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COMPARING THE NON-UNITAL AND

UNITAL SETTINGS FOR DIRECTED

HOMOTOPY

Philippe GAUCHER

Résumé. Cette note explore le lien entre la structure de modèles de type

Quillen des ots et la structure de modèles de Ilias sur les petites catégories

enrichies sur les espaces topologiques. Les deux ont des équivalences faibles

qui induisent des équivalences sur les (semi)catégories fondamentales. La

structure de modèles de Ilias ne peut pas être transférée sur les ots le long de

l’adjoint à gauche qui ajoute le morphismes identité. La structure de modèles

minimale sur les ots ayant comme cobrations le transfert le long de ce

foncteur des cobrations de la structure de modèles de Ilias a comme catégorie

homotopique l’ensemble totalement ordonné à 3 éléments. La structure de

modèles de type Quillen des ots peut être transférée le long de l’adjoint à

droite oubliant les morphismes identité. On obtient une catégorie de modèle

minimale telle que les équivalences faibles induisent une équivalence sur les

catégories fondamentales. Le foncteur identité de la catégorie des petites

catégories enrichies sur les espaces topologiques n’est ni un adjoint de Quillen

à gauche, ni un adjoint de Quillen à droite entre la structure de modèles de

type Quillen et la structure de modèles de Ilias.

Abstract. This note explores the link between the q-model structure of

ows and the Ilias model structure of topologically enriched small categories.

Both have weak equivalences which induce equivalences of fundamental

(semi)categories. The Ilias model structure cannot be left-lifted along the left

adjoint adding identity maps. The minimal model structure on ows having as
cobrations the left-lifting of the cobrations of the Ilias model structure has
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a homotopy category equal to the 3-element totally ordered set. The q-model

structure of ows can be right-lifted to a q-model structure of topologically

enriched small categories which is minimal and such that the weak equiva-

lences induce equivalences of fundamental categories. The identity functor

of topologically enriched small categories is neither a left Quillen adjoint

nor a right Quillen adjoint between the q-model structure and the Ilias model

structure.

Keywords. Directed homotopy, ow, Dwyer-Kan equivalence, combinatorial

model category, minimal model category, locally presentable category, topo-

logically enriched category.

Mathematics Subject Classication (2020). 18C35,18D20,55U35,68Q85.

1. Introduction

1.1 Presentation

The time ow of a concurrent process can be modelled by a topologically

enriched small semicategory [8] or by a topologically enriched small category

[4, 27]. The objects represent the states of the concurrent process and the

nonidentity morphisms represent the execution paths, the topology modelling

concurrency [6]. The primary reason for excluding identity morphisms in [8,

Denition 4.11] is to obtain functorial constructions for the branching and

merging homology theories (see [8, Section 20]). It enables us to prove the

invariance by renement of observation in [10, Corollary 11.3], and therefore

to x Goubault-Jensen’s construction of [19]. The main technical tool is

the minimal model category introduced in [8], called the q-model structure

(of ows) after [17, Theorem 7.6]. The examples coming from computer

science are non-unital as well because they are modelled by precubical

sets (e.g. [12, 13, 20, 31]) and because precubical sets have non-unital

geometric realizations [12, Denition 7.2]. The transverse degeneracy maps

of precubical sets, introduced for the functorial formalization of the parallel

product with synchronization of process algebra [13, Theorem 3.1.15 and

Denition 4.2.2], belong to the non-unital world as well. The transverse

degeneracy maps lead to a vast generalization of Raussen’s notion of natural

d-path in [18]. The non-unital setting is also necessary to construct the

underlying homotopy type functor which is geometrically the homotopy type
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of the space obtained after forgetting the temporal information [11, Section 6]

[15, Proposition 8.16].

On the other hand, the mathematical literature provides several con-

structions of model structures on enriched small categories such that the

weak equivalences are the so-called Dwyer-Kan equivalences of [5]: for

simplicially enriched small categories [3], for topologically enriched small

categories [25] and for small categories enriched in a given monoidal model

category [2]. The generating cobrations of the q-model structure of ows
of [8] are almost those obtained by transfer along the left adjoint formally

adding identity maps from the generating cobrations of the Ilias model

structure constructed in [25]. The only difference is the presence of the ow
cobration R : 0, 1 → 0 which has no counterpart in the Ilias model

structure (see Proposition 3.3). This leads to the question of comparing the

model structures on ows and on topologically enriched small categories.

The following sequence of theorems answers the question.

Theorem. (Theorem 3.5) The Ilias model structure on topologically enriched

small categories [25] cannot be transferred to the category of ows along the
left adjoint formally adding identity maps.

Theorem. (Corollary 4.10) The minimal model structure on ows with respect
to the transfer of the cobrations of the Ilias model structure along the left

adjoint formally adding identity maps has three homotopy types.

Theorem. (Theorem 5.2) The q-model structure of ows can be transferred
along the right adjoint forgetting the identity maps to the category of topolog-

ically enriched small categories. We obtain a combinatorial model structure

which is minimal. Its weak equivalences induce equivalences of fundamental

categories. The left Quillen adjoint formally adding identity maps from ows
to enriched small categories is not a left Quillen equivalence.

The model category of Theorem 5.2 on topologically enriched small

categories seems to be new. With the same argument, the h-model structure

and the m-model structure of ows constructed in [17, Theorem 7.4] can be

transferred along the right adjoint forgetting the identity maps to the category

of topologically enriched small categories as well. We obtain a h-model

structure and a m-model structure on topologically enriched small categories

which are both accessible as model categories.
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The following table of minimal model categories summarizes the results

of this note. The symbol  means that the weak equivalences induce equiva-

lences of fundamental (semi)categories. The symbol  means that they do

not.

R is a cobration R is not a cobration
Flow  q-model structure of [8]  Corollary 4.10

Cat  Theorem 5.2  Ilias model structure of [25]

The conclusion that must be drawn from this note is that the ow co-
bration R : 0, 1 → 0 is much more important in a globular approach of

directed homotopy than what was expected in [8].

1.2 Prerequisites and notations

We refer to [1] for locally presentable categories, to [7, 22, 29] for combina-

torial and accessible model categories. We refer to [23, 24] for more general

model categories. We work with a locally presentable convenient category

of topological spaces Top for doing algebraic topology. The internal hom

is denoted by TOP(−,−). The category of ∆-generated spaces or of ∆-

Hausdorff ∆-generated spaces (cf. [16, Section 2 and Appendix B]) are two

such examples. The category Top is equipped with its q-model structure (we

use the terminology of [26]). What follows is some notations and conventions:

∅ is the initial object, 1 is the nal object, IdX is the identity of X . A model

structure (C,F ,W) means that the class of cobrations is C, that the class of
brations is F and that the class of weak equivalences isW . A combinatorial

model structure onK is minimal if the class of weak equivalences is the small-

est Grothendieck localizer with respect to its set of generating cobrations
[21, 30]. Note that in [30], the adjective left-determined is used instead. When

all objects of a model category are brant, any Grothendieck localizer which

is strictly smaller than the class of weak equivalences never induces a model

structure. By [21, Theorem 1.4], every tractable combinatorial model cate-

gory with brant objects is minimal. The notation f  g means that g satises
the right lifting property (RLP) with respect to f ; C = g, ∀f ∈ C, g  f;
C = inj(C) = g, ∀f ∈ C, f  g; cof(C) = (C); cell(C) is the class of
transnite compositions of pushouts of elements of C. A cellular object X
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of a combinatorial model category is an object such that the canonical map

∅ → X belongs to cell(I) where I is the set of generating cobrations.
In this paper, the transfer of a model structure of Flow along the right

adjointCat ⊂ Flow of Proposition 2.7 is called the right-lifting of the model

structure of Flow. Similarly, the transfer of a model structure of Cat (of a

weak factorization system resp.) along the left adjoint I+ : Flow → Cat

of Proposition 2.7 is called the left-lifting of the model structure of Cat (of

the weak factorization system resp.). See the introductions of [7, 22] and the

beginning of [7, Section 2] for further explanations.

1.3 Acknowledgments

I thank Simon Henry for a useful discussion about semicategories. I thank the

anonymous referee for the suggestions to improve and clarify the presentation.

2. The adjunction I+ : Flow ⇆ Cat :⊃
Denition 2.1. [8, Denition 4.11] A ow is a small semicategory enriched

over the closed monoidal category (Top,×). The corresponding category is

denoted by Flow.

A owX consists of a topological space PX of execution paths, a discrete

space X0 of states, two continuous maps s and t from PX to X0 called the

source and target map respectively, and a continuous and associative map

∗ : (x, y) ∈ PX × PX; t(x) = s(y) −→ PX such that s(x ∗ y) = s(x)
and t(x ∗ y) = t(y). Let Pα,βX = x ∈ PX  s(x) = α and t(x) = β.
Note that the composition is denoted by x ∗ y, not by y ◦ x.

Every set can be viewed as a ow with an empty space of execution paths.

The obvious functor Set ⊂ Flow from the category of sets to that of ows
is limit-preserving and colimit-preserving. The following examples of ows
are important for the sequel:

Example 2.2. For a topological space Z, let Glob(Z) be the ow dened by

Glob(Z)0 = 0, 1, PGlob(Z) = P0,1Glob(Z) = Z, s = 0, t = 1

This ow has no composition law. The directed segment is the ow
−→
I =

Glob(0).
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Example 2.3. Denote by B (like branching) the ow 1 ← 0 → 1 with three

states and two execution paths. This ow has no composition law.

Notation 2.4. Let n ⩾ 1. Denote by Dn = b ∈ R
n, b ⩽ 1 the n-

dimensional disk, and by Sn−1 = b ∈ R
n, b = 1 the (n− 1)-dimensional

sphere. By convention, letD0 = 0 and S−1 = ∅.

Notation 2.5. Let

Igl = cn : Glob(Sn−1) ⊂ Glob(Dn)  n ⩾ 0,
Jgl = Glob(Dn × 0) ⊂ Glob(Dn × [0, 1]  n ⩾ 0,
C : ∅ → 0, R : 0, 1 → 0

Notation 2.6. The category of small categories enriched overTop is denoted

by Cat. The set of objects of an enriched small category X is denoted by

Obj(X) and the space of morphisms from A to B by X(A,B).

Proposition 2.7. (well-known) The inclusionCat ⊂ Flow has a left adjoint 1

denoted by I+ : Flow −→ Cat. It consists of adding identity maps as

isolated points in the spaces of morphisms. This functor is faithful.

What follows is an adaptation of [6, Denition 4.37].

Denition 2.8. Let X be an object of Flow. The fundamental semicategory

of X is the small semicategory −→π 1(X) having X0 for the set of objects

and the set of morphisms between two objects is the set of path-connected

components of the space of execution paths between these two objects. If

X ∈ Cat ⊂ Flow, then −→π 1(X) is a small category which is called the

fundamental category of X .

For allX ∈ Flow, I+(−→π 1(X)) is also a small category which is called the

fundamental category ofX . ForX ∈ Cat, the canonical map I+(−→π 1(X)) →
−→π 1(X) is not an equivalence of categories.

1It has also a right adjoint, the enriched small category of idempotents of a ow, which is

not used in this note.
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3. Left-lifting the Ilias model structure

Theorem 3.1. [25, Theorem 2.4] There exists one and only one combinatorial

model structure (Cat)DK = (CDK ,FDK ,WDK) on Cat with the following

properties:

• A set of generating cobrations is the set of maps I+(Igl  C).

• The weak equivalences are the DK-equivalences: there are the maps of

enriched functors F : C → D such that −→π 1(F ) : −→π 1(C) → −→π 1(D) is an
equivalence of categories and such that for all pairs of objects (α, β) of C,
there is a weak homotopy equivalence C(α, β) → D(F (α), F (β)).

• A set of generating trivial cobrations is given by the set of maps I+(Jgl) 
I+(0) → (0 ∼= 1)cof where 0 ∼= 1 is the small category with two
isomorphic objects 0 and 1.

It is called the Ilias model structure. All objects are brant.

Theorem 3.1 is the topological analogue of the Bergner model structure

on simplicially enriched small categories [3]. The weak equivalences are

the Dwyer-Kan equivalences of [5]. The combinatorial model category is

minimal since all objects are brant. The weak equivalences of WDK induce

equivalences of fundamental categories by denition.

Proposition 3.2. Let f : X → Y be a map of ows. Let i : A → B ∈
Igl  C. Consider a commutative square of Cat

I+(A)
ϕ

//

I+(i)



I+(X)

I+(f)


I+(B)

ϕ
// I+(Y )

Then either I+(B)⊔I+(A) I
+(X) ∼= I+(X), or the canonical map I+(B)⊔I+(A)

I+(X) → I+(Y ) is of the form I+(g) for some unique map of ows g :
B ⊔A X → Y .
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Proof. That there is at most one such a map g is a consequence of the fact

that I+ is faithful. A commutative diagram of enriched small categories of

the form

∅ //



I+(X)

I+(f)


I+(0) // I+(Y )

is the image by the functor I+ : Flow → Cat of the commutative diagram

of ows
∅ //



X

f


0 // Y

Thus, in this case, g exists by the universal property of the pushout. Consider

now a commutative diagram (C) of enriched small categories of the form

I+(Glob(Sn−1))
ϕ

//



I+(X)

I+(f)


I+(Glob(Dn))

ϕ
// I+(Y )

with n ⩾ 0. If ϕ(0) ̸= ϕ(1) are two different objects of I+(X), then the latter

commutative diagram of enriched small categories is the image by the functor

I+ : Flow → Cat of the commutative diagram (D) of ows

Glob(Sn−1)
ϕ

//



X

f


Glob(Dn) // Y

We conclude the existence of g as above. It remains the case ϕ(0) = ϕ(1). In
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this case, we have the commutative diagram of topological spaces

Sn−1 ϕ
//



Idϕ(0) ⊔ Pϕ(0),ϕ(1)X

f


Dn ϕ

// Idϕ(0) ⊔ Pϕ(0),ϕ(1)Y

If n ⩾ 1 and since Dn is connected, then either ϕ(Dn) ⊂ Idϕ(0) and

ϕ(Sn−1) ⊂ Idϕ(0) or ϕ(Dn) ⊂ Pϕ(0),ϕ(1)Y and ϕ(Sn−1) ⊂ Pϕ(0),ϕ(1)X . If

n = 0, then Sn−1 = ∅ and either ϕ(Dn) ⊂ Idϕ(0) or ϕ(Dn) ⊂ Pϕ(0),ϕ(1)Y .

In the rst alternative in both cases, there is the pushout diagram of

enriched small categories

I+(Glob(Sn−1))
ϕ

//



I+(X)

I+(f)


I+(Glob(Dn)) // I+(X)

In the second alternative in both cases, the commutative diagram (C) is
the image by the functor I+ : Flow → Cat of the commutative diagram (D)
and we conclude the existence of g as above.

By [7, Theorem 2.6], the left-lifting of the small weak factorization system

(CDK ,FDK WDK) along the left adjoint I+ : Flow → Cat exists and is

accessible. In fact, we have the proposition:

Proposition 3.3. The left-lifting of the small weak factorization system

(CDK ,FDK  WDK) along the left adjoint I+ : Flow → Cat is small,

being generated by Igl  C.

Proof. It sufces to prove that I+
−1
(CDK) = cof(Igl  C). We have

I+(Igl  C) ⊂ CDK by Theorem 3.1. Since I+ : Flow → Cat is a

left adjoint, we obtain the inclusion cell(Igl  C) ⊂ I+
−1
(CDK). And

using the fact that every map of cof(Igl  C) is a retract of a map of

cell(Igl C), we obtain the inclusion cof(Igl C) ⊂ I+
−1
(CDK) since
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the class of maps CDK is closed under retract. Conversely, let f : X → Y

be a map of ows such that I+(f) : I+(X) → I+(Y ) is a cobration of

Cat. By using the small object argument of [24, Theorem 2.1.14], we factor

I+(f) as a composite I+(X) → Z → I+(T ) such that the map I+(X) → Z

belongs to cell(I+(Igl  C)) and such that the map Z → I+(T ) belongs
to inj(I+(Igl  C)). Since I+ is a left adjoint, by an immediate transnite
induction, there exists a transnite tower (Xα)α<λ of Flow with X = X0

and Z = I+(Xλ) such that each map Xα → Xα+1 for α < λ is a pushout

of a map of Igl  C. By induction on α ⩾ 0, let us prove that the map of

enriched small categories I+(Xα) → I+(T ) is the image by the functor I+

of a map of ows gα : Xα → T . There is nothing to prove for α = 0. The
passage from α to α + 1 is ensured by Proposition 3.2. Finally, the statement

holds for a limit ordinal α since I+ is colimit-preserving. We deduce that

the map of enriched small categories Z → I+(T ) is of the form I+(g) for
some map of ows g : Xλ → T : take g = gλ. The lift ℓ in the commutative

diagram of enriched small categories

I+(X) //

I+(f)



I+(Xλ)

I+(g)


I+(T )

ℓ

;;

I+(T )

exists since I+(f) is a cobration of Cat by hypothesis. For all α ∈ T 0, the

commutativity of the diagram of spaces

Idα ⊔ Pα,αT
ℓ

// Idℓ(α) ⊔ Pℓ(α),ℓ(α)Xλ
I+(g)

// Idα ⊔ Pα,αT

implies that ℓ(Pα,αT ) ⊂ Pℓ(α),ℓ(α)Xλ, and therefore that ℓ = I+(ℓ) for some

map of ows ℓ : T → Xλ. Since the functor I
+ is faithful, we obtain the

commutative diagram of ows

X //

f



Xλ

g


T

ℓ

>>

T
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It means that the map of ows f : X → T is a retract of the map of

ows X → Xλ. We deduce f ∈ cof(Igl  C), the map X → Xλ

belonging to cell(Igl  C) by construction. We deduce the inclusion

I+
−1
(CDK) ⊂ cof(Igl  C).

Lemma 3.4. Let f : X → Y be a map of Flow such that Y is a set. ThenX

is a set as well.

Proof. It is a consequence of the lack of identity maps for the objects of

Flow.

Theorem 3.5. The model category (Cat)DK cannot be left-lifted along the

left adjoint I+ : Flow → Cat.

Proof. By Proposition 3.3 and Lemma 3.4, the map R : 0, 1 → 0
satises the RLP with respect to I+

−1
(CDK) because it satises the RLP with

respect to C : ∅ → 0. But I+(R) ∈ WDK . It means that the left acyclicity

condition I+
−1
(CDK)

 ⊂ I+
−1
(WDK) fails and that the left-induced model

structure does not exist by [7, Proposition 2.3].

Theorem 3.5 can be proved without using Proposition 3.3. Indeed, thanks

to Lemma 3.4, the only maps of ows f belonging to I+
−1
(CDK) such that

there exists a morphism in the category of maps of ows from f to R are the

set maps of cell(C) = cof(C), i.e. the one-to-one set maps. Proposition 3.3

is proved because it is used in Corollary 4.10.

4. Left-lifting the cobrations of the Ilias model structure

We need to recall:

Theorem 4.1. [17, Theorem 7.6] There exists one and only one combinatorial

model structure (Flow)q on Flow with the following properties:

• A set of generating cobrations is the set of maps Igl  C,R.

• The weak equivalences are the maps of ows f : X → Y inducing a

bijection f 0 : X0 ∼= Y 0 and a weak homotopy equivalence Pf : PX →
PY .

186



P. GAUCHER NON-UNITAL AND UNITAL SETTINGS

• A set of generating trivial cobrations is given by the set of maps Jgl.

It is called the q-model structure. The cobrations (brations resp.) are

called q-cobrations (q-brations resp.). All ows are q-brant.

The weak equivalences of (Flow)q induce isomorphisms of fundamental

semicategories. The q-model structure of ows is minimal by [21, Theo-

rem 1.4] since it is combinatorial and all its objects are brant 2.

Denition 4.2. The class of maps of owsWDK consists of the maps of ows
f : X → Y such that either X = Y = ∅, or X and Y are both nonempty

sets, or X and Y both contain at least one execution path.

As an immediate consequence of the denition above, we obtain:

Proposition 4.3. All maps of ows

I
gl
⩾1 = cn  n ⩾ 1, C+ : 0 ⊂ 0, 1,
c+0 = Id−→

I
⊔c0 :

−→
I ⊔Glob(S−1) ⊂ −→

I ⊔Glob(D0)

belong toWDK .

We recall the four following propositions for the convenience of the

reader.

Proposition 4.4. [8, Proposition 13.2] Let i : U → V be a map of Top. A

morphism of ows f : X → Y satises the RLP with respect to Glob(i) :
Glob(U) → Glob(V ) if and only if for all (α, β) ∈ X0 × X0, the map

Pα,βX → Pf(α),f(β)Y satises the RLP with respect to i.

Proposition 4.5. ([24, Theorem 2.1.19]) Let I and J be two sets of maps

of a locally presentable category K. Let W be a class of maps satisfy-

ing the two-out-of-three property and which is closed under retract. If

cell(J) ⊂ W  cof(I), inj(I) ⊂ W  inj(J) and W  cof(I) ⊂ cof(J),
then (cof(I), inj(J),W) is a model structure on K.

2[14, Theorem 4.3] gives another argument which does not require to use a locally

presentable setting.

187



P. GAUCHER NON-UNITAL AND UNITAL SETTINGS

Proposition 4.6. ([24, Lemma 5.2.6]) Let M be a model category. Consider

a pushout diagram ofM of the form

X  
//

≃



Y


Z // T

such that X, Y, Z are cobrant, such that the top horizontal map is a cobra-
tion and such that the left vertical map is a weak equivalence. Then the right

vertical map Y → T is a weak equivalence.

Proposition 4.7. [14, Proposition 3.7] The globe functor Glob : Top →
Flow preserves connected colimits (i.e. colimits such that the underlying

small category is connected).

Notation 4.8. Let 3 be the small category associated with the poset 0 ⩽
1 ⩽ 2.

Theorem 4.9. There exists one and only one model structure on Flow such

that

• A set of generating cobrations is Igl  C.

• A set of generating trivial cobrations is C+, c+0   Jgl  I
gl
⩾1.

• The class of weak equivalences isWDK .

• The homotopy category of this model structure is the category 3: every ow
is weakly equivalent either to the initial or terminal ow, or to a singleton.

• The cobrant ows are the q-cobrant ows.

• The brant ows are the ows X such that PX = ∅ (i.e. the sets) and the

owsX such that for all (α, β) ∈ X0×X0, the space Pα,βX is contractible.

In particular, not all ows are brant.

Moreover, this combinatorial model structure is minimal.
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Proof. The uniqueness comes from the fact that a model structure is charac-

terized by its cobrations and its trivial cobrations. Note that 3 is the full

subcategory of Flow generated by the initial and terminal ows and by the
singleton. Consider the functor w : Flow → 3 characterized as the unique

functor which takes a ow X to 0 if X0 = ∅, to 1 if X0 ̸= ∅ and PX = ∅,

and to 2 otherwise. ThenWDK is the inverse image by w of the identity maps

of 3. We deduce that the classWDK has the two-out-of-three property and

that it is closed under retract.

All maps of cell(C+, c+0   Jgl  I
gl
⩾1) are q-cobrations which are one-

to-one on states, which implies cell(C+, c+0 JglI
gl
⩾1) ⊂ cof(IglC).

Every map of cell(C+, c+0 JglIgl⩾1) is either between nonempty sets or be-

tween ows containing execution paths, hence the inclusion cell(C+, c+0  
Jgl  I

gl
⩾1) ⊂ WDK .

We obtain the inclusion cell(C+, c+0   Jgl  I
gl
⩾1) ⊂ WDK  cof(Igl 

C). An element f : X → Y of inj(IglC) is surjective on states. There-
foreX0 = ∅ if and only if Y 0 = ∅ and f ∈ inj(C+). By Proposition 4.4, ev-
ery map Pα,βX → Pf(α),f(β)Y for all (α, β) ∈ X0×X0 is a trivial q-bration
of spaces. Consequently,X contains execution paths if and only if Y contains

execution paths. We deduce that f ∈ WDK . By Proposition 4.4 again, we

deduce that f ∈ inj(Jgl  Igl). We obtain the inclusions inj(Igl  C) ⊂
WDK  inj(C+  Jgl  Igl) ⊂ WDK  inj(C+, c+0   Jgl  I

gl
⩾1).

Finally, a map f ∈ WDK  cof(Igl  C) is a q-cobration which is

one-to-one on states such that either the source and the target are empty,

or the source and the target are nonempty set (in this case, f belongs to

cof(C+)), or such that both the source and the target contain execution

paths. In the latter case, it belongs to cof(c+0   I
gl
⩾1). We deduce that

WDK  cof(Igl  C) ⊂ cof(C+, c+0   Jgl  I
gl
⩾1).

The proof of the existence of the model structure is complete thanks to

Proposition 4.5.

Since all ows are q-brant, a ow X is brant if and only if the canon-
ical map X → 1 satises the RLP with respect to C+, c+0   I

gl
⩾1. Since

inj(C+)  Set is equal to the surjective set maps union the set maps starting

from the empty set by [9, Lemme 4.4(3)], the canonical map X → 1 always

satises the RLP with respect to C+. Thus a ow X is brant if and only

if the canonical map X → 1 satises the RLP with respect to c+0   I
gl
⩾1.
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We deduce that all sets viewed as ows are brant. Consider now a ow X

such that PX ̸= ∅. Then the map X → 1 satises the RLP with respect to

c+0 if and only it satises the RLP with respect to c0. The characterization of

brant objects is complete thanks to Proposition 4.4.

Since not all ows are brant for this model structure, an additional

argument is required to prove that it is indeed minimal.

Consider a model structure (C,F ,W) on Flow such that C = cof(Igl 
C). The cobrant ows are the q-cobrant ows and the cobrations are the
q-cobrations which are one-to-one on states. All trivial q-brations are trivial
brations since they satisfy the RLP with respect to IglC ⊂ IglC,R.

Observe at rst that R : 0, 1 → 0 is a trivial bration. We have

RC+ = Id{0}. By the two-out-of-three property, we deduce that C
+ : 0 ⊂

0, 1 is a weak equivalence. It means that two nonempty sets viewed as

ows are always weakly equivalent.

We are going to prove by induction on n ⩾ 1 that the map

cn : Glob(Sn−1) ⊂ Glob(Dn)

is a trivial cobration. From the pushout diagram (see Example 2.3)

1 ⊔ 1 //



B


1 // Glob(S0)

and Proposition 4.6, we deduce that the map B → Glob(S0) is a weak

equivalence. From the fact that the composite map B → Glob(S0) → −→
I

is a trivial bration and the two-out-of-three property, we deduce that the

unique map of ows Glob(S0) → −→
I is a weak equivalence. Consider the

commutative diagram of ows

Glob(S0)

c1



Glob(S0)



Glob(D1) //

−→
I
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The bottom horizontal map Glob(D1) → −→
I is a weak equivalence, being

a trivial q-bration. By the two-out-of-three property, we deduce that c1 :
Glob(S0) → Glob(D1) is a weak equivalence as well, and therefore a trivial

cobration since it is a q-cobration which is one-to-one on states. The

induction hypothesis is therefore proved for n = 1. Suppose that the induction
hypothesis is proved for n ⩾ 1. Using Proposition 4.7 and the pushout

diagram of spaces

Sn−1 //



Dn


Dn // Sn

we obtain the commutative diagram of ows

Glob(Sn−1)
cn

//

cn



Glob(Dn)



//

−→
I

Glob(Dn) // Glob(Sn)
cn+1

// Glob(Dn+1) //

−→
I

Using the induction hypothesis, we deduce that the map Glob(Dn) →
Glob(Sn) is a trivial cobration, being a pushout of the trivial cobration
cn. All maps Glob(DN) → −→

I for N ⩾ 0 are trivial q-brations, and hence
trivial brations. Using the two-out-of-three property, we obtain the induction
hypothesis for n + 1. We have proved that all maps of cell(Igl⩾1) are trivial
cobrations.

Now we can conclude the proof as follows. Let X be a ow containing

at least one execution path and let Xcof be a q-cobrant replacement of X .

Consider the owMon(Xcof ) dened by the pushout diagram of ows

X0 //



Xcof


0 // Mon(Xcof )

By Proposition 4.6, the canonical map Xcof → Mon(Xcof ) is a weak

equivalence. Consequently, we can suppose without loss of generality that
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X0 = 0 and that X is a cellular object of the q-model structure of ows.
Write the canonical map ∅ → X as a composite ∅ −→ X0 −→ X1 −→ X

such that the map X0 → X1 belongs to cell(c0) and such that X1 → X

belongs to cell(Igl⩾1). In particular, the map X1 → X is a trivial cobration
by the rst part of the proof. Factor the canonical map X1 → 1 as a com-

posite X1 → X∞ → 1 such that the left-hand map belongs to cell(Igl⩾1) and

such that the right-hand map belongs to inj(Igl⩾1). It means that X is weakly

equivalent toX∞. Since the mapX∞ → 1 is bijective on states, it is injective

with respect to C : ∅ → 0. Since, moreover, X∞ contains an execution

path, it is also injective with respect to c0 : Glob(S−1) ⊂ Glob(D0). Thus,
the map X∞ → 1 is a weak equivalence, being a trivial bration. We deduce

that every ow in (C,F ,W) is weakly equivalent to ∅, 0 or 1. Since the
full subcategory of Flow generated by the three objects ∅, 0 and 1 is

3, the homotopy category of (C,F ,W) is then a categorical localization of
3. We deduce the inclusionWDK ⊂ W . The set of generating cobrations
IglC is tractable. Therefore, by [21, Theorem 1.4], there exists a minimal

model structure (C,F ,W) with respect to the set of generating cobrations
IglC. In this case, there is also the inclusionW ⊂ WDK and the proof is

complete since a model structure is characterized by its classes of cobrations
and weak equivalences.

Corollary 4.10. The minimal model structure on ows with respect to the

left-lifting of the cobrations of the Ilias model structure has three homotopy
types.

Proof. It is a consequence of Proposition 3.3 and Theorem 4.9.

5. Right-lifting the q-model structure of ows

We want to prove that the q-model structure of ows can be transferred along

the right adjoint Cat ⊂ Flow. At rst, we recall:

Theorem 5.1. (Kan-Quillen, see [28, proof of Theorem 1 of Section II.4 ] and

[23, Theorem 11.3.2] or for an abstract presentation [22, Theorem 2.2.1])

Let M and N be two locally presentable categories. Let (C,F ,W) be a

combinatorial model structure of M such that all objects are brant. Con-
sider a categorical adjunction L : M ⊣ N : U . Suppose that there exists a
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factorization of the diagonal ofN as a compositeX
τ→ Path(X)

π→ X ×X

such that U(τ) is a weak equivalence of M and such that U(π) is a bration
ofM for all objectsX ofN . Then there exists a unique combinatorial model

structure on N such that the class of brations is U−1(F) and such that the
class of weak equivalences is U−1(W). If the set of generating (trivial resp.)

cobrations of (C,F ,W) is I (J resp.), then the set of generating (trivial

resp.) cobrations of the model structure of N is L(I) (L(J) resp.).

In the terminology of this note, Theorem 5.2 means that the q-model

structure of ows has a right-lifting to the category of small topologically

enriched categories which is minimal.

Theorem 5.2. There exists a unique model structure (Cat)q = (Cq,Fq,Wq)
on Cat such that:

• The set of generating cobrations is I+(Glob(Sn−1)) ⊂ I+(Glob(Dn)) 
n ⩾ 0  I+(C), I+(R).

• The set of generating trivial cobrations is I+(Glob(Dn × 0)) ⊂
I+(Glob(Dn × [0, 1]))  n ⩾ 0.

• A map of small enriched categories f : X → Y is a weak equivalence if

and only if Obj(f) : Obj(X) → Obj(Y ) is a bijection and for all (α, β) ∈
Obj(X) × Obj(X), the continuous map X(α, β) → X(f(α), f(β)) is a
weak homotopy equivalence.

• A map of small enriched categories f : X → Y is a bration if and only

if for all (α, β) ∈ Obj(X) × Obj(X), the continuous map X(α, β) →
X(f(α), f(β)) is a q-bration of spaces.

Moreover, this model structure is minimal and all objects are brant. The left
Quillen adjoint I+ : (Flow)q → (Cat)q is not a left Quillen equivalence.

Proof. Consider the right adjoint Cat ⊂ Flow. Let X be a small enriched

category. Let Path(X) be the small enriched category having the same

objects asX and such that the space of morphisms Path(X)(α, β) is equal to
the topological spaceTOP([0, 1], X(α, β)) with the continuous composition
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law dened for any triple (α, β, γ) of objects of X as the composite:

TOP([0, 1], X(α, β))×TOP([0, 1], X(β, γ))
∼= TOP([0, 1], X(α, β)×X(β, γ))

−→ TOP([0, 1], X(α, γ))

The composition law is clearly associative. The identity of Path(X)(α,α)
(the space of morphisms in Path(X) from α to itself) is the constant map

Idα : [0, 1] → X(α,α). For all small enriched categories X , for all

(α, β) ∈ Obj(X) × Obj(X), the map X(α, β) ∼= TOP(0, X(α, β)) →
TOP([0, 1], X(α, β)) = Path(X)(α, β) is a trivial q-bration of spaces and
the map

Path(X)(α, β) = TOP([0, 1], X(α, β)) → TOP(0, 1, X(α, β))
∼= X(α, β)×X(α, β)

is a q-bration of spaces. Using Theorem 5.1, the q-model structure of Flow

right induces a combinatorial model structure on Cat. The model structure

is minimal because it is combinatorial and all its objects are brant.
Let X be an enriched small category. In Flow, the map Xcof →

X is a trivial q-bration of ows. It means that for all α ∈ Obj(X),
Pα,αX

cof → Pα,αX is a trivial q-bration of spaces. Therefore the map

I+(Xcof )(α,α) = Idα ⊔ Pα,αX
cof → X(α,α) = Pα,αX cannot be a

weak homotopy equivalence. It implies that the map I+(Xcof ) → X cannot

be a weak equivalence of (Cat)q. We deduce that the left Quillen adjoint

(Flow)q → (Cat)q is not homotopically surjective, and therefore that it is

not a left Quillen equivalence.

We have I+(0) → (0 ∼= 1)cof ∈ (CDK WDK)\(Cq Wq). Thus,
Id : (Cat)DK → (Cat)q cannot be a left Quillen adjoint. We have R :
0, 1 → 0 ∈ Cq\CDK . It implies that Id : (Cat)q → (Cat)DK cannot be

a left Quillen adjoint either.
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determinedness. Cah. Topol. Géom. Différ. Catég., LXI-2:208–226,

2020.

[15] P. Gaucher. Homotopy theory of Moore ows (II). Extr. Math.,

36(2):157–239, 2021.

[16] P. Gaucher. Left properness of ows. Theory Appl. Categ., 37(19):562–
612, 2021.

[17] P. Gaucher. Six model categories for directed homotopy. Categ. Gen.

Algebr. Struct. Appl., 15(1):145–181, 2021.

[18] P. Gaucher. Directed degeneracy maps for precubical sets, 2022. arXiv.

[19] E. Goubault and T. P. Jensen. Homology of higher-dimensional au-

tomata. In CONCUR’92 (Stony Brook, NY, 1992), volume 630 of

Lecture Notes in Comput. Sci., pages 254–268. Springer, Berlin, 1992.

[20] E. Goubault and S. Mimram. Directed homotopy in non-positively

curved spaces. Log. Methods Comput. Sci., 16(3):55, 2020. Id/No 4.

[21] S. Henry. Minimal model structures, 2020. arXiv.
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