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COMPARING THE NON-UNITAL AND UNITAL SETTINGS FOR

DIRECTED HOMOTOPY

PHILIPPE GAUCHER

Abstract. This note explores the link between the q-model structure of flows and

the Ilias model structure of topologically enriched small categories. Both have weak

equivalences which preserve fundamental (semi)categories. The Ilias model structure

cannot be left-lifted along the left adjoint adding identity maps. The minimal model

structure on flows having as cofibrations the left-lifting of the cofibrations of the Ilias

model structure has a homotopy category equal to the 3-element totally ordered set.

The q-model structure of flows can be right-lifted to a q-model structure of topologically

enriched small categories which is minimal and such that the weak equivalences preserve

fundamental categories. The identity functor of topologically enriched small categories

is neither a left Quillen adjoint nor a right Quillen adjoint between the q-model structure

and the Ilias model structure.
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1. Introduction

Presentation. The time flow of a concurrent process can be modelled by a topologi-

cally enriched small semicategory or category. The objects represent the states of the

concurrent process and the space of morphisms between two states is the topological

space of execution paths, the topology modelling concurrency. The primary reason for

using 0-dimensional identity morphisms in [7, Definition 4.11] instead of 1-dimensional

identity morphisms was to obtain functorial constructions for the branching and merg-

ing homology theories (see [7, Section 20]). It enabled us to prove the invariance by

refinement of observation in [9, Corollary 11.3], and therefore to fix Goubault-Jensen’s

construction of [18]. The main technical tool is the minimal model category introduced in

[7], called the q-model structure (of flows) after [17, Theorem 7.6]. The examples coming

from computer science are non-unital because they are modelled by precubical sets (e.g.

[12, 13, 19, 28]) and because precubical sets have non-unital geometric realizations [12,
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Definition 7.2]. The transverse degeneracy maps of precubical sets, introduced for the

functorial formalization of the parallel product with synchronization of process algebra

[13, Theorem 3.1.15 and Definition 4.2.2], belong to the non-unital world as well. The

non-unital setting is also necessary to construct the underlying homotopy type functor

which is geometrically the homotopy type of the space obtained after removing the exe-

cution paths [10, Section 6] [15, Proposition 8.16]. Indeed, consider a precubical set K.

The underlying homotopy type of the geometric realization |K| as a flow is homotopy

equivalent, as expected, to the geometric realization of K by [11, Theorem 6.2.1], whereas

the underlying homotopy type of the geometric realization of K as an enriched small cat-

egory is the underlying homotopy type of the enriched small category I+(|K|) which is

the underlying homotopy type of the flow |K| with a loop attached to each state.

The mathematical literature provides several constructions of model structures on en-

riched small categories such that the weak equivalences are the Dwyer-Kan equivalences

of [4]: for simplicially enriched small categories [3], for topologically enriched small cate-

gories [24] and for small categories enriched in a given monoidal model category [2]. The

generating cofibrations of the q-model structure of flows of [7] are almost the left-lifting

along the functor formally adding identity maps of the generating cofibrations in the topo-

logical setting of [24]. The only difference is the presence or not of the map identifying

two states as a generating cofibration (see Proposition 3.3). This leads to the question of

comparing the model structures on flows and on topologically enriched small categories.

The following sequence of theorems answers the question.

Theorem. (Theorem 3.5) The Ilias model structure on topologically enriched small cate-

gories [24] cannot be left-lifted to the category of flows along the functor formally adding

identity maps.

Theorem. (Corollary 4.10) The minimal model structure on flows with respect to the

left-lifting of the cofibrations of the Ilias model structure has three homotopy types.

Theorem. (Theorem 5.2) The q-model structure of flows right-induces on the category of

topologically enriched small categories a combinatorial model structure which is minimal.

Its weak equivalences preserve the fundamental categories. The left Quillen adjoint for-

mally adding identity maps from flows to enriched small categories is not a left Quillen

equivalence.

The model category of Theorem 5.2 on topologically enriched small categories seems to

be new. With the same argument, the h-model structure and the m-model structure of

flows constructed in [17, Theorem 7.4] right-induce a h-model structure and a m-model

structure on topologically enriched small categories which are both accessible as model

categories.

The following table of minimal model categories summarizes the results of this note.

The symbol  means that the weak equivalences preserve the fundamental (semi)category.

The symbol # means that they do not.

R is a cofibration R is not a cofibration

Flow  q-model structure of [7] # Corollary 4.10

Cat  Theorem 5.2  Ilias model structure of [24]
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The conclusion that must be drawn from this note is that the cofibration R : {0, 1} →

{0} is much more important in a globular approach of directed homotopy than what was

expected in [7].

Prerequisites and notations. We refer to [1] for locally presentable categories, to

[6, 21, 26] for combinatorial and accessible model categories. We refer to [22, 23] for

more general model categories. We work with a locally presentable convenient category

of topological spaces Top for doing algebraic topology. The internal hom is denoted

by TOP(−,−). The category of ∆-generated spaces or of ∆-Hausdorff ∆-generated

spaces (cf. [16, Section 2 and Appendix B]) are two such examples. The category Top

is equipped with its q-model structure (we use the terminology of [25]). What follows

is some notations and conventions: ∅ is the initial object, 1 is the final object, IdX is

the identity of X. A model structure (C,F ,W) means that the class of cofibrations is

C, that the class of fibrations is F and that the class of weak equivalences is W. A

combinatorial model structure on K is minimal if the class of weak equivalences is the

smallest Grothendieck localizer with respect to its set of generating cofibrations [20, 27].

By [20, Theorem 1.4], every tractable combinatorial model category with fibrant objects

is minimal. The notation f �g means that g satisfies the right lifting property (RLP) with

respect to f ; �C = {g, ∀f ∈ C, g � f}; C� = inj(C) = {g, ∀f ∈ C, f � g}; cof(C) = �(C�);

cell(C) is the class of transfinite compositions of pushouts of elements of C. A cellular

object X of a combinatorial model category is an object such that the canonical map

∅→ X belongs to cell(I) where I is the set of generating cofibrations.

Acknowledgment. I thank Simon Henry for a useful discussion about semicategories.

2. The adjunction I+ : Flow ⇆ Cat :⊃

2.1. Definition. [7, Definition 4.11] A flow is a small semicategory enriched over the

closed monoidal category (Top,×). The corresponding category is denoted by Flow.

A flow X consists of a topological space PX of execution paths, a discrete space X0

of states, two continuous maps s and t from PX to X0 called the source and target

map respectively, and a continuous and associative map ∗ : {(x, y) ∈ PX × PX; t(x) =

s(y)} −→ PX such that s(x ∗ y) = s(x) and t(x ∗ y) = t(y). Let Pα,βX = {x ∈ PX |

s(x) = α and t(x) = β}. Note that the composition is denoted by x ∗ y, not by y ◦ x.

Every set can be viewed as a flow with an empty space of execution paths. The obvious

functor Set ⊂ Flow from the category of sets to that of flows is limit-preserving and

colimit-preserving. The following examples of flows are important for the sequel:

2.2. Example. For a topological space Z, let Glob(Z) be the flow defined by

Glob(Z)0 = {0, 1}, PGlob(Z) = P0,1Glob(Z) = Z, s = 0, t = 1.

This flow has no composition law. The directed segment is the flow
−→
I = Glob({0}).

2.3. Example. Denote by B (like branching) the flow 1 ← 0 → 1 with three states and

two execution paths. This flow has no composition law.
3



2.4. Notation. Let n > 1. Denote by Dn = {b ∈ R
n, |b| 6 1} the n-dimensional disk, and

by Sn−1 = {b ∈ R
n, |b| = 1} the (n− 1)-dimensional sphere. By convention, let D0 = {0}

and S−1 = ∅.

2.5. Notation. Let

Igl = {cn : Glob(Sn−1) ⊂ Glob(Dn) | n > 0},

Jgl = {Glob(Dn × {0}) ⊂ Glob(Dn × [0, 1] | n > 0},

C : ∅→ {0}, R : {0, 1} → {0}.

2.6. Notation. The category of small categories enriched over Top is denoted by Cat.

The set of objects of an enriched small category X is denoted by Obj(X) and the space

of morphisms from A to B by X(A, B).

2.7. Proposition. (well-known) The inclusion Cat ⊂ Flow has a left adjoint 1 denoted

by I+ : Flow −→ Cat. It consists of adding identity maps as isolated points in the spaces

of morphisms. This functor is faithful.

What follows is an adaptation of [5, Definition 4.37].

2.8. Definition. Let X be an object of Flow. The fundamental semicategory of X is

the small semicategory −→π 1(X) having X0 for the set of objects and the set of morphisms

between two objects is the set of path-connected components of the space of execution paths

between these two objects. If X ∈ Cat ⊂ Flow, then −→π 1(X) is a small category which is

called the fundamental category of X.

For all X ∈ Flow, I+(−→π 1(X)) is also a small category which is called the fundamental

category of X. For X ∈ Cat, the canonical map I+(−→π 1(X)) → −→π 1(X) is not an

equivalence of categories.

3. Left-lifting the Ilias model structure

3.1. Theorem. [24, Theorem 2.4] There exists one and only one combinatorial model

structure (Cat)DK = (CDK ,FDK,WDK) on Cat which is characterized as follows:

• A set of generating cofibrations is the set of maps I+(Igl ∪ {C}).
• The weak equivalences are the DK-equivalences: there are the maps of enriched functors

F : C → D such that −→π 1(F ) : −→π 1(C) → −→π 1(D) is an equivalence of categories and

such that for all pairs of objects (α, β) of C, there is a weak homotopy equivalence

C(α, β)→ D(F (α), F (β)).

• A set of generating trivial cofibrations is given by the set of maps I+(Jgl)∪{I+({0})→

({0 ∼= 1})cof} where {0 ∼= 1} is the small category with two isomorphic objects 0 and 1.

It is called the Ilias model structure. All objects are fibrant.

Theorem 3.1 is the topological analogue of the Bergner model structure on simplicially

enriched small categories [3]. The weak equivalences are the Dwyer-Kan equivalences of

[4]. The combinatorial model category is minimal since all objects are fibrant. The weak

equivalences of WDK preserve the fundamental categories by definition.

1It has also a right adjoint, the enriched small category of idempotents of a flow, which is not used in
this note.
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3.2. Proposition. Let f : X → Y be a map of flows. Let i : A → B ∈ Igl ∪ {C}.

Consider a commutative square of Cat

I+(A)
φ

//

I+(i)

��

I+(X)

I+(f)

��

I+(B)
φ

// I+(Y )

Then either I+(B)⊔I+(A)I
+(X) ∼= I+(X), or the canonical map I+(B)⊔I+(A)I

+(X)→ I+(Y )

is of the form I+(g) for some unique map of flows g : B ⊔A X ∼= Y .

The two parts of the conclusion seem redundant, but they are not. Indeed, it is not

assumed that the attaching map φ is the image by I+ of a map of flows from A to X.

Remember that the functor I+ : Flow→ Cat is not full.

Proof. That there is at most one such a map g is a consequence of the fact that I+ is

faithful. A commutative diagram of enriched small categories of the form

∅ //

��

I+(X)

I+(f)

��

I+({0}) // I+(Y )

is the image by the functor I+ : Flow→ Cat of the commutative diagram of flows

∅ //

��

X

f

��
{0} // Y

Thus, in this case, g exists by the universal property of the pushout. Consider now a

commutative diagram (C) of enriched small categories of the form

I+(Glob(Sn−1))
φ

//

��

I+(X)

I+(f)

��

I+(Glob(Dn))
φ

// I+(Y )

with n > 0. If φ(0) 6= φ(1) are two different objects of I+(X), then the latter commutative

diagram of enriched small categories is the image by the functor I+ : Flow→ Cat of the

commutative diagram (D) of flows

Glob(Sn−1)
φ

//

��

X

f

��
Glob(Dn) // Y

5



We conclude the existence of g as above. It remains the case φ(0) = φ(1). In this case,

we have the commutative diagram of topological spaces

Sn−1 φ
//

��

{Idφ(0)} ⊔ Pφ(0),φ(1)X

f

��

Dn
φ

// {Idφ(0)} ⊔ Pφ(0),φ(1)Y

If n > 1 and since Dn is connected, then either φ(Dn) ⊂ {Idφ(0)} and φ(Sn−1) ⊂ {Idφ(0)}
or φ(Dn) ⊂ Pφ(0),φ(1)Y and φ(Sn−1) ⊂ Pφ(0),φ(1)X. If n = 0, then Sn−1 = ∅ and either

φ(Dn) ⊂ {Idφ(0)} or φ(Dn) ⊂ Pφ(0),φ(1)Y . It means that either the commutative diagram

(C) is the image by the functor I+ : Flow → Cat of the commutative diagram (D) and

we conclude the existence of g as above, or there is the pushout diagram of enriched small

categories

I+(Glob(Sn−1))
φ

//

��

I+(X)

I+(f)

��

I+(Glob(Dn)) // I+(X)

�

By [6, Theorem 2.6], the left-lifting of the small weak factorization system (CDK ,FDK∩

WDK) along the left adjoint I+ : Flow → Cat exists and is accessible. In fact, we have

the proposition:

3.3. Proposition. The left-lifting of the small weak factorization system (CDK ,FDK ∩

WDK) along the left adjoint I+ : Flow→ Cat is small, being generated by Igl ∪ {C}.

Proof. It suffices to prove that I+−1
(CDK) = cof(Igl∪{C}). We have I+(Igl∪{C}) ⊂ CDK

by Theorem 3.1. Since I+ : Flow → Cat is a left adjoint, we obtain the inclusion

cell(Igl ∪ {C}) ⊂ I+−1
(CDK). And using the fact that every map of cof(Igl ∪ {C}) is a

retract of a map of cell(Igl ∪ {C}), we obtain the inclusion cof(Igl ∪ {C}) ⊂ I+−1
(CDK)

since the class of maps CDK is closed under retract. Conversely, let f : X → Y be a map of

flows such that I+(f) : I+(X)→ I+(Y ) is a cofibration of Cat. By using the small object

argument of [23, Theorem 2.1.14], we factor I+(f) as a composite I+(X) → Z → I+(T )

such that the map I+(X) → Z belongs to cell(I+(Igl ∪ {C})) and such that the map

Z → I+(T ) belongs to inj(I+(Igl ∪ {C})). Since I+ is a left adjoint, by an immediate

transfinite induction, there exists a transfinite tower (Xα)α<λ of Flow with X = X0

and Z = I+(Xλ) such that each map Xα → Xα+1 for α < λ is a pushout of a map of

Igl ∪ {C}. By induction on α > 0, let us prove that the map of enriched small categories

I+(Xα)→ I+(T ) is the image by the functor I+ of a map of flows gα : Xα → T . There is

nothing to prove for α = 0. The passage from α to α + 1 is ensured by Proposition 3.2.

Finally, the statement holds for a limit ordinal α since I+ is colimit-preserving. We deduce

that the map of enriched small categories Z → I+(T ) is of the form I+(g) for some map

of flows g : Xλ → T : take g = gλ. The lift ℓ in the commutative diagram of enriched
6



small categories

I+(X) //

I+(f)

��

I+(Xλ)

I+(g)

��

I+(T )

ℓ

;;
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈
✈

I+(T )

exists since I+(f) is a cofibration of Cat by hypothesis. For all α ∈ T 0, the commutativity

of the diagram of spaces

{Idα} ⊔ Pα,αT
ℓ

// {Idℓ(α)} ⊔ Pℓ(α),ℓ(α)Xλ

I+(g)
// {Idα} ⊔ Pα,αT

implies that ℓ(Pα,αT ) ⊂ Pℓ(α),ℓ(α)Xλ, and therefore that ℓ = I+(ℓ) for some map of flows

ℓ : T → Xλ. Since the functor I+ is faithful, we obtain the commutative diagram of flows

X //

f

��

Xλ

g

��
T

ℓ

>>
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥

T

It means that the map of flows f : X → T is a retract of the map of flows X → Xλ. We

deduce f ∈ cof(Igl∪{C}), the map X → Xλ belonging to cell(Igl∪{C}) by construction.

We deduce the inclusion I+−1
(CDK) ⊂ cof(Igl ∪ {C}). �

3.4. Lemma. Let f : X → Y be a map of Flow such that Y is a set. Then X is a set as

well.

Proof. It is a consequence of the lack of identity maps for the objects of Flow. �

3.5. Theorem. The model category (Cat)DK cannot be left-lifted along the left adjoint

I+ : Flow→ Cat.

Proof. By Proposition 3.3 and Lemma 3.4, the map R : {0, 1} → {0} satisfies the RLP

with respect to I+−1
(CDK) because it satisfies the RLP with respect to C : ∅→ {0}. But

I+(R) /∈ WDK . It means that the left acyclicity condition I+−1
(CDK)� ⊂ I+−1

(WDK) fails

and that the left-induced model structure does not exist by [6, Proposition 2.3]. �

Theorem 3.5 can be proved without using Proposition 3.3. Indeed, thanks to Lemma 3.4,

the only maps of flows f belonging to I+−1
(CDK) such that there exists a morphism in

the category of maps of flows from f to R are the set maps of cell(C) = cof(C), i.e. the

one-to-one set maps. Proposition 3.3 is proved because it is used in Corollary 4.10.

4. Left-lifting the cofibrations of the Ilias model structure

We need to recall:

4.1. Theorem. [17, Theorem 7.6] There exists one and only one combinatorial model

structure (Flow)q on Flow which is characterized as follows:

• A set of generating cofibrations is the set of maps Igl ∪ {C, R}.

• The weak equivalences are the maps of flows f : X → Y inducing a bijection f 0 : X0 ∼=
Y 0 and a weak homotopy equivalence Pf : PX → PY .

7



• A set of generating trivial cofibrations is given by the set of maps Jgl.

It is called the q-model structure. The cofibrations (fibrations resp.) are called q-cofibrations

(q-fibrations resp.). All flows are q-fibrant.

The weak equivalences of (Flow)q preserve the fundamental semicategories. The q-

model structure of flows is minimal by [20, Theorem 1.4] since it is combinatorial and all

its objects are fibrant 2.

4.2. Definition. The class of maps of flowsWDK consists of the maps of flows f : X → Y

such that either X = Y = ∅, or X and Y are both nonempty sets, or X and Y both

contain at least one execution path.

As an immediate consequence of the definition above, we obtain:

4.3. Proposition. All maps of flows

Igl
>1 = {cn | n > 1}, C+ : {0} ⊂ {0, 1},

c+
0 = Id−→

I
⊔c0 :

−→
I ⊔Glob(S−1) ⊂

−→
I ⊔Glob(D0)

belong to WDK.

We recall the four following propositions for the convenience of the reader.

4.4. Proposition. [7, Proposition 13.2] Let i : U → V be a map of Top. A morphism

of flows f : X → Y satisfies the RLP with respect to Glob(i) : Glob(U) → Glob(V ) if

and only if for all (α, β) ∈ X0×X0, the map Pα,βX → Pf(α),f(β)Y satisfies the RLP with

respect to i.

4.5. Proposition. ([23, Theorem 2.1.19]) Let I and J be two sets of maps of a locally

presentable category K. Let W be a class of maps satisfying the two-out-of-three property

and which is closed under retract. If cell(J) ⊂ W ∩ cof(I), inj(I) ⊂ W ∩ inj(J) and

W ∩ cof(I) ⊂ cof(J), then (cof(I), inj(J),W) is a model structure on K.

4.6. Proposition. ([23, Lemma 5.2.6]) Let M be a model category. Consider a pushout

diagram of M of the form

X �

�

//

≃

��

Y

��
Z // T

such that X, Y, Z are cofibrant, such that the top horizontal map is a cofibration and such

that the left vertical map is a weak equivalence. Then the right vertical map Y → T is a

weak equivalence.

4.7. Proposition. [14, Proposition 3.7] The globe functor Glob : Top→ Flow preserves

connected colimits (i.e. colimits such that the underlying small category is connected).

4.8. Notation. Let 3 be the small category associated with the poset {0 6 1 6 2}.

4.9. Theorem. There exists one and only one model structure on Flow such that

2[14, Theorem 4.3] gives another argument which does not require to use a locally presentable setting.
8



• A set of generating cofibrations is Igl ∪ {C}.

• A set of generating trivial cofibrations is {C+, c+
0 } ∪ Jgl ∪ Igl

>1.

• The class of weak equivalences is WDK.

• The homotopy category of this model structure is the category 3: every flow is weakly

equivalent either to the initial or terminal flow, or to a singleton.

• The cofibrant flows are the q-cofibrant flows.

• The fibrant flows are the flows X such that PX = ∅ (i.e. the sets) and the flows X

such that for all (α, β) ∈ X0 ×X0, the space Pα,βX is contractible. In particular, not

all flows are fibrant.

Moreover, this combinatorial model structure is minimal.

Proof. The uniqueness comes from the fact that a model structure is characterized by

its cofibrations and its trivial cofibrations. Note that 3 is the full subcategory of Flow

generated by the initial and terminal flows and by the singleton. Consider the functor

w : Flow→ 3 characterized as the unique functor which takes a flow X to 0 if X0 = ∅,

to 1 if X0 6= ∅ and PX = ∅, and to 2 otherwise. ThenWDK is the inverse image by w of

the identity maps of 3. We deduce that the classWDK has the two-out-of-three property

and that it is closed under retract.

All maps of cell({C+, c+
0 }∪Jgl∪Igl

>1) are q-cofibrations which are one-to-one on states,

which implies cell({C+, c+
0 }∪Jgl ∪ Igl

>1) ⊂ cof(Igl ∪{C}). Every map of cell({C+, c+
0 }∪

Jgl ∪ Igl
>1) is either between nonempty sets or between flows containing execution paths,

hence the inclusion cell({C+, c+
0 } ∪ Jgl ∪ Igl

>1) ⊂ WDK .

We obtain the inclusion cell({C+, c+
0 } ∪ Jgl ∪ Igl

>1) ⊂ WDK ∩ cof(Igl ∪ {C}). An

element f : X → Y of inj(Igl ∪ {C}) is surjective on states. Therefore X0 = ∅ if and

only if Y 0 = ∅ and f ∈ inj(C+). By Proposition 4.4, every map Pα,βX → Pf(α),f(β)Y

for all (α, β) ∈ X0 × X0 is a trivial q-fibration of spaces. Consequently, X contains

execution paths if and only if Y contains execution paths. We deduce that f ∈ WDK .

By Proposition 4.4 again, we deduce that f ∈ inj(Jgl ∪ Igl). We obtain the inclusions

inj(Igl ∪ {C}) ⊂ WDK ∩ inj({C+} ∪ Jgl ∪ Igl) ⊂ WDK ∩ inj({C+, c+
0 } ∪ Jgl ∪ Igl

>1).

Finally, a map f ∈ WDK ∩ cof(Igl ∪ {C}) is a q-cofibration which is one-to-one on

states such that either the source and the target are empty, or the source and the target

are nonempty set (in this case, f belongs to cof({C+})), or such that both the source

and the target contain execution paths. In the latter case, it belongs to cof({c+
0 } ∪ Igl

>1).

We deduce that WDK ∩ cof(Igl ∪ {C}) ⊂ cof({C+, c+
0 } ∪ Jgl ∪ Igl

>1).

The proof of the existence of the model structure is complete thanks to Proposition 4.5.

Since all flows are q-fibrant, a flow X is fibrant if and only if the canonical map X → 1

satisfies the RLP with respect to {C+, c+
0 } ∪ Igl

>1. Since inj(C+) ∩ Set is equal to the

surjective set maps union the set maps starting from the empty set by [8, Lemme 4.4(3)],

the canonical map X → 1 always satisfies the RLP with respect to C+. Thus a flow

X is fibrant if and only if the canonical map X → 1 satisfies the RLP with respect to

{c+
0 } ∪ Igl

>1. We deduce that all sets viewed as flows are fibrant. Consider now a flow X

such that PX 6= ∅. Then the map X → 1 satisfies the RLP with respect to c+
0 if and

only it satisfies the RLP with respect to c0. The characterization of fibrant objects is

complete thanks to Proposition 4.4.
9



Since not all flows are fibrant for this model structure, an additional argument is

required to prove that it is indeed minimal.

Consider a model structure (C,F ,W) on Flow such that C = cof(Igl ∪ {C}). The

cofibrant flows are the q-cofibrant flows and the cofibrations are the q-cofibrations which

are one-to-one on states. All trivial q-fibrations are trivial fibrations since they satisfy

the RLP with respect to Igl ∪ {C} ⊂ Igl ∪ {C, R}.

Observe at first that R : {0, 1} → {0} is a trivial fibration. We have R.C+ = Id{0}. By

the two-out-of-three property, we deduce that C+ : {0} ⊂ {0, 1} is a weak equivalence.

It means that two nonempty sets viewed as flows are always weakly equivalent.

We are going to prove by induction on n > 1 that the map cn : Glob(Sn−1) ⊂ Glob(Dn)

is a trivial cofibration. From the pushout diagram (see Example 2.3)

{1} ⊔ {1} //

��

B

��

{1} // Glob(S0)

and Proposition 4.6, we deduce that the map B → Glob(S0) is a weak equivalence. From

the fact that the composite map B → Glob(S0) →
−→
I is a trivial fibration and the two-

out-of-three property, we deduce that the unique map of flows Glob(S0)→
−→
I is a weak

equivalence. Consider the commutative diagram of flows

Glob(S0)

c1

��

Glob(S0)

��

Glob(D1) //
−→
I

The bottom horizontal map Glob(D1) →
−→
I is a weak equivalence, being a trivial q-

fibration. By the two-out-of-three property, we deduce that c1 : Glob(S0)→ Glob(D1) is

a weak equivalence as well, and therefore a trivial cofibration since it is a q-cofibration

which is one-to-one on states. The induction hypothesis is therefore proved for n = 1.

Suppose that the induction hypothesis is proved for n > 1. Using Proposition 4.7 and

the pushout diagram of spaces

Sn−1 //

��

Dn

��
Dn // Sn

we obtain the commutative diagram of flows

Glob(Sn−1)
cn

//

cn

��

Glob(Dn)

��

//
−→
I

Glob(Dn) // Glob(Sn)
cn+1

// Glob(Dn+1) //
−→
I

10



Using the induction hypothesis, we deduce that the map Glob(Dn)→ Glob(Sn) is a trivial

cofibration, being a pushout of the trivial cofibration cn. All maps Glob(DN) →
−→
I for

N > 0 are trivial q-fibrations, and hence trivial fibrations. Using the two-out-of-three

property, we obtain the induction hypothesis for n + 1. We have proved that all maps of

cell(Igl
>1) are trivial cofibrations.

Now we can conclude the proof as follows. Let X be a flow containing at least one exe-

cution path and let Xcof be a q-cofibrant replacement of X. Consider the flow Mon(Xcof)

defined by the pushout diagram of flows

X0 //

��

Xcof

��

{0} // Mon(Xcof).

By Proposition 4.6, the canonical map Xcof → Mon(Xcof) is a weak equivalence. Con-

sequently, we can suppose without loss of generality that X0 = {0} and that X is a

cellular object of the q-model structure of flows. Write the canonical map ∅ → X as a

composite ∅ −→ X0 −→ X1 −→ X such that the map X0 → X1 belongs to cell({c0})

and such that X1 → X belongs to cell(Igl
>1). In particular, the map X1 → X is a

trivial cofibration by the first part of the proof. Factor the canonical map X1 → 1

as a composite X1 → X∞ → 1 such that the left-hand map belongs to cell(Igl
>1) and

such that the right-hand map belongs to inj(Igl
>1). It means that X is weakly equivalent

to X∞. Since the map X∞ → 1 is bijective on states, it is injective with respect to

C : ∅ → {0}. Since, moreover, X∞ contains an execution path, it is also injective with

respect to c0 : Glob(S−1) ⊂ Glob(D0). Thus, the map X∞ → 1 is a weak equivalence,

being a trivial fibration. We deduce that every flow in (C,F ,W) is weakly equivalent to

∅, {0} or 1. Since the full subcategory of Flow generated by the three objects ∅, {0}

and 1 is 3, the homotopy category of (C,F ,W) is then a categorical localization of 3. We

deduce the inclusionWDK ⊂ W. The set of generating cofibrations Igl∪{C} is tractable.

Therefore, by [20, Theorem 1.4], there exists a minimal model structure (C,F ,W) with

respect to the set of generating cofibrations Igl ∪ {C}. In this case, there is also the

inclusion W ⊂ WDK and the proof is complete since a model structure is characterized

by its classes of cofibrations and weak equivalences. �

4.10. Corollary. The minimal model structure on flows with respect to the left-lifting of

the cofibrations of the Ilias model structure has three homotopy types.

Proof. It is a consequence of Proposition 3.3 and Theorem 4.9. �

5. Right-lifting the q-model structure of flows

We want to prove that the q-model structure of flows can be right-lifted along the right

adjoint Cat ⊂ Flow. At first, we recall:

5.1. Theorem. (Kan-Quillen, see [21, Theorem 2.2.1] and [22, Theorem 11.3.2]) Let

M and N be two locally presentable categories. Let (C,F ,W) be a combinatorial model

structure of M such that all objects are fibrant. Consider a categorical adjunction L :

M ⊣ N : U . Suppose that there exists a factorization of the diagonal of N as a composite
11



X
τ
→ Path(X)

π
→ X ×X such that U(τ) is a weak equivalence of M and such that U(π)

is a fibration of M for all objects X of N . Then there exists a unique combinatorial

model structure on N such that the class of fibrations is U−1(F) and such that the class

of weak equivalences is U−1(W). If the set of generating (trivial resp.) cofibrations of

(C,F ,W) is I (J resp.), then the set of generating (trivial resp.) cofibrations of the model

structure of N is L(I) (L(J) resp.).

In the language of [6], it means, since all objects are fibrant, that the combinatorial

model structure of N is the right-lifting of the one ofM along the right adjoint U : N →

M.

5.2. Theorem. There exists a unique model structure (Cat)q = (Cq,Fq,Wq) on Cat such

that:

• The set of generating cofibrations is {I+(Glob(Sn−1)) ⊂ I+(Glob(Dn)) | n > 0} ∪

{I+(C), I+(R)}.

• The set of generating trivial cofibrations is {I+(Glob(Dn × {0})) ⊂ I+(Glob(Dn ×

[0, 1])) | n > 0}.

• A map of small enriched categories f : X → Y is a weak equivalence if and only if

Obj(f) : Obj(X) → Obj(Y ) is a bijection and for all (α, β) ∈ Obj(X) × Obj(X), the

continuous map X(α, β)→ X(f(α), f(β)) is a weak homotopy equivalence.

• A map of small enriched categories f : X → Y is a fibration if and only if for all

(α, β) ∈ Obj(X) × Obj(X), the continuous map X(α, β) → X(f(α), f(β)) is a q-

fibration of spaces.

Moreover, this model structure is minimal and all objects are fibrant. The left Quillen

adjoint I+ : (Flow)q → (Cat)q is not a left Quillen equivalence.

Proof. Consider the right adjoint Cat ⊂ Flow. Let X be a small enriched category. Let

Path(X) be the small enriched category having the same objects as X and such that the

space of morphisms Path(X)(α, β) is equal to the topological space TOP([0, 1], X(α, β))

with the continuous composition law defined for any triple (α, β, γ) of objects of X as the

composite:

TOP([0, 1], X(α, β))×TOP([0, 1], X(β, γ)) ∼= TOP([0, 1], X(α, β)×X(β, γ))

−→ TOP([0, 1], X(α, γ)).

The composition law is clearly associative. The identity of Path(X)(α, α) (the space of

morphisms in Path(X) from α to itself) is the constant map Idα : [0, 1]→ X(α, α). For

all small enriched categories X, for all (α, β) ∈ Obj(X) × Obj(X), the map X(α, β) ∼=
TOP({0}, X(α, β)) → TOP([0, 1], X(α, β)) = Path(X)(α, β) is a trivial q-fibration of

spaces and the map Path(X)(α, β) = TOP([0, 1], X(α, β)) → TOP({0, 1}, X(α, β)) ∼=
X(α, β)×X(α, β) is a q-fibration of spaces. Using Theorem 5.1, the q-model structure

of Flow right induces a combinatorial model structure on Cat. The model structure is

minimal because it is combinatorial and all its objects are fibrant.

Let X be an enriched small category. In Flow, the map Xcof → X is a trivial

q-fibration of flows. It means that for all α ∈ Obj(X), Pα,αXcof → Pα,αX is a trivial q-

fibration of spaces. Therefore the map I+(Xcof)(α, α) = {Idα} ⊔ Pα,αXcof → X(α, α) =

Pα,αX cannot be a weak homotopy equivalence. It implies that the map I+(Xcof) →
12



X cannot be a weak equivalence of (Cat)q. We deduce that the left Quillen adjoint

(Flow)q → (Cat)q is not homotopically surjective, and therefore that it is not a left

Quillen equivalence. �

We have I+({0}) → ({0 ∼= 1})cof ∈ (CDK ∩WDK)\(Cq ∩Wq). Thus, Id : (Cat)DK →

(Cat)q cannot be a left Quillen adjoint. We have R : {0, 1} → {0} ∈ Cq\CDK . It implies

that Id : (Cat)q → (Cat)DK cannot be a left Quillen adjoint either.
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