem 7.1], which is not the expected behavior for a realization functor.

Every q-realization functor is a m-realization functor and every m-realization functor

is a h-realization functor. The drawback of the construction of Theorem 3.9 is that it

depends on the non-canonical choice of a q-cofibrant replacement. It is one of the purpose

of the paper to fix this issue.

The following theorem is not used in the sequel. It helps the reader to understand the

geometric contents of a q-realization functor.

3.11. Theorem. [9, Theorem 4.2.4 and Theorem 4.2.6] For all n > 1, there is a homotopy

pushout diagram of flows for the q-model structure

Glob(Sn−2)

07→0n
17→1n

//

��

|∂�[n]|q

��

Glob(Dn−1) // |�[n]|q.
h

There exists a q-realization functor such that the pushout diagram above is strict.

4. Natural d-paths

We want to use the notion of natural d-path introduced by Raussen in [21, Defini-

tion 2.14] to build the natural realization functor from precubical sets to flows.

This new realization functor is natural in the sense that it uses natural d-paths, and also

natural in the sense that it is more canonical than the q-realization functor of Theorem 3.9.

Indeed, the latter depends on the non-canonical choice of a q-cofibrant replacement func-

tor for the category of flows. The new one is independent of such a non-canonical choice.

4.1. Notation. Let δαi : [0, 1]n−1 → [0, 1]n be the continuous map defined for 1 6 i 6 n

and α ∈ {0, 1} by δαi (ǫ1, . . . , ǫn−1) = (ǫ1, . . . , ǫi−1, α, ǫi, . . . , ǫn−1). By convention, let

[0, 1]0 = {()}. We obtain a cocubical topological space [0, 1]∗ and the associated colimit-

preserving functor from precubical sets to topological spaces is denoted by

|K|geom = lim
−→

�[n]→K

[0, 1]n.

The topological space |K|geom is a cellular topological space. Every point of |K|geom\K0

admits a unique presentation [c; x] where c is a cube of K and such that x ∈]0, 1[dim(c). A

point of |K|geom may belong to several cubes and therefore admits several presentations

[c, x] with x ∈ [0, 1]dim(c).
8



4.2. Definition. Let U be a topological space. A (Moore) path of U consists of a con-

tinuous map [0, ℓ] → U with ℓ > 0. The real number ℓ > 0 is called the length of the

path.

4.3. Definition. Let γ1 : [0, ℓ1] → U and γ2 : [0, ℓ2] → U be two paths of a topological

space U such that γ1(ℓ1) = γ2(0). The Moore composition γ1 ∗ γ2 : [0, ℓ1 + ℓ2] → U is the

Moore path defined by

(γ1 ∗ γ2)(t) =




γ1(t) for t ∈ [0, ℓ1]

γ2(t− ℓ1) for t ∈ [ℓ1, ℓ1 + ℓ2].

The Moore composition of Moore paths is strictly associative.

4.4. Definition. Let n > 1. A d-path of |�[n]|geom = [0, 1]n is a nonconstant continuous

map γ : [0, ℓ] → [0, 1]n with ℓ > 0 such that γ(0), γ(ℓ) ∈ {0, 1}n and such that γ is

nondecreasing with respect to each axis of coordinates.

4.5. Definition. Let K be a general precubical set. A d-path of K is a path [0, ℓ] →

|K|geom which is the Moore composition γ1 ∗ · · ·∗γn of d-paths of cubes of |K|geom. γ(0) ∈

K0 is called the initial state of γ and γ(ℓ) ∈ K0 is called the final state of γ.

4.6. Remark. All d-paths of a precubical set K start and end at a vertex of K.

4.7. Notation. With the notations of Definition 4.5. A d-path γ : [0, ℓ] → |K|geom can

be written γ = 0[c1; γ1]
t1
∗ . . .

tn−1

∗ [cn; γn]
tn or γ = [c1; γ1] ∗ · · · ∗ [cn; γn] with 0 = t0 < t1 <

· · · < tn = ℓ such that for all 1 6 i 6 n and t ∈ [ti−1, ti], γ(t) = [ci; γi(t)] with dim(ci) > 1

and such that γ(ti) ∈ K0 for 0 6 i 6 n. The sequence (c1, . . . , cn) is called a carrier of γ.

The notation Carrier(γ) means that a carrier of γ is chosen: it is not unique.

An important feature shared by all d-paths of a precubical set K is that they have

a well-defined L1-arc length [21, Section 2.2.1]. Intuitively, the natural d-paths are the

d-paths whose speed corresponds to the L1-arc length. We give an explicit definition

of a natural d-path which is sufficient for this paper by starting from the d-paths of the

topological n-cube [0, 1]n. It is equivalent to Raussen’s definition of tame natural d-paths.

4.8. Definition. Let n > 1. A natural d-path of the topological n-cube [0, 1]n is a d-path

γ = (γ1, . . . , γn) : [0, n] → [0, 1]n such that for all t ∈ [0, n], one has t = γ1(t)+ · · ·+γn(t).

The set of natural d-paths of [0, 1]n is denoted by Nn. It is equipped with the compact-open

topology.

4.9. Definition. A d-path γ of a precubical set K is natural if it can be written γ =

[c1; γ1]∗· · ·∗[cn; γn] such that each γi is a natural d-path of the cube ci for all i ∈ {1, . . . , n}.

4.10. Proposition. Let n > 1. The topological space Nn is ∆-generated and ∆-Hausdorff.

It is contractible and compact.

Proof. The compact-open topology is metrizable with the distance of the uniform con-

vergence. Therefore it is first countable. Consider a ball B(γ, ǫ) for this metric. Let

γ′ ∈ B(γ, ǫ). Then each convex combination (1 − u)γ + uγ′ is a natural d-path since

(1 − u)t+ ut = t and for all t ∈ [0, n] and all i ∈ {1, . . . , n}, one has

|((1 − u)γi + uγ′

i)(t) − γi(t)| = u|γ′

i(t) − γi(t)| < uǫ 6 ǫ.
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It means that the space Nn is locally path-connected. By [3, Proposition 3.11], it is

∆-generated, and also ∆-Hausdorff, being metrizable. It is contractible since there is

a homotopy H : [0, 1] × Nn → Nn between the identity of Nn and the constant map

taking each natural d-path to the natural d-path δ : t 7→ (t/n, t/n, . . . , t/n) given by

the convex combination H(u, γ) = uδ + (1 − u)γ. It is compact by [26, Proposition 9.5]

applied to the sequence n = (n). We want to give a different argument which does not

use Lipschitz maps on metric spaces. Let (γk)k>0 = (γk1 , . . . , γ
k
n)k>0 be a sequence of Nn.

By a Cantor diagonalization argument, one can suppose that the sequence (γk(r))k>0 of

[0, 1]n converges to (γ∞
1 (r), . . . , γ∞

n (r)) for all r ∈ Q ∩ [0, n]. Let γ−

i (x) = sup{γ∞
i (r) |

r ∈ Q ∩ [0, x]} and γ+
i (x) = inf{γ∞

i (r) | r ∈ Q ∩ [x, n]}. Then, by density of Q, for all

x ∈ [0, n], one has (γ+
1 (x)−γ−

1 (x))+ · · ·+(γ+
n (x)−γ−

n (x)) = 0. Thus, for all x ∈ [0, n] and

for all 1 6 i 6 n, since γ+
i (x) − γ−

i (x) > 0, we deduce that γ+
i (x) = γ−

i (x). It means that

γ+
i = γ−

i : [0, n] → [0, 1] is continuous for all i ∈ {1, . . . , n}. Consequently, each sequence

(γki )k>0 converges pointwise for 1 6 i 6 n. By the second Dini theorem, the convergence

is uniform. Using [12, Lemma 6.10], we deduce that (γk)k>0 has a convergent subsequence.

We deduce that Nn is sequentially compact, hence compact, being sequential. �

4.11. Notation. Let x = (x1, . . . , xn) and x′ = (x′
1, . . . , x

′
n) be two elements of [0, 1]n. Let

d∞(x, x′) = max
16i6n

|xi − x′

i|.

4.12. Definition. Let n > 2. Let Vn = {0, 1}n\{0n, 1n}. Consider the continuous map

φ : Nn → [0, 1] defined by φ(γ) = min(t,v)∈[0,n]×Vn
d∞(γ(t), v). Let ∂Nn = φ−1(0) equipped

with the relative topology.

4.13. Notation. Let ∂N0 = N0 = ∂N1 = ∅.

There is the proposition:

4.14. Proposition. Let n > 2. The underlying set of ∂Nn is exactly the set of Moore

compositions of natural d-paths of subcubes of [0, 1]n. For every γ ∈ ∂Nn, γ([0, n]) is

included in the boundary of [0, 1]n. The topology of ∂Nn is ∆-generated and ∆-Hausdorff.

Proof. The set ∂Nn is exactly the set of natural paths of [0, 1]n whose image intersects

Vn. Let γ = (γ1, . . . , γn) ∈ ∂Nn and let t0 ∈]0, n[ such that γ(t0) = (ǫ1, . . . , ǫn) ∈ Vn.

Since γ is natural, one has t0 = ǫ1 + · · · + ǫn which is therefore an integer between

1 and n − 1. Then γ = γa ∗ γb with γa(0) = 0n, γ(t0) = γa(t0) = γb(0) ∈ Vn and

γb(n − t0) = 1n. Therefore, for all t ∈ [0, t0], t = γ1(t) + · · · + γn(t) = γa1 (t) + · · · + γan(t).

Let J = {j ∈ {1, . . . , n} | ǫj = 0}. Since the paths are nondecreasing with respect to

each axis of coordinates, it implies that γaj (t) = 0 for all j ∈ J . Thus for all t ∈ [0, t0],

t =
∑
j /∈J γ

a
j (t). It means that γa is a natural path of the subcube from 0n to γa(t0).

For all t ∈ [t0, n], on has t = γ1(t) + · · · + γn(t) = γb1(t − t0) + · · · + γbn(t − t0), the first

equality since γ is natural, the second equality by definition of the Moore composition of

paths. We deduce that t− t0 = (γb1(t− t0) − ǫ1) + · · · + (γbn(t− t0) − ǫn) for all t ∈ [t0, n].

If for some i ∈ {1, . . . , n}, ǫi = 1, then γbi = 1 since the paths are nondecreasing with

respect to each axis of coordinates. We obtain t − t0 =
∑
j∈J γ

b
j(t − t0) for all t ∈ [t0, n].

It means that γb is a natural path of the subcube going from γ(t0) to 1n. We deduce that

the underlying set of ∂Nn is exactly the set of Moore compositions of natural paths of
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subcubes of [0, 1]n. The second assertion is a consequence of this fact. Consider γ ∈ ∂Nn.

There exists t0 ∈]0, n[ such that γ(t0) ∈ Vn. Since Vn is discrete, there exists an open U

of [0, 1]n such that U ∩ Vn = {γ(t0)}. Then W ({t0}, U) = {γ′ ∈ ∂Nn | γ′(t0) ∈ U} is an

open subset of ∂Nn for the compact-open topology. The latter being metrizable, take a

ball B(γ, ǫ) ⊂ W ({t0}, U) and repeat the reasoning of Proposition 4.10: we deduce that

∂Nn is locally path-connected as well, hence ∆-generated (and also ∆-Hausdorff, being

metrizable) by [3, Proposition 3.11]. �

In other terms, ∂Nn is a closed subset of Nn which remains ∆-generated and also ∆-

Hausdorff when equipped with the relative topology. Both ∂Nn and Nn are equipped

with the compact-open topology and are metrizable and sequentially compact.

5. Natural realization from precubical sets to flows

We define a flow |�[n]|nat for n > 0 called the natural n-cube as follows. The set of

states is {0, 1}n. Let n > 1 and α, β ∈ {0, 1}n. Let α = (α1, . . . , αn) and β = (β1, . . . , βn).

Assume that α < β. Let I = {i ∈ {1, . . . , n} | αi 6= βi}. By hypothesis, I is nonempty.

Let m be the cardinal of I. Then α (β resp.) is the initial (final resp.) state of a m-

subcube of �[n]. Then let Pα,β|�[n]|nat = Nm viewed as the space of natural d-paths in

the m-subcube from α to β. Assume that α > β. Let Pα,β|�[n]|nat = ∅. The composition

law is defined by the Moore composition of natural d-paths, which is still a natural d-path.

5.1. Proposition. Let φ : [n] → [n + 1] be a map of the small category �. Then the

continuous map P0n,1n
|�[n]|nat → Pφ(0n),φ(1n)|�[n + 1]|nat induced by φ is the identity of

Nn.

Proof. It is a straightforward consequence of the definitions. �

5.2. Corollary. We obtain a well-defined cocubical flow |�[∗]|nat.

Proof. Consider an algebraic relation φ1φ2 = ψ1ψ2 : [n] → [n + 2] in the small category

�. Consider the diagram of topological spaces

P0n,1n
|�[n]|nat // Pφ2(0n),φ2(1n)|�[n+ 1]|nat // Pφ1φ2(0n),φ1φ2(1n)|�[n+ 2]|nat

P0n,1n
|�[n]|nat // Pψ2(0n),ψ2(1n)|�[n+ 1]|nat // Pψ1ψ2(0n),ψ1ψ2(1n)|�[n+ 2]|nat

By Proposition 5.1 and by definition of | − |nat, the two horizontal composite maps are

equal to the identity of Nn. It means that the diagram is commutative and that the

cocubical relations are satisfied. �

Using Proposition 3.5, we obtain:

5.3. Definition. Let K be a precubical set. Consider the colimit-preserving functor

|K|nat = lim
−→

�[n]→K

|�[n]|nat.

It is called the natural realization of K as a flow.

5.4. Proposition. Let n > 0. There is a homeomorphism ∂Nn
∼= P0n,1n

|∂�[n]|nat.
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Proof. Using [26, Proposition 10.2] applied with the sequence (n), we deduce that this

map is a homeomorphism: the idea of the proof is that there is a continuous bijection

from P0n,1n
|∂�[n]|nat to ∂Nn and that both P0n,1n

|∂�[n]|nat and ∂Nn are compact. �

5.5. Proposition. The continuous map ∂Nn ⊂ Nn is a h-cofibration of spaces for all

n > 0.

Proof. Using [26, Proposition 10.3] applied with the sequence (n), we deduce that this

map is a strong neighborhood deformation retract, i.e. a h-cofibration by [24, Theorem 2].

�

5.6. Corollary. The map of flows Glob(∂Nn) ⊂ Glob(Nn) is a h-cofibration of flows for

all n > 0.

Proof. A map of flows of the form Glob(U) → Glob(V ) satisfies the left lifting property

with respect to a map of flows f : X → Y if and only if the map U → V satisfies

the left lifting property with respect to all maps Pα,βX → Pf(α),f(β)Y for all (α, β) ∈

X0 ×X0. Using the characterization of the trivial h-fibrations of flows (see Theorem 2.4)

and Proposition 5.5, we deduce that the map Glob(∂Nn) → Glob(Nn) is a h-cofibration

of flows. �

5.7. Proposition. For all n > 0, the map |∂�[n]|nat → |�[n]|nat is a h-cofibration of

flows.

Proof. From the homeomorphism of Proposition 5.4 and by definition of Nn, we deduce

that the commutative diagram of spaces

∂Nn

∼=
//

��

P0n,1n
|∂�[n]|nat

��

Nn

∼=
// P0n,1n

|�[n]|nat

is a pushout diagram of spaces. The top homeomorphism yields a map of flows

Glob(∂Nn) −→ |∂�[n]|nat

taking 0 to 0n and 1 to 1n for all n > 0. We obtain the pushout diagram of flows

Glob(∂Nn) //

��

|∂�[n]|nat

��

Glob(Nn) // |�[n]|nat

Using Corollary 5.6, we deduce that the map |∂�[n]|nat → |�[n]|nat is a h-cofibration of

flows for all n > 0. �

5.8. Theorem. There exists a natural transformation µ : | − |q ⇒ | − |nat such that for

all precubical sets K, the natural map µK : |K|q → |K|nat induces a bijection on states

and a homotopy equivalence Pα,β|K|q ≃ Pα,β|K|nat for all α, β ∈ K0.

Proof. The map |�[∗]|nat → {0 < 1}∗ is an objectwise weak equivalence for the h-model

structure of Flow since all spaces Nn for n > 1 are contractible by Proposition 4.10. By
12



Proposition 5.7, the natural realization functor is then a h-realization functor. The proof

is complete thanks to Theorem 3.8. �

The statement of Theorem 3.8 being symmetric, there is also a natural transformation

ν : |−|nat ⇒ |−|q such that, for all precubical sets K, the natural map νK : |K|nat → |K|q
induces a bijection on states and a homotopy equivalence Pα,β|K|nat ≃ Pα,β|K|q for

all α, β ∈ K0. This statement is less intuitive because, morally speaking, the natural

realization contains more execution paths than the q-realization.

Proposition 5.7 means that the natural realization functor is a h-realization functor.

In fact, it is possible to prove better. For all precubical sets K and all (α, β) ∈ K0 ×K0,

there is a homotopy equivalence Pα,β|K|nat ≃ Pα,β|K|q. Since |K|q is q-cofibrant, the

space Pα,β|K|q is q-cofibrant by [13, Theorem 5.7]. It means that the spaces of execution

paths Pα,β|K|nat are m-cofibrant for all (α, β) ∈ K0 ×K0. This suggests that the natural

realization |K|nat is a m-cofibrant flow. Indeed we have the following theorem:

5.9. Theorem. The natural realization functor is a m-realization functor. For any pre-

cubical set K, the flow |K|nat is m-cofibrant.

Proof. The map |�[∗]|nat → {0 < 1}∗ is an objectwise weak equivalence for the h-model

structure of Flow, and therefore for the m-model structure of Flow as well. There is a

homeomorphism ∂Nn
∼= P0n,1n

|∂�[n]|nat (Proposition 5.4) and a homotopy equivalence

P0n,1n
|∂�[n]|nat ≃ P0n,1n

|∂�[n]|q (Theorem 3.8). Since |∂�[n]|q is a q-cofibrant flow by

Proposition 3.7, the space P0n,1n
|∂�[n]|q is q-cofibrant by [13, Theorem 5.7]. Moreover, Nn

is contractible by Proposition 4.10, hence m-cofibrant. It implies that all maps ∂Nn → Nn

for n > 0 are h-cofibrations of spaces between m-cofibrant spaces [4, Corollary 3.7]. By [4,

Corollary 3.12], the maps ∂Nn → Nn are therefore m-cofibrations of spaces for all n > 0.

Thus, the map of flows Glob(∂Nn) → Glob(Nn) is a m-cofibration of flows for all n > 0

by the same argument as in the proof of Corollary 5.6. Using the pushout diagram in the

proof of Proposition 5.7, we deduce that the natural realization functor is a m-realization

functor. By Proposition 3.7, we deduce that the flow |K|nat is m-cofibrant. �

6. Natural realization and cube chains

Cube chains are introduced in [25, Definition 1.1]. We use the presentation given in [26,

Section 7] instead. Let Seq(n) be the set of sequences of positive integers n = (n1, . . . , np)

with n1 + · · · + np = n. Let n = (n1, . . . , np) ∈ Seq(n). Then |n| = n is the length

of n and ℓ(n) = p is the number of elements of n. Let K be a precubical set and

A = a1 < · · · < ak ⊂ {1, . . . , n} and ǫ ∈ {0, 1}. The iterated face map is defined by

∂ǫA = ∂ǫa1
∂ǫa2

. . . ∂ǫak
.

6.1. Definition. Let n ∈ Seq(n). The n-cube is the precubical set

�[n] = �[n1] ∗ · · · ∗ �[np]

where the notation ∗ means that the final state 1ni
of the precubical set �[ni] is identified

with the initial state 0ni+1
of the precubical set �[ni+1] for 1 6 i 6 p− 1.

Let K be a precubical set. Let α, β ∈ K0. Let n > 1. The category Chα,β(K,n) is

defined as follows. The objects are the maps of precubical sets �[n] → K with |n| = n
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where the initial state of �[n1] is mapped to α and the final state of �[np] is mapped to

β. Let A ⊔ B = {1, . . . , m1 + m2} be a partition with the cardinal of A equal to m1 > 0

and the cardinal of B equal to m2 > 0. Let

φA,B : �[m1] ∗ �[m2] −→ �[m1 +m2]

be the unique map of precubical sets such that

φA,B(Id[m1]) = ∂0
B(Id[m1+m2]),

φA,B(Id[m2]) = ∂1
A(Id[m1+m2]).

For i ∈ {1, . . . , ℓ(n)} and a partition A ⊔ B = {1, . . . , ni}, let

δi,A,B = Id�[n1] ∗ · · · ∗ Id�[ni−1] ∗φA,B ∗ Id�[ni+1] ∗ · · · ∗ Id�[nℓ(n)] .

The morphisms are the commutative diagrams

�[na]

��

a
// K

�[nb]
b

// K

where the left vertical map is a composite of maps of precubical sets of the form δi,A,B.

From a precubical set K, we are going to define a flow ||K|| as follows. The set of

states is K0. Consider the small diagram of spaces

Dα,β(K,n) : Chα,β(K,n) −→ Top

defined by on objects by

Dα,β(K,n)(�[n] → K) = Nn1 × . . .×Nnp

and on morphisms by using the maps

P|φA,B|nat : P(�[m1] ∗ �[m2]) → P(�[m1 +m2])

which induce maps Nm1 × Nm2 → Nm1+m2 given by the Moore composition of natural

d-paths. The set of execution spaces Pα,β||K|| is defined as follows:

Pα,β||K|| =
⊔

n>1

lim
−→

Dα,β(K,n).

It is easy to see that the concatenation of tuples induces functors

Dα,β(K,n1) × Dβ,γ(K,n2) → Dα1,α3(K,n1 + n2),

and, using [13, Proposition A.4], continuous maps

lim
−→

Dα,β(K,n1) × lim
−→

Dβ,γ(K,n2) → lim
−→

Dα,γ(K,n1 + n2).

We obtain an associative composition map

Pα,β||K|| × Pβ,γ||K|| → Pα,γ ||K||

for all (α, β, γ) ∈ K0 ×K0 ×K0.

6.2. Proposition. There is an isomorphism of cocubical flows

||�[∗]|| ∼= |�[∗]|nat.
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Proof. At first, we prove the isomorphism of flows ||�[n]|| ∼= |�[n]|nat by induction on

n > 0. The statement is obvious for n = 0. Let n > 1 and α, β ∈ {0, 1}n with α < β.

Let α = (α1, . . . , αn) and β = (β1, . . . , βn). Let

I = {i ∈ {1, . . . , n} | αi 6= βi}.

By hypothesis, I is nonempty. Let m be the cardinal of I. Then α (β resp.) is the initial

(final resp.) state of a m-subcube c of �[n]. We deduce that the category Chα,β(�[n], p)

is empty for p 6= m and that it has a terminal object c : �[m] → �[n] for p = m

corresponding to the subcube from α to β. We deduce the homeomorphisms

Pα,β||�[n]|| = lim
−→

n=(n1,...,np),ℓ(n)=m
�[n]→�[n]∈Chα,β(�[n],m)

Nn1 × . . .×Nnp

∼= Nm

= Pα,β|�[n]|nat,

the first equality by definition of ||�[n]||, the homeomorphism because of the unique map

c : �[m] → �[n] which is the terminal object of Chα,β(�[n], m), and the last equality

by Proposition 5.1 applied to the map c : �[m] → �[n]. By Proposition 5.1 again, the

isomorphism ||�[n]|| ∼= |�[n]|nat is natural with respect to [n]. �

We do not know yet that the functor ||−|| is colimit-preserving. An additional argument

based on Proposition 5.1 as well is necessary for proving Theorem 6.3.

6.3. Theorem. There is a natural isomorphism of flows ||K|| ∼= |K|nat for all precubical

sets K.

Proof. Let n = (n1, . . . , np) ∈ Seq(n). Every map of precubical sets �[n] → K gives rise

to a map of flows |�[n]|nat → |K|nat, and therefore to a continuous map

Nn1 × . . .×Nnp
−→ P|K|nat.

Let φA,B : �[m1] ∗ �[m2] → �[m1 + m2] as above. A composite map of precubical sets

�[m1] ∗ �[m2] → �[m1 +m2] → K gives rise to the commutative diagram of flows

|�[m1] ∗ �[m2]|nat

��

// |K|nat

|�[m1 +m2]|nat // |K|nat

and therefore to the commutative diagram of spaces

Nm1 ×Nm2

��

// P|K|nat

Nm1+m2
// P|K|nat

Consequently, we obtain a cocone

(Nn1 × . . .×Nnp
) �[n]→K

∈Chα,β(K,n)

•
−→ P|K|nat
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and then a map of flows ||K|| → |K|nat which is bijective on states. For each map of

precubical sets �[n] → K, we obtain by Proposition 6.2 a map of flows

|�[n]|nat ∼= ||�[n]|| −→ ||K||.

Using Proposition 5.1, we obtain a cocone of flows

(|�[n]|nat)�[n]→K
•

−→ ||K||

and therefore a map of flows |K|nat → ||K|| such that the composite map |K|nat →

||K|| → |K|nat is the identity. Thus, the map ||K|| → |K|nat is onto on execution paths

and the map |K|nat → ||K|| is one-to-one on execution paths. Consider an execution

path γ of ||K||. It belongs to a colimit and therefore has a representative (γ1, . . . , γp) in a

space of the form Nn1 × . . .×Nnp
corresponding to some map of precubical set �[n] → K

with n = (n1, . . . , np). By Proposition 5.1, there exists an execution path γ1 ∗ · · · ∗ γp of

|K|nat which is mapped to (γ1, . . . , γp) by the map of flows |K|nat → ||K||. The latter is

therefore surjective on execution paths. And the proof is complete. �

7. Applications

We can now give the applications of the previous results. We recall at first some basic

facts about ∆-inclusions.

7.1. Definition. A one-to-one map of ∆-generated spaces i : A → B is a ∆-inclusion

if for all ∆-generated spaces Z, the set map Z → A is continuous if and only if the

composite set map Z → A → B is continuous.

7.2. Proposition. Let i : A → B be a one-to-one continuous map. The following asser-

tions are equivalent:

(1) i is a ∆-inclusion.

(2) A is homeomorphic to i(A) equipped with the ∆-kelleyfication of the relative topol-

ogy.

(3) A set map [0, 1] → A is continuous if and only if the composite set map [0, 1] →

A → B is continuous.

Proof. The proof is similar to the same statement for k-inclusions of k-spaces. �

7.3. Corollary. A continuous bijection f : U → V of Top is a homeomorphism if and

only if it is a ∆-inclusion.

Let K be a general precubical set. The underlying set of the space Pα,β|K|nat for

(α, β) ∈ K0 × K0 is exactly the set of natural d-paths of K from α to β. The L1- arc

length of a d-path of Pα,β|K|nat is always an integer because (α, β) ∈ K0 × K0 and two

natural d-paths which are in the same path-connected component have the same L1-arc

length. Therefore, the following definition makes sense.

7.4. Definition. Let K be a precubical set. Let (α, β) ∈ K0 ×K0. Denote by

(Pα,β|K|nat)∆
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the underlying set of the space Pα,β|K|nat equipped with the ∆-kelleyfication of the relative

topology induced by the set inclusion

Pα,β|K|nat ⊂
⊔

n>1

TOP([0, n], |K|geom).

Since the space |K|geom is Hausdorff, the space (Pα,β|K|nat)∆ is Hausdorff as well.

7.5. Theorem. Let K be a precubical set. Let (α, β) ∈ K0 ×K0. There is a homeomor-

phism

Pα,β|K|nat ∼= (Pα,β|K|nat)∆.

Proof. By Theorem 6.3, there is a natural isomorphism of flows ||K|| ∼= |K|nat for all

precubical sets K. It then suffices to prove that there is a homeomorphism Pα,β||K|| ∼=
(Pα,β|K|nat)∆ for all (α, β) ∈ K0 × K0. For all n > 0, Nn is equipped with the compact-

open topology which is ∆-generated by Proposition 4.10. The Moore composition of

natural d-paths induces continuous maps

Dα,β(K,n)(�[n] → K) = Nn1 × . . .×Nnp
−→ TOP([0, n], |K|geom)

for all n = (n1, . . . , np) ∈ Seq(n). The morphisms of the small category Dα,β(K,n) are

induced by products of maps of the form Nm1 × Nm2 → Nm1+m2 induced by the Moore

composition of natural d-paths and by identities of Nn for n > 1. Therefore, we obtain a

well-defined cocone

Dα,β(K,n)
•

−→ TOP([0, n], |K|geom)

for all n > 1. We obtain a continuous map

Pα,β|K|nat ∼= lim
−→

Dα,β(K,n) ⊂
⊔

n>1

TOP([0, n], |K|geom)

which yields a continuous bijection Pα,β|K|nat → (Pα,β|K|nat)∆. Consider a set map

f : [0, 1] −→ Pα,β|K|nat

such that the composite set map

[0, 1] −→ Pα,β|K|nat −→ (Pα,β|K|nat)∆

is continuous. Since [0, 1] is path-connected, and since the L1-arc length is constant on a

path-connected component, there exists a commutative diagram of spaces of the form

[0, 1] // Pα,β|K|nat → (Pα,β|K|nat)∆
//

⊔

n>1

TOP([0, n], |K|geom)

[0, 1] // TOP([0, n0], |K|geom)
⊂

//
⊔

n>1

TOP([0, n], |K|geom)

for some integer n0 > 1. By adjunction, we obtain a continuous map

[0, 1] × [0, n0] −→ |K|geom.

The topological space |K|geom is a cellular topological space. It is Hausdorff and the

image of the compact [0, 1] × [0, n0] is a closed compact subset of |K|geom which, by [17,

Proposition A.1], intersects finitely many interiors of cubes and vertices. At this point,

one can suppose that K is a finite precubical set, i.e. that
⋃
n>0Kn is finite, say that it
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has N elements. We want to prove that the set map f : [0, 1] → Pα,β|K|nat is continuous.

Since the ∆-generated spaces are sequential, it suffices to prove the sequential continuity

of f : [0, 1] → Pα,β|K|nat. Let (tn)n>0 be a sequence of [0, 1] which converges to t∞ ∈ [0, 1].

For all t ∈ [0, 1], Carrier(f(t)) is of the form (c1, . . . , cp) with dim(ci)+ · · ·+dim(cp) = n0.

We deduce that the set {Carrier(γ(t)) | t ∈ [0, 1]} has less than (N + 1)n0 elements,

i.e. that it is finite. Thus the sequence of carriers (Carrier(f(tn))n>0 has a constant

subsequence. Suppose that the sequence (Carrier(f(tn))n>0 is constant and equal to

(c1, . . . , cp). Then the sequence of paths (f(tn))n>0 belongs to the image of the continuous

map Ndim(c1) × . . . × Ndim(cp) → Pα,β|K|nat induced by the Moore composition of paths.

The space Pα,β|K|nat is Hausdorff since there is a continuous bijection from this space

to the Hausdorff space (Pα,β|K|nat)∆. The product Ndim(c1) × . . . × Ndim(cp) is a finite

product in Top of compact metrizable spaces by Proposition 4.10. By [12, Lemma 6.9],

this product coincides with the product taken in the category of general topological

spaces. It means that Ndim(c1) × . . . × Ndim(cp) is compact. Consequently, the image of

Ndim(c1) × . . .×Ndim(cp) → Pα,β|K|nat is compact closed in Pα,β|K|nat which is sequential,

being ∆-generated. It implies that this image is sequential, as a closed subset of a

∆-generated space, and therefore sequentially compact. We deduce that the sequence

(f(tn))n>0 has a limit point which is necessarily f(t∞) by continuity of the composite map

[0, 1] −→ Pα,β|K|nat −→ (Pα,β|K|nat)∆. In fact, we have proved that every subsequence of

(f(tn))n>0 has a subsequence which has a limit point which is necessarily f(t∞). Suppose

that the sequence (f(tn))n>0 does not converge to f(t∞). Then there exists an open

neighborhood V of f(t∞) in Pα,β|K|nat such that for some M > 0, and for all n > M ,

f(tn) ∈ V c, the complement of V , the latter being closed in Pα,β|K|nat. Thus, (f(tn))n>M
cannot have a limit point: contradiction. We deduce that f : [0, 1] −→ Pα,β|K|nat
is sequentially continuous, hence continuous. It means that the continuous bijection

Pα,β|K|nat → (Pα,β|K|nat)∆ is a ∆-inclusion. Therefore, the latter is a homeomorphism

by Corollary 7.3. �

The word “weak homotopy equivalence” can be replaced by “homotopy equivalence”

in the statements of [26, Theorem 7.5 and Theorem 7.6] because all maps of [26, Equa-

tion 7.5] are homotopy equivalences. Indeed, it is proved in [26, Proposition 10.3] that

some specific map is a h-cofibration. Therefore the diagram of [26, Proposition 10.4] is

Reedy h-cofibrant and the map QK
n is a homotopy equivalence.

The spaces of d-paths of general precubical sets are equipped in [26] with the compact-

open topology instead of some kind of kelleyfication of the compact-open topology. The

latter is the correct internal hom, both for k-spaces and ∆-generated spaces, except in very

specific situations like Proposition 4.10 and Proposition 4.14. Since the ∆-kelleyfication

functor takes (weak resp.) homotopy equivalences to (weak resp.) homotopy equivalences,

this point is not an issue.

7.6. Corollary. Let K be a precubical set. Let α, β ∈ K0. Then the space of execution

paths Pα,β|K|q is homotopy equivalent to the space of d-paths from α to β equipped with

the ∆-kelleyfication of the compact-open topology in the geometric realization of K as a

Grandis d-space.

Proof. By Theorem 5.8, there is a homotopy equivalence Pα,β|K|q ≃ Pα,β|K|nat. By

Theorem 7.5, there is a homeomorphism Pα,β|K|nat ∼= (Pα,β|K|nat)∆. By [26, Theorem 7.5
18



and Theorem 7.6], the space (Pα,β|K|nat)∆ and the space of d-paths from α to β in the

geometric realization of K as a Grandis d-space are homotopy equivalent. �

In fact, we could prove Corollary 7.6 by using only Theorem 5.8 and Theorem 6.3

without using Theorem 7.5. Let us sketch the argument. There is a natural isomorphism

of flows ||K|| ∼= |K|nat. The category Chα,β(K,n) is a poset and a direct Reedy category

with the degree function n 7→ n − ℓ(n) (see [26, Section 10]). Let c = �[n] → K with

ℓ(n) = n and n = (n1, . . . , np). Using [7, Theorem B.3], we prove that the continuous map

LcDα,β(K,n) −→ Dα,β(K,n)(c) is the pushout product of the maps ∂Nni
→ Nni

for i =

1, . . . , p. The latter are h-cofibrations by Proposition 5.5. Thus the diagram Dα,β(K,n)

is Reedy h-cofibrant and the colimit lim
−→

Dα,β(K,n) is actually a homotopy colimit in the

h-model structure of Top. Since all spaces Nn are contractible by Proposition 4.10, we

deduce the homotopy equivalences

Pα,β|K|q ≃ Pα,β||K|| ≃
⊔

n>1

holim
−−−→
�[n]→K

∈Chα,β(K,n)

{0} ≃
⊔

n>1

| Chα,β(K,n)|.

We conclude using [26, Theorem 7.6].
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