
HAL Id: hal-03713584
https://hal.science/hal-03713584

Submitted on 4 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ULTRA: Ultimate Rootkit Detection over the Air
Duy-Phuc Pham, Damien Marion, Annelie Heuser

To cite this version:
Duy-Phuc Pham, Damien Marion, Annelie Heuser. ULTRA: Ultimate Rootkit Detection over the Air.
25th International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2022)„ Oct
2022, Limassol, Cyprus. �10.1145/3545948.3545962�. �hal-03713584�

https://hal.science/hal-03713584
https://hal.archives-ouvertes.fr

ULTRA: Ultimate Rootkit Detection over the Air
Duy-Phuc Pham∗

duy-phuc.pham@irisa.fr
Univ Rennes, CNRS, Inria, IRISA

Rennes, France

Damien Marion
damien.marion@irisa.fr

Univ Rennes, CNRS, Inria, IRISA
Rennes, France

Annelie Heuser
annelie.heuser@irisa.fr

Univ Rennes, CNRS, Inria, IRISA
Rennes, France

ABSTRACT
Rootkits are the most challenging malware threats against server
and desktop systems. They are created by highly skilled actors and
are deployed in advanced persistent threat attacks. Lately and even
in the future, rootkits will become a real threat to billions of IoT
devices. Existing malware detection techniques based on static or
dynamic analysis face major shortcomings, which become more
apparent when it is necessary to detect threats on IoT devices.

In this paper, we propose the ULTRA framework, which can
detect rootkits effectively and efficiently by operating outside of
the “box” (literary device) with no resource requirement on the
target device. ULTRA baits the rootkit to provoke activity, measures
electromagnetic emanation with a software-defined radio, prepro-
cesses signals, then detects and classifies rootkit behavior using
machine/deep learning techniques. As use cases, we target two IoT
devices with MIPS and ARM architectures. The proposed approach
achieved promising results with high accuracy for detecting both
known and unknown rootkits during the offline learning phase.
Our experimental study involves classification of rootkit families
and distinct variants, obfuscated rootkits, probe dislocation, be-
nign noise (kernel) activities, and comparison with software-based
solutions.

CCS CONCEPTS
• Security and privacy→Malware and its mitigation.

KEYWORDS
rootkit detection; SDR; machine learning; deep learning; Electro-
magnetic; IoT devices

ACM Reference Format:
Duy-Phuc Pham, Damien Marion, and Annelie Heuser. 2022. ULTRA: Ul-
timate Rootkit Detection over the Air. In 25th International Symposium
on Research in Attacks, Intrusions and Defenses (RAID 2022), October 26–
28, 2022, Limassol, Cyprus. ACM, New York, NY, USA, 19 pages. https:
//doi.org/10.1145/3545948.3545962

1 INTRODUCTION
Rootkits, those nefarious pieces of software that conceal deep
within a system in order to grant hackers access, are one of the most

∗Current affiliation: duyphuc.pham@trellix.com, Trellix, CA, USA.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
RAID 2022, October 26–28, 2022, Limassol, Cyprus
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9704-9/22/10. . . $15.00
https://doi.org/10.1145/3545948.3545962

challenging malware to defend against over the years. A recent
study [3] shows that 44% of cybercriminal cases used rootkits to
attack government agencies, while 56% of the investigated rootkits
were used in advanced persistent threat (APT) attacks. They are
typically utilized by highly skilled actors with extensive malware
creation skills and financial resources to develop or acquire rootkits.
One of the most sophisticated APT style attacks that employed a
rootkit was Stuxnet, which targeted industrial control systems and
included the first ever programmable logic controller (PLC) rootkit
and a Windows rootkit to hide its malicious files as well as injected
code into PLC [21]. Recently, NSA and FBI [5] reported Drovorub
rootkit developed by state-sponsored APT28 to infect Linux systems
to hide itself and files, directories, and network activities.

By 2025, we are expecting to have over 64 billion IoT devices [52]
and more will be produced as beyond 5G technologies mature. Si-
multaneously to the advances in IoT and embedded devices, the
number and variety of cyberattacks have grown in recent years,
making current security approaches outdated in a short time [4, 51].
Many IoT manufacturers use Linux-based operating systems, mak-
ing it easier to migrate rootkits to target embedded devices. Generic
malware detection solutions rely on static or dynamic analysis
that still have various shortcomings. In particular, major problems
are related to the diversity of IoT architectures [17], obfuscation
techniques [50], and the fact that most IoT devices have limited
resources or accessibility.

In this work, we present the ULTRA framework, which can
identify rootkits in real-world scenarios while being contactless,
low-cost, and with no resource requirements on the specific device,
making it particularly suitable in the context of IoT. Our approach
consists of using hardware and software baits while only measur-
ing electromagnetic (EM) emanation over the air with a (low-cost)
software-defined radio. This setup prevents known malware eva-
sion techniques as there is no identifiable activity or resource on
the monitored device. Further, baits enable us to detect minor be-
havioral changes in the system from stealthy rootkits, rather than
rely on the signature of one-time active infection process. In our
experiments, we show that our methodology is compliant to real-
world analysis scenarios and can be labeled as wave (a probe) and
play (WnP). For this, we particularly investigate the influence of
probe (dis)location, evaluation of noisy environments, added kernel
activity, classification scenarios, and the influence of undiscovered
rootkits (variants) during the training phase. Our evaluation is car-
ried out on two devices with two architectures: Creator CI20 which
uses MIPS and Raspberry Pi relying on ARM, demonstrating that
ULTRA is not limited to a single technology. We compare our detec-
tion results to three software rootkit detection tools, where ULTRA
outperforms them in terms of requirements, detection level, and
latency. In summary, our primary contributions are as follows:

https://doi.org/10.1145/3545948.3545962
https://doi.org/10.1145/3545948.3545962
https://doi.org/10.1145/3545948.3545962

RAID 2022, October 26–28, 2022, Limassol, Cyprus D.P. Pham et al.

(1) SDR-based practical rootkit detection solution. Our ap-
proach is the first and only to detect rootkits in real-time solely by
EM, using a low-cost contactless SDR device, with no triggering
or resynchronization of side-channel measurements required.

(2) A novel methodology for detecting stealthy rootkits on
IoT devices. We present 2 forms of baits to trigger the behavior
of stealthy rootkits. ULTRA detects the presence of modifications
from the rootkit to the system, which is significantly more subtle
than traditional rootkit infection detection.

(3) Realistic data collection with obfuscated variants on em-
bedded devices. Using 7 distinct rootkit families and 2 obfus-
cated variations, we collected an unbiased collection of 800 000
raw traces, including benign noise from both kernel and user
space activity. Traces are collected from two separate IoT devices
with different architectures: MIPS and ARM.

(4) Proposed scenarios compliant to rootkit detection in real-
world settings, and ready for implementation. We put to-
gether various scenarios, each reflecting a real-world rootkit
detection and classification use case: rootkit novelty detection,
obfuscated rootkit detection, keylogger novelty detection, eval-
uation of benign activities, noise, probe dislocation, or type in-
variance.

(5) Open-source. The source code for the ULTRA framework, mea-
surement datasets, rootkit detection and classification models,
results of our experiments, and demo videos are all publicly
available at https://gitlab.com/anon-ultra/ultra.

2 RELATEDWORK
On the effectiveness of Linux rootkit detection tools, Junnila J. [35]
carried out an empirical evaluation of 5 prominent anti-rootkit
tools: OSSEC [10], AIDE [38], rkhunter [8], chkrootkit [45] and
Linux Kernel Runtime Guard (LKRG) [63] against 15 rootkits. Sur-
prisingly, the results showed that only 37.3% of the detection tests
provided any indication of infected systems. Traditional rootkit
detection approaches such as OSSEC, AIDE, rkhunter and chk-
rootkit generally use signature or rule-based mechanisms to detect
rootkits by looking for threat-specific information: either known
rootkit binaries or known modifications of system binaries, configu-
ration files, or system states [9]. Obviously, they cannot detect new
rootkits or modified variants of existing rootkits as they are similar
to signature-based virus scanning. On rootkit detection from the
kernel-level space, JoKER [26] utilizes the Joint Test Action Group
(JTAG) hardware interface for trusted memory to detect rootkits.
LKRG is intended to safeguard OS kernel-level integrity against
kernel-level rootkits and exploits. It performs post-infection detec-
tion and responds to unauthorized changes of process credentials
in OS kernel memory regions. However, such an approach requires
compilation of kernel objects with additional kernel flags that must
be activated during kernel compilation, thus necessitating kernel
recompilation and posing a challenge for divergent, constantly
evolving embedded systems.

Another study approach is to detect rootkits by putting the ker-
nel and user space under the monitor of a virtual machine (VM).
Wang Z. et al. [62] have presented a hypervisor-based system called
HookSafe that monitors kernel hooks and prevents them from be-
ing hijacked by kernel rootkits. Shadow-box v2 [28] proposed a

monitoring framework for x86 and ARM processors, which utilizes
Open Platform Trusted Execution Environment (OP-TEE) to verify
signatures and remote attestation from kernel executables. How-
ever, a hypervisor-based solution is dependent on the operating
system, architecture, and hardware support, which is not trivial
to deploy per embedded device due to its limited power and re-
sources. Rootkits living at the same protection level (hypervisor)
and lower (e.g., [12, 20, 31]) have the opportunity to evade this
approach. Additionally, a VM-based solution could circumvent only
the known tactics and is vulnerable to novel evasion techniques
of VM fingerprinting. Furthermore, Bratus et al. [9] suggested that
modern applications could not integrate VM techniques as a detec-
tion mechanism, and managing the VM becomes a major challenge
due to its complexity and overhead.

Several studies propose combining the values ofmicro-architecture
Hardware Performance Counters (HPC) with learning models to
identifymalware. Numchecker [60], Singh et. al. [57], and LKRDet [33]
detect Linux rootkits by looking for HPC deviations during the
execution of the kernel through virtualization to determine the
presence of a rootkit. However, [12] demonstrates that ARM would
allow exception hypervisor level 2 to trap all micro-architecture
instructions, including performance counters, allowing the victim
OS to continue to use the performance monitor infrastructure while
the presence of the rootkit remained hidden. Furthermore, recent
studies [18, 64] claim and experimentally support that using the
micro-architecture information from HPCs cannot distinguish be-
tween benign and malware.

WattsUpDoc [16] was one of the earliest efforts in malware de-
tection through hardware side-channel that demonstrated the mea-
surement of power usage on medical embedded devices. Recently
in [50, 56], the authors proposed to detect and classify malware by
observing EM signals. This type of work only detects busy malware
under its behavioral activity, however fails to detect stealthy rootk-
its after their installation. [37] described a network time analysis
approach for monitoring performance changes caused by hardware
virtualization, with the goal of detecting the hardware virtualization
rootkit. [11, 39] identify rootkits by using power-based malware
detection on general-purpose computers and [19, 39, 61] use ma-
chine learning (ML) and deep learning (DL) to perform a behavioral
detection method based on CPU power consumption. Gibraltar[6]
and Copilot [49] leverage direct memory access (DMA) via physical
PCI to separately detect rootkit in kernel memory from another
machine. However, system overhead, asynchronous kernel read-
/write, race conditions, and timing attacks are major challenges to
this solution.

Most of the work utilizes benchmark software to collect data
from the system in both states: with and without rootkits. However,
the purpose of benchmark software is to assess the relative perfor-
mance of the system, normally by running a number of stress tests
that are not particularly aimed against rootkits. The benchmarking
tool consumes unwanted system overhead, and benchmarking data
against rootkit will be less accurate and realistic. In our work, we
present the methodology of using baits that are carefully crafted to
trigger specific system behaviors. We show that this approach pro-
duces better accuracy rootkit detection and classification. Finally,
this work is the first and only to conduct research that levering

https://gitlab.com/anon-ultra/ultra

ULTRA: Ultimate Rootkit Detection over the Air RAID 2022, October 26–28, 2022, Limassol, Cyprus

Table 1: Comparison with related works on kernel-level or user-level rootkit (user RK) detection using different side-channel
analysis techniques: HPC, DMA, Power consumption (Power) and EM.

Article WnP Classifi-
cation Baits ML DL Sample

size
Open
source

Benign
set

User
RK

Detection
latency Targeted device(s)/Architecture

Numchecker [60] - - ✓ - - 8 - - - 262.3ms 32-bit Linux PC
[57] - - - ✓ - 5 - - - 45s Windows 7 Intel (VMWare)

H
PC

LKRDet[33] - - ✓ ✓ - 4 ✓ - - 2.91s ARM Cortex-A53 (TEE)
Copilot [49] - - - - - 12 - - - 30s PCI-compatible Intel PC Linux

D
M
A

Gibraltar [6] - - - - - 23 - ✓ - 20s PCI-compatible Intel PC Linux
[39] - - - ✓ ✓ 5 - - ✓ >5m PC Windows 10 & Ubuntu 14

Po
w
er

[11] - - - ✓ - 5 - - - >1m Dell OptiPlex 755 Windows 7

EM ULTRA ✓ ✓ ✓ ✓ ✓ 9 ✓ ✓ ✓ 1.3s ARM Raspberry Pi & MIPS Ci20

EM to perform real-time and real-world rootkit detection and clas-
sification using a software-defined radio (Table 1). ULTRA is the
only wave (a probe) and play (WnP) solution, that one can simply
wave over the device to instantly see what rootkit is infected, with
a specification that facilitates the discovery of rootkits in a sys-
tem in real-time without the need for device alteration or software
requirements.

3 BACKGROUND
3.1 Rootkits
Rootkits exist to provide long-term covert access to a system, al-
lowing it to be managed and monitored remotely while remaining
undetected. In general, rootkits are classified into two forms: user
mode and kernel mode rootkits [13, 29] according to the level (ring)
of privileges obtained. Some rootkits are designed to perform both
modes of operation and thus work at both levels. Furthermore,
there exist rootkits living beyond the kernel level, such as hyper-
visor rootkits (e.g., BluePill [53] on x86, and rHV [12] on ARM),
systemmanagement mode rootkits [20], chipset rootkits (e.g., Thun-
derstrike [31]). A rootkit is typically designed to conceal running
modules and processes, mask the existence of files, directories, or
users, hide network activities, and keystroke captures.

3.1.1 User-level rootkit. User-level rootkits operate in the user
space and hence do not access the kernel. An example of this type
of rootkit is the replacement of the OS’s important programs such
as ls, ps and login with altered code that filters standard output
according to criteria given by the attacker. Recent user-level rootkits
replace or override functionalities in dynamically linked libraries.
They manipulate the mechanism of the dynamic linker, or preload
loader to intercept calls to library functions and manipulate their
execution. In comparison to kernel-level rootkits, user-level ones
often offer richer features and are commonly used in mass attacks
since they are easier to develop than kernel-mode rootkits as the
design requires less precision and knowledge.

3.1.2 Kernel-level rootkit. Kernel-level rootkits are usually injected
into the kernel similar to Loadable Kernel Modules (LKM), which
allow rootkits to modify the kernel without having to recompile
it, thus can be installed and uninstalled on the fly. They use vari-
ous techniques to accomplish their goals, such as: syscall hooking,
function pointer hooking, direct kernel object manipulation, etc.
In common, kernel-level rootkits are more sophisticated and tar-
geted since they are not trivial to detect as well as develop, and

any errors in execution can cause systems to panic, which will
reveal the intrusion and allow the attack to be thwarted. Therefore,
kernel-level rootkits are often seen from strategic groups that have
sufficient technical qualifications, such as APT groups that care for
information theft or carry out destructive actions regardless of cost,
or financial motivation [3].

3.2 Software defined radios (SDR)
Recent work to detect malware using EM [36, 50, 56] demonstrated
that digital oscilloscopes and spectrum analyzers are feasible to
monitor and capture EM traces to detect and classify malware. How-
ever, such equipment is costly, and it is impractical to exploit a more
expensive device to monitor a lower valued target. To the contrary,
SDR is another EM monitor technology that provides flexibility and
low cost. It is a minimal hardware component with data processing
and reconfigurability performed mostly in software, controlling the
center frequency, bandwidth, gain, and other parameters with a
fast analog-to-digital converter (ADC) or, in some cases, offloads
the computation via a Field Programmable Gate Array (FPGA). A
wide variety of SDR hardware is compatible with digital signal
processing frameworks (e.g., HackRF One[2], USRP and GNURadio
[1, 59]). By leveraging EM signals from SDR, it is more suitable for
malware detection than oscilloscopes since the EM measurement
duration for malware typically requires a longer time window, com-
pared to the general crypto side-channel attack. SDR is quickly
becoming a promising candidate for EM side-channel research due
to its capability to scan through a wide range of frequencies to
locate potential EM leakages. According to recent research, SDR
is an efficient solution for performing side channel attacks (on
AES-128 [22], SHA1 [54]). Even attacks over short distance such
as Screaming channels [15], which succeeded in breaking AES by
exploiting wireless communication, are possible.

3.3 Dimension reduction and features
extraction techniques

The output of the SDR is typically a large measurement trace which
must be reduced for further processing. The extraction of useful
information from a trace can be a difficult procedure. In the field
of physical side-channel analysis of cryptographic algorithms, sev-
eral methods have been published relying on statistical measures
such as mean and variance, for example, the normalized inter-class
variance (NICV) [7], SOST/SOSD [25], Pearson correlation coeffi-
cient [30, 42], TVLA [55]. The authors of [50] demonstrate how

RAID 2022, October 26–28, 2022, Limassol, Cyprus D.P. Pham et al.

to extract features from spectrograms using NICV to discover fre-
quency bandwidths that may reveal behavioral information about
the binaries. We propose an improvement by coupling the NICV
with an hill climbing algorithm, as described in Section 5.3.1, to
optimize the bandwidth extraction.

Principle component analysis (PCA) is a popular dimension re-
duction method that projects each data point onto only the first
few principal components in order to obtain lower-dimensional
data while preserving as much data variation as possible. The first
principal component is chosen in the direction that maximizes the
variance of the projected data. Each component is orthogonal to
the previous one, and that again maximizes the variance of the
projected data. Kernel PCA is an extension that replaces linear pro-
cedures in PCA with a kernel. In our proposed framework, we will
use kernel PCA to further reduce the dimensionality of data for
machine learning algorithms in our binary classification scenarios.

4 ULTRA:ULTIMATE ROOTKIT DETECTION
OVER THE AIR FRAMEWORK

We propose “ULTRA: ULTimate Rootkit classification and detection
over the Air" that is able to analyze stealthy (non-active) rootkits
by baiting and waving an EM probe over the device. The frame-
work takes an EM trace monitored from a target device as an input
and predicts the presence of a rootkit and reveals its labels. Fig. 1
illustrates ULTRA’s workflow, which will be detailed within the
following subsections. First, we define our threat model andmethod-
ology, and then explain how the EM emanation dataset is collected
while a bait is executed on the target device with or without the
presence of a rootkit. Thereafter, a preprocessing step is required
to separate relevant informative signals. Finally, using this result,
we train neural network models and machine learning algorithms
for detection and classification in a variety of practical scenarios.

4.1 Threat model and methodology
Placing rootkit detectionmechanism on the same level as the rootkit
itself makes it obvious from both sides, thus detection can be evaded
by advanced rootkits, e.g., any inspection at the kernel level can
be subverted by kernel-level rootkits. In this section, we propose a
framework that is solely placed outside of the target device, thus
providing the least possibility of being evaded by rootkits. We
analyze the prerequisites for developing such a dynamic rootkit
detection system (i.e.„ one that cannot be detected and evaded by
the rootkit). These requirements serve as guiding principles for the
development and implementation of ULTRA. We start with a brief
threat model for rootkits, present notations and definitions, before
providing an overview of the ULTRA framework.

4.1.1 Threat model.

Stealthy rootkit. We focused our attention on rootkits, which
have the highest privilege of “root" within the Linux system. Since
they have unrestricted access to any protection rings ranging from
user space to hypervisor level, we assume that any behavior from
the target device is untrustworthy. Unlike “normal”malware, stealthy
rootkits are not constantly active, but only operate during certain ac-
tivities. We assume that the rootkit is able to avoid any traditional

malware analysis technique such as signatures, VM inspection,
hooking, etc.

Target environment. The target environment requires stability
and high availability, thus interruption, downtime, or device re-
configuration should be kept to the least possible. This is a crucial
requirement for military control systems, unmanned vehicles, au-
tonomous vessels, etc.

In practice, the target-device is a blackbox in which the analyst
has no prior knowledge of the rootkit’s presence.

4.1.2 Notations and definitions.

Definition 4.1 (Device). A device 𝛿𝑑 is defined as a computing
unit with technology 𝑑 running benign activity 𝛾 . The device can
be either in a clean state 𝛿 {𝛾 } or infected 𝛿 {𝛾,𝑟 } with a rootkit 𝑟 .

For simplification, we omit indices when they are not relevant.
For example, we use 𝛿 when the infection and activity status of the
device is unknown or not relevant, and explicitly use 𝛿 {𝛾,𝑟 } or 𝛿 {𝛾 }
to refer to a clean or infected device respectively.

Definition 4.2 (Environment). An environment is defined by its
device and probe. In particular, an environment 𝜏𝛿𝜌𝑘,𝑡 consists of a
device 𝛿 and a probe 𝜌𝑘,𝑡 with type 𝑡 and location 𝑘 .

Our approach consists in using baits on a device to trigger and
thus be able to profile and detect rootkit behavior. Baits are defined
in the following, wherewe give a detailed descriptionwith examples
in Subsection 4.3.

Definition 4.3 (Bait). A bait 𝛽 , which is a software or hardware
stimulus on a device 𝛿 , has the following requirements: (i) The bait
can trigger partial or full behavior of rootkits without knowing
modus operandi of the rootkit in advance; (ii) It has a variable
duration time of execution activities that can be remotely controlled;
(iii) It cannot be distinguished from common benign behavior (e.g.,
it relies on unprivileged execution).

To represent that a bait 𝛽 is executed in an environment 𝜏𝛿𝜌𝑘,𝑡
we write 𝜏𝛿𝜌𝑘,𝑡 (𝛽). Now our approach consists in measuring EM
traces of an environment that is triggered with a bait: 𝜏𝛿𝜌𝑘,𝑡 (𝛽) {
𝜏𝛿𝜌𝑘,𝑡 (𝛽). In a practical scenario, we observe 𝑞 EM measurement
traces denoted as 𝜏𝛿𝜌𝑘,𝑡 (𝛽)

𝑞 = {𝜏𝛿𝜌𝑘,𝑡 (𝛽)
1, . . . , 𝜏𝛿𝜌𝑘,𝑡 (𝛽)

𝑞}. Note that
the benign activity 𝛾 on the device 𝛿 is randomly chosen for each
measurement (1, . . . , 𝑞). For instance, let the benign activity set be
denoted as Γ = {Γ0, Γ1, Γ2, . . . , Γ𝑛}, where in our experiments Γ0
is defined as no activity and Γ𝑖 for 0 < 𝑖 ≤ 𝑛 represents (noisy)
benign activity, then for a device without infection 𝜏𝛿

{ ®𝛾 }
𝜌𝑘,𝑡
(𝛽)𝑞 =

{𝜏𝛿 {𝛾1}𝜌𝑘,𝑡
(𝛽)1, . . . , 𝜏𝛿 {𝛾𝑞 }𝜌𝑘,𝑡

(𝛽)𝑞}, where ®𝛾 = {𝛾1, . . . , 𝛾𝑞} is a vector of
randomly chosen activities from Γ. The notation for an infected
device 𝛿 {𝑟,𝛾 } follows straightforwardly.

Let the set of 𝑝 > 0 possible baits be denoted asB = {𝛽1, 𝛽2, . . . , 𝛽𝑝 }.
For any bait 𝛽𝑖 ∈ B, 1 ≤ 𝑖 ≤ 𝑝 , we capture 𝑞 observations, which
results into a matrixM of size 𝑝 × 𝑞:

M =M(𝜏𝛿𝜌𝑘,𝑡 (B)
𝑞) =

𝜏𝛿𝜌𝑘,𝑡 (𝛽1)

1 . . . 𝜏𝛿𝜌𝑘,𝑡 (𝛽𝑝)
1

.

.

.
. . .

.

.

.

𝜏𝛿𝜌𝑘,𝑡 (𝛽1)
𝑞 . . . 𝜏𝛿𝜌𝑘,𝑡 (𝛽𝑝)

𝑞

ULTRA: Ultimate Rootkit Detection over the Air RAID 2022, October 26–28, 2022, Limassol, Cyprus

EM data

Software bait (𝛽)

Target environment (𝜏𝛿𝜌𝑘, 𝑡)

device (𝛿𝑑)

infected{𝛾,𝑟}

clean{𝛾}

probe(𝜌𝑘,𝑡)

SDR device(s) Spectrogram

M(𝜏 ̃)

Features selection

Hardware bait (𝛽)

ML & DL

Test

Offline profiling

Online testing

radio
signals

2 datasets

{MR,MΓ} modelR,Γ

1 2 3

Figure 1: Illustration of ULTRA framework. 1 Trace acquisition: from black box target devices receiving software and hardware
baits to EM measurements; 2 Pre-processing: converting raw measurements into usable data; 3 Malware detection and
classification: from offline profiling models (trained on processed data) through online rootkit label prediction (testing).

4.1.3 ULTRA Framework classification and detection methodology.
The framework consists of two phases, offline profiling and online
testing.

Offline device profiling In the offline phase an analyst profiles
an environment that contains a device 𝛿 that is infected with a
rootkit 𝑟 (i.e., 𝛿 {𝛾,𝑟 }) and that is in a benign state (i.e., 𝛿 {𝛾 }) both
running benign activity 𝛾 . Let the rootkit set be denoted as R =

{𝑟1, 𝑟2, . . . , 𝑟𝑚}, and the benign set as Γ = {Γ0, Γ1, Γ2, . . . , Γ𝑛}. We
measure two sets of matrices: traces of baits running on an infected
system

MR = {M(𝜏𝛿
{𝑟1,®𝛾1}

𝜌𝑘,𝑡
(B)𝑞),M(𝜏𝛿

{𝑟2,®𝛾2}
𝜌𝑘,𝑡

(B)𝑞), . . . ,M(𝜏𝛿
{𝑟𝑚,®𝛾𝑚 }

𝜌𝑘,𝑡
(B)𝑞)},

and against clean systemMΓ =M(𝜏𝛿 { ®𝛾1}𝜌𝑘,𝑡
(B)𝑞). Both states of the

system are initialized under benign activities ®𝛾𝑖 , 0 < 𝑖 ≤ 𝑚, that are
randomly chosen from Γ and independent of the rootkit 𝑟𝑖 .

Using these two datasets, our approach consists in building
feature extraction methods to reduce complexity and build (ma-
chine/deep learning) models that are able to detect if a device is
infected with a rootkit or not, i.e.,

{MR ,MΓ} ⇛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 modelR,Γ .

Online testing In the online phase, the goal is to determine if a
device in an environment is infected with a rootkit or in a benign
state, where no information on 𝛾 is known. For this, we use the
estimated model modelR,Γ that has been built in an environment
𝜏𝛿𝜌𝑘,𝑡 (B) and the corresponding machine/deep learning prediction
algorithm to output either benign vs infected state, or classify into
particular categories.

In a practical context, the prediction algorithm detects or clas-
sifies the status of the device using 1 measurement only in the
testing phase. Naturally, in our experiments to perform statistical
evaluation, we collect a significant number of traces to estimate
accuracies and false positives and negatives. So, 𝑝 ′ measurement
tracesM(𝜏𝛿𝜌𝑘,𝑡 (B)

𝑝′) are measured by placing a probe 𝜌𝑘,𝑡 over
the target device 𝛿 while unknown activity is running. Note that,

in the testing phase, the device is a blackbox since no information
of activity is acknowledged (i.e., presence of rootkits 𝑟 or device
activities 𝛾).

In our experimental part (see Section 6.3.2), we setup a variety of
experimental studies to test the effectiveness and robustness of our
models. We start by keeping 𝜌𝑘,𝑡 and 𝛿 unchanged from the offline
profiling phase, and consider two types of devices: 𝛿𝑟𝑎𝑠𝑝 (Raspberry
Pi) and 𝛿𝐶𝐼20 (Creator CI20) which are further detailed in the next
subsections. Next, we consider the dislocation and changing the
type of the EM probe. In particular, we acquire traces with the
same probe from two distinct locations: 𝜌𝑘=0,𝑡=0 and 𝜌𝑘=1,𝑡=0 and
include a cheaper handcrafted EM probe 𝜌𝑘=2,𝑡=1. Furthermore,
we investigate novelty detection where the rootkit set R varies
between the learning and testing phases. As well as a scenario
where the noise level of the benign activity Γ between learning and
testing changes.

4.2 Dataset
The collection process of datasets is a critical component in the
development and evaluation of malware detection tools. At the
time of writing, ULTRA framework supports but is not limited to
rootkits of 32-bit ELF MIPS and ARM architectures, which have
been validated on Ci20 and Raspberry Pi devices. Following, we
will discuss the collection of rootkit and benign datasets.

4.2.1 Rootkit dataset. Even though rootkit malware samples are
very rare in the wild and it is difficult to get a large enough sample
size for Linux, we tried to be realistic in this study by acquiring
9 rootkit variants from 7 up-to-date open source rootkit families
(see Table 4). The rootkit dataset, including popular rootkit strate-
gies used by today’s malware writers, covered various features of
common Linux rootkits such as: self hiding, file, module, process,
network port, socket hiding; keylogger; remote access backdoor
and root privilege escalation (LPE). We therefore took under con-
sideration both, user-level (beurk [58], vlany [44]), and kernel-level

RAID 2022, October 26–28, 2022, Limassol, Cyprus D.P. Pham et al.

rootkits (diamorphine [41], m0ham3d [40], adore-ng [27], spy [32],
maK_it [43]).

Furthermore, since malware developers often use obfuscation
techniques to bypass malware detection, we apply static code and
string rewriting techniques to 2 rootkits: m0ham3d and diamor-
phine to test the robustness of our methodology, and to investigate
obfuscation mechanisms against side-channel monitoring. Tech-
nical details of the applied obfuscation can be found in Appendix
7. As a consequence, two new obfuscated variants are included in
the dataset that can easily evade signature-base detection solution
(see Table 11). The total dataset of 9 rootkits was compiled on both
architectures, thus using 2 different Linux kernel headers.

Table 2: Benign dataset (Γ): Linux executables and kernel
modules

Activities Executables and kernel modules (Γ𝑖>0)

mknod vdir more find
zgrep ls cat findmnt
zmore as ed rm
touch dmesg sleep cd

Linux Utilities

less grep objdump time
Network wget hostname ss ip

gunzip bunzip2 bzip2 tarCompression uncompress
Data backup dd
Scripting python
Linux drivers rpcsec_gss_krb5lru_cache bluetooth atm
Firewalls x_tables ip_vs br_netfilter
Filesystem 9pnet 9p ecryptfs nfsd
protocol btrfs udf xfs cifs
modules overlay

4.2.2 Benign dataset. To train and evaluate the models, we col-
lected a large dataset from a fresh installation of the Linux system. It
is critical to select an unbiased dataset to avoid errors in later binary
detection models and to assure the quality of the framework during
real-time testing. Different execution modes are considered, such
as default firmware actions, random computations, hibernation, or
stress activities on target devices. There is one kind of software
which shares similarities with rootkits: kernel drivers, which are
installed at kernel-level and execute “good” behaviors. Addition-
ally, by collecting both Linux user space binaries and kernel space
modules from MIPS and ARM architectures, we generated a vast
number of benign activities such as computations, background
processes with malware-free, or usual activities on embedded IoT
devices (listed in Table 2). This collection varies from high to low
CPU resource consumption, from very long to short duration of
activities, and likely confuses detection models as being classified as
false positives. It is worth mentioning that only one of the previous
studies on Table 1 considered the impact of benign activities.

4.3 Baits to trigger rootkit hooks
In contrast to generic malware, rootkits are deeply concealed in the
system, with no indication of active activity. They are passive and
only activated when a specific “backdoor" behavior is triggered e.g.,

making a specific system call, interacting with a covert channel,
using special file names, etc. Therefore, revealing rootkit behaviors
on a targeted device requires the use of triggers or unique tactics.
In this subsection, we detail our approach to uncovering rootkits
using baits that satisfy Def. 4.3.

The bait execution can trigger the behavior of specified benign ac-
tivity (i.e., system calls, keystroke input, etc.) regardless of knowing
the exact rootkit family it is dealing with, therefore any deviation
occurring between bait executions inside a clean and an infected
state will indicate the presence of the rootkit on the target device.
Appendix 7 contains technical information about the bait mecha-
nism. We present 2 novel strategies to trigger rootkits: software
and hardware baits.

diamorphine hook

bait execution flow

Figure 2: Illustration of execution flow for kill bait running
under diamorphinewhich infected Linuxkernelwith hooked
system call kill().

4.3.1 Software baits. Numchecker [60] used test programs that
performed 5 system calls into the guest VM to determine the pres-
ence of a rootkit based on deviations of HPCs. In terms of keylogger
detection, a similar tactic on the software level has been conducted
by Ortolani et. al. [48] which simulates carefully crafted keystroke
sequences, i.e., the bait, as input and observes the behavior of the
keylogger in output to identify keyloggers among all the running
processes. In this paper, we conduct a representative set of 10 de-
signed baits that can trigger 7 different rootkit families. The set
takes into account not only syscall triggers but also initiated net-
work activities and keyboard inputs (Table 4).

For example, diamorphone rootkit intercepts kill() to redirect
syscall convention to hacked_kill(), which serves as a switch for 3
specific signal inputs (in Fig. 2). If the signal matches, it will turn the
call to either process hiding, module hiding, or root escalation. In
general, the designed bait does not acknowledge any rootkit modus
operandi in advance. It simply calls the system call kill() with valid
arguments, thus the switch will route its execution via the default
branch of the original system call kill(). Note that, if the bait had
routed into one of the 3 hjacked branches, the captured activity
would have fully exposed malicious behaviors. However, routing
to the default switch branch (illustrated as the bait execution flow
in Fig. 2) yet created a small deviation (only 15 additional ARM
instructions during our experimental setting) between the clean
device and the infected device i.e., partially triggers behaviors of

ULTRA: Ultimate Rootkit Detection over the Air RAID 2022, October 26–28, 2022, Limassol, Cyprus

Table 3: Target devices specification, architectures (Arch.),
and their targeted frequency leakage (Fc) and CPU in MHz.

Device 𝛿 Arch. CPU RAM OS Fc

Raspberry Pi B+ ARM32 700 512MB Linux 4.1.7 1222
Creator CI20 MIPS32 1200 1GB Linux 3.18.3 792

diamorphine. It is not yet straightforward that the observed EM
signals can lead to a result of whether diamorphine is present on
the device. It is important to point out that this minor deviation
detection is significantly more subtle and accurate than typical
rootkit detection at the infection phase.

4.3.2 Hardware baits. One could argue that software baits expose
unprivileged execution at the OS user-level, which can be observed
and evaded by the rootkit installed on lower levels of the system.
We present the following hardware bait targeting rootkits: an exter-
nal device that can be physically connected to the target device. The
hardware prototype (Fig.6 in Appendix) is composed of a BluePill
STM32 board connected to the target device via USB, and can be con-
trolled remotely via the SWD debugger protocol using an ST-Link
v2 controller. It acts as a bare-metal hardware keyboard emulator,
sending a sequence of output keystrokes to the device. In the case of
keylogger rootkit detection, it meets 3 requirements from Def. 4.3:
remote controllability, fully triggering keylogger behaviors, and no
difference from a standard keyboard. Furthermore, there is only
inter-kernel communication between USB human interface device
(HID) events and the HID layer from the descriptor after each emu-
lated keystroke, with no interference from other user processes. As
a result, this hardware keyboard emulator is an optimal solution
for keylogger detection and anti-evasion.

5 PRACTICAL USE CASE OF ULTRA
5.1 Target devices
Since this work focuses on rootkit detection on IoT devices due to
their restricted resources, we have considered two widely embed-
ded architectures for all experiments as specified in Table 3. They
support broad activities for embedded and IoT scenarios regarding
their prominent architectures, size, power consumption, and cost-
effectiveness. Previous works [23, 61] show that cryptographic and
anomaly activities can be distinguished by leveraging EM signals
from the Raspberry Pi. However it is worth mentioning that no
study has investigated the possibility of side-channel leakage on
MIPS Creator CI20, so that there is no influence of prior knowledge
on its experiment design. Thus, this work focuses on a versatile
rootkit detection challenges validating on different combinations of
hardware and software rather than a narrowed solution to a specific
device or architecture. We are not limiting the capabilities of the
infrastructure with restricted bare-metal firmware, since both tar-
get devices are deployed with fully-functioning Linux on MIPS and
ARM. Therefore, any IoT applications can be performed together
with internal noise such as background processes, services, and
interrupts.

1 2

34

Figure 3: ULTRA framework data acquisition consists of a
H-Field probe 1 , which connected to an amplifier 2 and
HackRF 3 , placed 1mmand 45 degree above the target device
Raspberry Pi 4 processor.

5.2 Data aquisition
The target devices are monitored in different setups ranging from
low-cost to medium-cost (see bill of materials in Appendix table
15). It consists of a HackRF SDR device with a frequency range
of 1MHz-6GHz, connected to an H-Field probe Langer RF-U 5-2,
where the EM signal is amplified using a Langer PA-303 +30dB
(Fig. 3). A low-cost setup with an EM-compatibility probe, which is
made of ferrite and conductor and placed 10mm farther from the
processor (Fig. 5) rather than 1mm, will later be discussed. In all
acquisitions, the probes were placed contactless over the processors
of target devices with a sampling rate of 2MHz bandwidth with
neither modification nor decapsulation of the target devices, during
days and nights in the open space of casual IT office buildings.

One challenge of side-channel analysis is to find a good setup
of probes and points of interest [47]. Our work does not claim to
optimize the best combination of probes and their location, further-
more we will discuss the impact of probe (dis)locations in Section 6.
Another challenge is to empirically find the targeted frequency to
be monitored by the SDR device. First, we hypothesize the centered
frequency of the SDR device monitor leaking information in out-
put traces that were captured from one bait under a clean vs an
infected device. Thereafter, we shift an interval window of 2MHz
starting from 200 MHz up to 3GHz and capture EM measurements.
Each gap dataset is used to train a deep learning model of MLP. If
the model achieves high accuracy in testing, that corresponding
centered frequency is assumed to leak information about the state

RAID 2022, October 26–28, 2022, Limassol, Cyprus D.P. Pham et al.

of the device. We achieved the best results for center frequencies
(Fc) as given in Table 3.

We collected 𝑞 = 5000 traces for each𝑚 = 9 rootkit variants in
regard to their input baits, respectively (see Table 4) in both infected
settingsMR and 240 000 traces for benign tracesMΓ . The same
data acquisition process was carried out for both devices 𝛿rasp and
𝛿ci20. We recorded in total more than 800 000 raw traces, which
took 6.6TB. Subsequently, we preprocessed the data as detailed in
part 5.3.1.

5.3 Detection and classification framework
5.3.1 Data preprocessing. Our measured EM traces have varying
lengths in the time domain due to a variety of factors, such as
the time it takes each bait to complete, the network latency be-
tween the target device and the host computer, and the time it
takes the HackRF to acquire data from the start to the end of the
EM sampling without precise triggering. Furthermore, these EM
traces have an enormous length, which makes them inappropriate
to be utilized directly for training samples for machine learning
and deep learning-based classifiers. To compensate for this unpre-
dictability in the time domain, a fixed time segment is taken from
the beginning of each EM trace. Experimentally, we observe that a
segment of 0.5 s is sufficient for our dataset, but metrics can be fur-
ther improved by selecting a larger time window. Like in previous
works [46, 56], we then translate to the frequency domain while
keeping the notion of time by using the short-time Fourier trans-
form (STFT). In our experiments, we tuned the STFT parameters:
the window function splits the signal into chunks of length𝑀 , with
an overlap 𝑂 , where (𝑀,𝑂) = (8192, 4096) gives the best results.
Next, we only consider frequency bandwidths that contain interest-
ing information. To define which bandwidths are interesting, we
use NICV [7] that we coupled with an hill climbing algorithm fol-
lowing a forward selection [34] based on the best (over time) NICV
score of each bandwidth. The entire bandwidth selection procedure
is described in Algorithm 2, the amount of bandwidths found by the
algorithm is denoted as 𝜖opt and reported in all the results tables. To
further reduce the data complexity to be usable by machine learn-
ing algorithms, we applied dimension reduction. We applied LDA
for classification scenarios, while we determined that for detection
scenarios (binary classification) kernel PCA with sigmoid kernel,
15 components and default sklearn parameters resulted in higher
effectiveness.

5.3.2 Detection and classification algorithms. Given the most in-
formative bandwidth, our goal is to identify rootkit activity as
effectively as possible while also classifying specific rootkit proper-
ties. For multi-class classification, we use the algorithms provided
by [50] that include Naive Bayes (NB), Support Vector Machines
(SVM), and Multi-layer Perceptions (MLP). In this work, we also
focus on detection which is a two-class classification. For this, we
exchange the activation function of the last layer of the MLP to
comply with a two-class classification, i.e.„ we use sigmoid instead
of softmax. The MLP architectures is shown in Appendix 14. Net-
works are trained over 50 epochs with a batch size of 100, where
we stored the model according to the highest validation accuracy
in the offline phase. In our offline profiling setup, we use one RTX

2080 Ti GPU; MLP performs 1 epoch below 1s during the validation
tests.

6 RESULTS AND DISCUSSION
6.1 Scenarios and metrics
An individual dataset per device is measured for each of the 9
rootkits and their respective baits, as highlighted in Table 4. From
these datasets, we provide a variety of detection or classification
scenarios. A subset of the scenarios investigated are discussed in
the following, where we highlight the results using getdents as bait
because they trigger 7 out of 9 rootkits (see the first column of baits
in Table 4). The remaining two rootkits, the two keyloggers spy and
maK_it, are discussed in a scenario where hardware or software
keyboard emulators are used as baits.

Scenarios that use other baits (e.g., network tcp) can detect adore-
ng, beurk, vlany, or “Hide network port/socket rootkit” activities in
general with high accuracy, are not detailed due to lack of space,
but can be found in the Appendix (Figures 14a, 14b and 14c). We
also investigate the classification between kernel-space and user-
space rootkits, both with and without benign activities, results are
available in the Appendix Table 16.

First, we conduct straightforward detection and move to classifi-
cation by family and activity. Next, we show that our methodology
works indeed in real-world scenarios where rootkits are unknown
during training, obfuscated, or additional noise is present during
the training or testing phase. In the discussion, we compare our
results to open source host-based rootkit detection tools and demon-
strate the effect of changing the probe location between training
and testing phases.

For binary classification problems, we use balanced accuracy
(BA), true positive rate (TPR), true negative rate (TNR) as metrics;
for classification we use accuracy (AC), recall (RC) and the precision
(PR). In our experiments, we calculate the mean over several traces
during testing, thus making a trade-off between longer raw data
acquisition time (latency) and effectiveness. All reported results of
binary classification are computed for [1, 2, . . . , 10] averaged traces
of the testing set, where only the maximum is stated the tables
to ease readability. To be complete, Figures 8, 9, 10, 11 and 12 in
Appendix illustrate results using [1, 2, . . . , 10] averaged traces for
all binary scenarios. One can see that if only one trace is available
due to constraints on the response latency, high accuracy is already
achievable.

6.2 Results
6.2.1 Rootkit detection. The first detection scenario shows the abil-
ity to detect known rootkits, meaning that the rootkit was seen
during the offline learning phase. Thus, we have a constant envi-
ronment 𝜏𝛿𝜌𝑘,𝑡 (𝛽) between the learning and testing phases. Table 5
shows the balanced accuracy, true positive (TPR) and true negative
rate (TNR), as well as the optimal number of selected bandwidth
(see Subsection 5.3.1) for the bait 𝛽 = {𝑔𝑒𝑡𝑑𝑒𝑛𝑡𝑠} and rootkit setR =

{adore, beurk, diamorphine, diamorphine-obed, m0hamed, m0hamed-
obed, vlany}. SVM with Kernel PCA performs best by reaching a
TPR of 100% on both devices.

ULTRA: Ultimate Rootkit Detection over the Air RAID 2022, October 26–28, 2022, Limassol, Cyprus

Table 4: Input baits, that handled by system calls, network activities (Net.) and keyboard emulator (Key.), targeting rootkit (RK)
variants including obfuscated variants(∗) . List of RK activities: (H) Hide file/module/process; (N) Hide network port/socket; (L)
Keylogger; (B) Remote access trojan; (R) LPE.

Baits (B) Activities
System calls Net. Key.

RK (R) getdents readir open kill read write stat renameat tcp emu H N L B R

ke
rn
el

diamorphine ✓ ✓ ✓ ✓

diamorphine(∗) ✓ ✓ ✓ ✓
m0ham3d ✓ ✓ ✓ ✓ ✓ ✓ ✓

m0ham3d(∗) ✓ ✓ ✓ ✓ ✓ ✓ ✓
adore-ng ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

spy ✓ ✓
maK_it ✓ ✓

us
er beurk ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

vlany ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 5: Detection with the same environment between learning and testing; bait 𝛽 = {getdents} and corresponding rootkit set
R = {adore, beurk, diamorphine, diamorphine-obed, m0hamed, m0hamed-obed, vlany} with benign activity drawn randomly
from Γ; tested devices = 𝛿rasp., 𝛿ci20.

𝛿ci20 𝛿rasp.

MLP KPCA + NB KPCA + SVM MLP KPCA + NB KPCA + SVM

BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR
98.1[6] 97.6 98.6 100[14] 100 100 100[16] 100 100 91.8[16] 91.0 92.5 97.8[11] 96.7 98.9 98.0[15] 100 96.0

Table 6: Classification by family and by activity obtained with MLP, LDA + NB and LDA + SVM. The column “#” gives the
number of classes per scenario.

𝛿ci20 𝛿rasp.

MLP KPCA + NB KPCA + SVM MLP KPCA + NB KPCA + SVM

Scenario # BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR
family 19 91.3[65] 83.0 83.0 76.0[10] 65.6 65.4 85.6[8] 76.1 76.3 82.1[50] 79.1 76.5 54.7[10] 53.9 55.3 66.2[10] 66.9 60.1
activity 46 82.5[45] 83.0 82.5 62.5[10] 63.2 62.4 76.0[10] 75.8 76.0 75.0[40] 75.4 75.0 50.6[10] 51.5 55.6 59.2[9] 59.4 59.2

6.2.2 Rootkit classification. In this scenario, we go beyond detec-
tion (two-class binary classification) and classify the rootkits into
multiple classes. Again, the settings between the training and test-
ing phase remain constant. First, we consider the classification
according to their family (i.e., diamorphine, m0ham3d, adore-ng,
spy, maK_it, beurk, vlany) which is independent of the bait or the
obfuscation. Note that, clean activity is not considered as 1 family
but each class corresponds to the executed benign activity, yielding
a total of 19 classes. Table 6 shows the results for both devices, we
observe that MLP performs the best, reaching 82.1% on 𝛿𝑟𝑎𝑠𝑝. and
91.3% on 𝛿𝑐𝑖20, vs. a random guess of only 5.2%. Following that, we
classify each rootkit individually and each cleanware separately,
resulting in 46 classes. MLP once again outperforms with 75% on
𝛿𝑟𝑎𝑠𝑝. and 82.5% on 𝛿𝑐𝑖20. A random guess would only result in
2.17%. These results suggest that using ULTRA, rootkits can not
only be effectively detected, but also further information about
the family, clean activity, and obfuscation can be revealed with
remarkably high accuracy.

6.2.3 Rootkit novelty detection. Now, we raise the question of
whether detection is still effective even when rootkits are unknown

and not part of the offline learning phase. Or, generally speaking,
can we detect novel rootkits? So, the setting is not constant between
learning and testing, but with two sets of rootkits, R𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 and
R𝑡𝑒𝑠𝑡𝑖𝑛𝑔 with R𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 ∩ R𝑡𝑒𝑠𝑡𝑖𝑛𝑔 = ∅. Again we focus on the bait
getdents, but we train one model per rootkit, i.e., R𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 = {𝑟𝑖 }
with 𝑟𝑖 ∈ {adore, beurk, diamorphine, m0hamed, vlany} consists of
one rootkit at a time.

Fig. 4 illustrates the results, where each row starts with the name
of a rootkit and refers to the accuracy obtained using the rootkit in
the training. For comparison, we also illustrate the diagonal that
corresponds to the case where R𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 = R𝑡𝑒𝑠𝑡𝑖𝑛𝑔 = {𝑟𝑖 }. The
darker the blue color, the higher the accuracy. Results on 𝛿𝑐𝑖20 are
given on top, 𝛿𝑟𝑎𝑠𝑝. are displayed on the bottom.

Again, we notice that 𝛿𝑐𝑖20 gives higher detection rates than
𝛿𝑟𝑎𝑠𝑝. . In particular, for 𝛿𝑐𝑖20 we see that for each scenario (except
three) at least one algorithm is achieving a balanced accuracy 100%.
In total, SVM is performing the best and there is no large gap be-
tween the diagonal and the other entries, meaning that even though
rootkits are unknown (new in the testing phase), the detection
works effectively. Also, for SVM, we see no significant differences

RAID 2022, October 26–28, 2022, Limassol, Cyprus D.P. Pham et al.

m
0
h
a
m

ed

d
ia

m
o
rp

h
in

e

beu
rk

a
d
o
re

vla
n

y

MLP on δci20

m0hamed

diamorphine

beurk

adore

vlany

99.4

51.2

95.5

100

51.2

97.9

100

88.4

100

50.7

98.9

91.2

99.3

93.3

55.7

100

100

74.0

100

50.7

97.6

63.9

98.4

99.0

98.8

P
ro

fi
li
n
g

o
n

m
0
h
a
m

ed

d
ia

m
o
rp

h
in

e

beu
rk

a
d
o
re

vla
n

y

KPCA + NB on δci20

100

100

100

51.1

100

100

100

99.5

84.5

100

100

100

100

51.5

100

100

100

96.7

100

100

70.5

100

100

51.9

100

testing on

m
0
h
a
m

ed

d
ia

m
o
rp

h
in

e

beu
rk

a
d
o
re

vla
n

y

KPCA + SVM on δci20

100

51.1

100

75.6

100

100

100

99.5

99.5

100

100

98.1

100

100

100

100

100

97.0

100

100

100

63.6

100

64.1

100

MLP on δrasp.

m0hamed

diamorphine

beurk

adore

vlany

99.6

71.7

80.5

50.3

71.1

98.0

95.1

100

89.6

86.7

61.0

61.9

96.9

57.4

66.7

50.3

86.5

100

100

73.8

59.7

56.2

56.3

52.5

85.5

KPCA + NB on δrasp.

99.6

67.1

71.6

54.5

69.1

100

100

100

69.3

99.5

64.0

69.6

100

67.8

78.2

63.6

100

100

100

81.4

63.2

65.6

63.3

54.9

99.5

KPCA + SVM on δrasp..

99.7

70.0

81.4

51.0

87.5

99.0

100

100

100

100

65.3

56.6

100

60.1

63.3

50.8

93.3

100

100

66.6

70.7

61.6

81.4

56.7

100
0

20

40

60

80

100

Figure 4: Novelty rootkit detection. Each cell refers to an experiment, the row (resp. the column) informs on the rootkit(s) seen
during the offline learning phase (resp. the online testing phase). Except on the diagonal, learning and testing sets are exclusive.
Numbers are balanced accuracies, the darker the blue color the higher the balanced accuracy. All experiments share the same
bait 𝛽 = {getdents}, the same probe 𝑝𝑘,𝑡 , and benign activities are drawn randomly from Γ. 𝛿𝑐𝑖20 on top; 𝛿𝑟𝑎𝑠𝑝. on bottom.

between rootkits, even if they work on different levels (user vs.
kernel).

For 𝛿𝑟𝑎𝑠𝑝. the detection is still effective in most cases even if
the rootkit is novel in the testing phase, although there are more
derivations between experiments. Still, for each rootkit, one can find
at least one model that performs greater than 78.2% in all scenarios.
We see that SVM performs slightly better than MLP and NB (on
average) among the three methods. For example, using SVM we
are able to detect diamorphine with 100% accuracy when training
only on adore.

Remarkably, looking at each column, ignoring the diagonal, we
always have at least one model from the three algorithms that can
detect unseen rootkit samples with an accuracy higher than 78%
for 𝛿𝑟𝑎𝑠𝑝. and 100% for 𝛿𝑐𝑖20.

6.2.4 Obfuscated Rootkit detection. To evaluate the effectiveness of
ULTRA in the presence of obfuscated rootkits, we performed tests
with the two rootkit samplesm0hamed (𝑚) and diamorphine (𝑑) , as
well as their obfuscated variantsm0hamed-obed (𝑚𝑜) andm0hamed
(𝑑𝑜). Table 7 summarizes the results for both devices. For each device,
the first four lines refer to𝑚 and𝑚𝑜 while the last four lines refer
to 𝑑 and 𝑑𝑜 . First, we detect the original or obfuscated rootkit while
learning in the same setting. We denote this scenario by 𝑟𝑖)𝑟𝑖 with
𝑟𝑖 ∈ {𝑚,𝑚0, 𝑑, 𝑑𝑜 }. Second, we train on the original or obfuscated and
test the other one, i.e., 𝑟𝑖)𝑟 𝑗 with 𝑟𝑖 ≠ 𝑟 𝑗 with 𝑟𝑖 and 𝑟 𝑗 belonging to
the same family. Themajor finding is that, in general, the static-code

obfuscation mechanism has a very low impact on the detection rate,
and ULTRA is able to detect the original and obfuscated variant.
Whatever variant of the rootkit (with or without obfuscation), it is
able to detect both variants with nearly nomistakes. In particular for
𝛿𝑐𝑖20, NB is achieving 100% in all scenarios, whereas for 𝛿𝑟𝑎𝑠𝑝. SVM
is performing best with 100% in all but one scenario. Remarkably,
we observe that there is no drop in effectiveness when ULTRA is
detecting obfuscated variants and reaching 100% effectiveness.

6.2.5 Keylogger novelty detection. Table 8 indicates how efficient
ULTRA is in detecting keyloggers that are unknown to the system
(not present in the learning phase). We use two baits to monitor
keylogger activity: a hardware keyboard emulator denoted hwkb
and a software bait swkb. Regarding the targets, in this scenario,
we can detect them more accurately on 𝛿𝑟𝑎𝑠𝑝. , reaching 100% using
SVM which again is remarkable.

6.2.6 Benign kernel-level module evaluation. We investigate the
impact of additional kernel-level modules on the accuracy of de-
tection and classification. For this we build a LKM dataset that is
based on drivers having extra benign activities that may deceive the
models (e.g., netfilter, VFS hooks, ecryptfs etc.). Table 9 shows that
with benign LKM added in the learning phase, all models achieve
100%. However, the introduction of benign LKM during the testing
decreases the accuracy of the SVM and MLP models, but has no
impact on the NB model, which can still detect at 100% with no

ULTRA: Ultimate Rootkit Detection over the Air RAID 2022, October 26–28, 2022, Limassol, Cyprus

Table 7: Detection scenarios on obfuscated rootkits. The bait 𝛽 is getdents, R = {diamorphine (𝑑), diamorphine-obed (𝑑𝑜),
m0hamed (𝑚), m0hamed-obed (𝑚𝑜)} with benign activity randomly drawn from Γ, tested on both devices 𝛿rasp., 𝛿ci20. We use the
notation 𝑟1) 𝑟2 to express that 𝑟1 was used in the learning phase, and 𝑟2 in testing. For 𝑟1 = 𝑟2 the environment stays constant,
and for 𝑟1 ≠ 𝑟2 we detect unseen binaries.

𝛿ci20 𝛿rasp.

MLP KPCA + NB KPCA + SVM MLP KPCA + NB KPCA + SVM

Scenario BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR
𝑚)𝑚 99.4[5] 99.0 99.8 100[7] 100 100 100[1] 100 100 99.6[34] 99.2 100 99.6[17] 99.3 100 99.7[36] 99.4 100
𝑚𝑜)𝑚𝑜 100[13] 100 100 100[15] 100 100 100[10] 100 100 100[25] 100 100 100[14] 100 100 100[30] 100 100
𝑚)𝑚𝑜 100[13] 100 100 100[15] 100 100 100[10] 100 100 98.2[25] 96.3 100 90.3[14] 80.6 100 100[30] 100 100
𝑚𝑜)𝑚 97.4[5] 96.7 98.2 100[7] 100 100 100[1] 100 100 100[34] 100 100 100[17] 100 100 100[36] 100 100
𝑑)𝑑 100[12] 100 100 100[9] 100 100 100[7] 100 100 95.1[4] 97.2 93.1 100[21] 100 100 100[21] 100 100
𝑑𝑜)𝑑𝑜 100[10] 100 100 100[8] 100 100 100[9] 100 100 100[22] 100 100 100[11] 100 100 100[16] 100 100
𝑑)𝑑𝑜 53.7[10] 7.4 100 100[8] 100 100 58.3[9] 16.6 100 100[22] 100 100 97.5[11] 95.0 100 100[16] 100 100
𝑑𝑜)𝑑 52.3[12] 4.9 99.6 100[9] 100 100 53.8[7] 8.6 99.1 83.0[4] 66.2 99.8 100[21] 100 100 100[21] 100 100

Table 8: Detection scenarios of keyloggers unseen during the offline profiling phase. The baits 𝛽 are software or hardware
keyboard emulator respectively denoted as swkb and hwkb. The tested devices are 𝛿rasp., 𝛿ci20, and benign activity is drawn
randomly from Γ. When the learning has been done with spy and the testing with maK_it, we write 𝑠)𝑚 while the reverse
scenario is denoted by𝑚) 𝑠.

𝛿ci20 𝛿rasp.

MLP KPCA + NB KPCA + SVM MLP KPCA + NB KPCA + SVM

Scenario BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR
swkb 66.8[5] 34.8 98.8 94.9[9] 89.8 100 100[2] 100 100 100[23] 100 100 100[8] 100 100 100[8] 100 100

𝑠
)𝑚 hwkb 50.6[8] 92.8 8.4 50.0[8] 0.0 100 51.0[16] 2.9 99.2 100[14] 100 100 100[10] 100 100 100[13] 100 100

swkb 57.1[15] 14.8 99.5 100[13] 100 100 100[7] 100 100 100[11] 100 100 100[9] 100 100 100[4] 100 100

𝑚
)
𝑠

hwkb 46.9[15] 43.5 50.2 50.0[27] 0.0 100 48.2[10] 0.1 96.3 99.5[15] 99.1 100 85.3[9] 70.6 100 100[12] 100 100

Table 9: Detection of malware with additive benign kernel
activities during the learning phase only (S0) or during the
testing phase only (S1). The bait 𝛽 is getdents, tested on the
device 𝛿ci20, the malware R = {m0hamed} and the benign
activity is randomly chosen from Γ.

MLP KPCA + NB KPCA + SVM

Sc.★ BA [𝜖opt] TPRTNRBA [𝜖opt] TPRTNRBA [𝜖opt] TPRTNR
S0 100[4] 100 100 100[13] 100 100 100[21] 100 100
S1 55.4[5] 99.0 11.7 100[7] 100 100 55.7[1] 100 11.4
★Sc. stands for Scenario.
false positive. In conclusion, even if there is additional unexpected
activity from the LKM, NB is able to detect without any errors.

6.2.7 Noise evaluation. In this scenario, we evaluate the influence
of benign activity in the background and assess robustness. We
measured the SDR measurement traces of “noisy” (N) (noisy benign
background activities) and “quiet” (Q) (no additional benign activity
besides the OS). Table 10 demonstrates the necessity of noise during
the training phase. In fact, models build with no extra background
benign activity (𝑄)𝑁) get high TPR and low TNR. That is, those
models are not able to distinguish rootkits from benign and classify
all activity as malicious. However, models built with noisy traces
(N) reach 100% (for at least one model) even when used in a quiet
testing environment (Q).

6.3 Discussion
6.3.1 Performance evaluation against host-based tools. We compare
our detection results to other up-to-date open source tools: rkhunter
v1.4.6 (2018), chkrootkit v0.54 (2021), and LKRG v0.91 (2021). The 3
tools are host-based techniques compiled under ARM architecture
and all experiments are conducted on the same target device 𝛿𝑅𝑎𝑠𝑝𝑖 ,
except ULTRA was executed on a remote host agent: Intel Xeon W-
2104@4x 3.2GHz CPU with Quadro P2200 GPU. Since the detection
component is based on open source and cross-compilation capable
GNURadio, sklearn and Tensorflow, the ULTRA detector can be
deployed on portable devices (e.g., Raspberry Pi, NVIDIA Jetson,
etc.) along with SDR receivers.

Table 11 shows the detection results and execution latency of all
scans, where all results are averaged for 10 executions. ULTRA takes
1.5s for MLP on the CPU, and 1.3s using the GPU. Rkhunter and
chkrootkit are unable to detect obfuscated variants of diamorphine
andm0ham3d. LKRG aims to detect kernel-level rootkits, so that 4/9
are not detected. Noticeably, while detecting triggered behaviors of
adore-ng the device OS crashed in kernel panic and thus brings the
device in an unusable mode in a real-world setting. ULTRA detected
rootkits living at both kernel and user space mentioned in Table 4,
and regardless of the stage before or after rootkit infection, while
integrity detection solutions must be installed before the moment
the rootkit infected the device. Further, ULTRA detects rootkits by
actively using baits without fully triggering malicious behaviors of

RAID 2022, October 26–28, 2022, Limassol, Cyprus D.P. Pham et al.

Table 10: Detection scenarios with rootkits seen during the learning phase but with different background benign activity levels:
the “quiet” (Q) level with Γ = Γ0, meaning no background benign activity, and the “noisy” (N) level Γ = {Γ0, . . . , Γ𝑛}. On the left
(resp. on the right) of the arrow ()) in the column “Scenario” we give the noise level used during the offline profiling (resp. the
online testing). The bait 𝛽 is write, tested on both devices 𝛿rasp., 𝛿ci20, the malware R = {m0hamed-obed}.

𝛿ci20 𝛿rasp.

MLP KPCA + NB KPCA + SVM MLP KPCA + NB KPCA + SVM

Scenario BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR
𝑁)𝑄 54.1[6] 96.1 12.2 98.7[7] 100 97.4 100[12] 100 100 100[11] 100 100 100[10] 100 100 50.0[11] 100 0.0
𝑄)𝑁 58.1[3] 100 16.3 52.9[7] 100 5.9 50.0[3] 100 0.0 50.0[1] 100 0.0 50.0[1] 100 0.0 50.0[1] 100 0.0
𝑁)𝑁 99.1[6] 98.2 100 100[7] 100 100 100[12] 100 100 100[11] 100 100 100[10] 100 100 100[11] 100 100

the rootkit (except in the keylogger detection scenario), in contrast
to LKRG which requires the occurrence of malicious behaviors
explicitly.

Table 11: Performance evaluation of rootkit (RK) and their
obfuscated variants(∗) detection results, and execution la-
tency. List of indicators: (✓) RK detected; (-) Not detected; (†)
Malicious behavior trigger required; (") Kernel panicked;
Executed on (‡) CPU ; (§) GPU.

RK AV solutions
rkhunter chkrootkit LKRG ULTRA

diamorphine ✓ - ✓† ✓

diamorphine(∗) - - ✓† ✓

m0ham3d ✓ - ✓† ✓

m0ham3d(∗) - - ✓† ✓

adore-ng - - ✓†" ✓
spy - - - ✓
maK_it - - - ✓
beurk - - - ✓
vlany - - - ✓

Latency (sec) 1326.6‡ 44.3‡ 2.6‡ 1.3§-1.5‡

6.3.2 Invariant to probe position. Fig. 7 in Appendix shows a de-
tection scenario setup of 2 different probe locations on the device
𝛿𝑐𝑖20. Probe 𝜌𝑘=0,𝑡=0 is used for offline training and probe 𝜌𝑘=1,𝑡=0
with the same type 𝑡 = 0, but a different location was used for
testing exclusively. Furthermore, we conduct an experimental setup
of ULTRA with a handcrafted EM compatible probe 𝜌𝑘=2,𝑡=1 which
consists of ferrites and conductor (see Fig.5). The bait openwas used
to detect the presence of rootkit beurk. Table 12 shows the results.
We observe that the location has a low impact on the accuracy. In
fact, a model trained with 𝜌𝑘=0,𝑡=0 can detect rootkit signatures
acquired with 𝜌𝑘=1,𝑡=0 still with 100% whatever the classification
algorithm. However, when changing position and probe (𝜌𝑘=0,𝑡=0
in training, and 𝜌𝑘=1,𝑡=2 in testing), MLP is performing the best
with only 60%.

Concluding, this result shows that the ULTRA framework works
even with the relocation of the probe position, but care should be
taken with the type of the probe. It indicates that our framework has
a significant advantage and is powerful when detecting rootkits in
on-site scenarios with portable equipment, or in incident response
and digital forensics on a large scale.

1

2

Figure 5: ULTRA framework is installed with an handcrafted
EM-compatible probe 1 placed 10mmaboveCi20’s processor
2 to detect beurk rootkit.

6.3.3 Threats to validation. Adversaries to manipulate the ML
and DLmodels: One actor may be able to manipulate the detection
model by reverse engineering and creating a rootkit that can evade
the models, however this is out of scope for this work.

Noise generation to decrease accuracy: Frieslaar et. al.[24]
proposed a countermeasure to a SDR side-channel attack on the
Raspberry Pi by generating EM noise that consists of executing
arithmetic instructions in an infinite loop. Noise-SDR [14] presents
a novel technique by exploiting DRAM accesses to shape arbitrary
signals out of EM noise from unprivileged software. Therefore, a
rootkit may try to tamper by generating noise during execution.
However, it still raises a challenge for rootkit authors: finding a
solution to generate noise without causing any deviation between
infected and benign states, and the limitation of the signal’s band-
width (e.g., Noise-SDR can only generate signals that are limited by
the target device leakage and sampling rate).

The rootkit may undo modifications: This concern has been
discussed in [60], if an advanced rootkit is aware of the occurrence
of a bait, it can hide its modifications before the bait is presented
and re-activate them afterwards. As per the bait design require-
ment, the execution of a bait must present no difference from the

ULTRA: Ultimate Rootkit Detection over the Air RAID 2022, October 26–28, 2022, Limassol, Cyprus

Table 12: Detection scenarios with three distinct probes locations 𝑘 ∈ {0, 1, 2} and two different types 𝑡 ∈ {0, 1}. The bait 𝛽 is
open, tested on the devices 𝛿ci20, the malware R = {beurk} and the benign activity is randomly drawn from Γ. Notation used in
Scenario: {𝑘, 𝑡} in learning) {𝑘, 𝑡} in testing.

MLP KPCA + NB KPCA + SVM

Scenario BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR
{0, 0}) {0, 0} 100[2] 100 100 100[2] 100 100 100[2] 100 100
{0, 0}) {1, 0} 100[2] 100 100 100[2] 100 100 100[2] 100 100
{0, 0}) {2, 1} 60.6[2] 21.4 99.9 50.0[2] 0.0 100 50.0[2] 0.0 100
{1, 0}) {1, 0} 100[2] 100 100 100[3] 100 100 100[2] 100 100
{2, 1}) {2, 1} 100[1] 100 100 100[4] 100 100 100[4] 100 100

execution of benign programs. For example, the execution of get-
dents bait is equivalent to one simple binary which lists the content
of the current directory. Additionally, the detector can randomize
the intervals and iterations inside the baits to avoid the rootkit’s
prediction of the checking period.

7 CONCLUSIONS AND PERSPECTIVES
Stealthy nonactive rootkits constitute a real challenge for (host-

based) malware analysis systems. In this paper, we introduced the
ULTRA framework that operates outside the box by relying solely
on the EM activity of IoT devices and evokes rootkit behavior by
baiting. We investigated a large number of experiments and scenar-
ios to show that our methodology is robust in real-world scenarios
and can be applied like wave-and-play. Although the detection
rate of 100% for both known and unknown variants was obtained
with a limited sample size due to the rarity of Linux IoT rootkits
in the wild, it is a solid sign that our technique is promising and
novel. Further, we show that probe dislocation results in no loss of
effectiveness, making ULTRA highly practicable and employable.
Furthermore, the classification of rootkit families achieved up to
91.3% accuracy (vs a random guess of 5.2%), and even more we are
able to classify exact activity with up to 82.5% (vs a random guess of
2.17%). The comparison of our solution to open-source host-based
solutions shows superiority of ULTRA on all levels: effectiveness,
latency, resource requirements, stability on the target device.

This work opens up new research areas pursuing the classic
cat-and-mouse game: improving detection and classification rates
or evading and making our approach harder. An appealing en-
hancement could be to increase the capability of the framework by
integrating even more baits, thus providing the potential to detect
APT rootkits.

Besides, ULTRA may provide cues to manufacturers to build a
standalone solution that uses electromagnetic waves to detect mal-
ware and similar threats for other platforms (PLC, Linux servers,
etc.) in the future. Further empirical research could be conducted
to investigate the power of single-board computers so that ULTRA
can be deployed in a fully portable manner.

Acknowledgement. The work was supported by the French
Agence Nationale de la Recherche (ANR) under reference ANR-
18-CE39-0001 (AHMA). We thank our colleague Olivier Zendra
and Ronan Lashermes who provided insights that greatly assisted

this work. We thank Simone Aonzo and the anonymous review-
ers for their careful reading of our paper and their comments and
suggestions.
REFERENCES
[1] 2021. GNU Radio. https://www.gnuradio.org/about/. Accessed: 2022-01-01.
[2] 2021. GREAT SCOTT GADGETS HackRF One. https://greatscottgadgets.com/

hackrf/one/. Accessed: 2022-01-01.
[3] 2021. Rootkits: evolution and detection methods. https://www.ptsecurity.com/

ww-en/analytics/rootkits-evolution-and-detection-methods/. Accessed: 2022-
01-10.

[4] Vipindev Adat and Brij B Gupta. 2018. Security in Internet of Things: issues,
challenges, taxonomy, and architecture. Telecommunication Systems 67, 3 (2018),
423–441.

[5] National Security Agency and Federal Bureau of Investigation. 2021.
Russian GRU 85th GTsSS Deploys Previously Undisclosed Drovorub
Malware. https://media.defense.gov/2020/Aug/13/2002476465/-1/-
1/0/CSA_DROVORUB_RUSSIAN_GRU_MALWARE_AUG_2020.PDF. Accessed:
2022-01-01.

[6] Arati Baliga, Vinod Ganapathy, and Liviu Iftode. 2011. Detecting Kernel-Level
Rootkits Using Data Structure Invariants. IEEE Transactions on Dependable and
Secure Computing 8, 5 (2011), 670–684. https://doi.org/10.1109/TDSC.2010.38

[7] Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, and Zakaria Najm. 2014. NICV:
Normalized Inter-Class Variance for Detection of Side-Channel Leakage. In Inter-
national Symposium on Electromagnetic Compatibility (EMC ’14 / Tokyo). IEEE.
eprint version: https://eprint.iacr.org/2013/717.pdf.

[8] Michael Boelen and John Horne. 2012. The rootkit hunter project. Online].
http://rkhunter.sourceforge.net (2012).

[9] Sergey Bratus, Michael E Locasto, Ashwin Ramaswamy, and Sean W Smith. 2010.
VM-based security overkill: a lament for applied systems security research. In
Proceedings of the 2010 New Security Paradigms Workshop. 51–60.

[10] Rory Bray, Daniel Cid, and Andrew Hay. 2008. OSSEC host-based intrusion
detection guide. Syngress.

[11] Robert Bridges, Jarilyn Hernández Jiménez, Jeffrey Nichols, Katerina Goseva-
Popstojanova, and Stacy Prowell. 2018. Towards malware detection via cpu power
consumption: Data collection design and analytics. In 2018 17th IEEE International
Conference On Trust, Security And Privacy In Computing And Communications/12th
IEEE International Conference On Big Data Science And Engineering (TrustCom/Big-
DataSE). IEEE, 1680–1684.

[12] Robert Buhren, Julian Vetter, and Jan Nordholz. 2016. The threat of virtualization:
Hypervisor-based rootkits on the ARM architecture. In International Conference
on Information and Communications Security. Springer, 376–391.

[13] Andreas Bunten. 2004. Unix and linux based rootkits techniques and counter-
measures. In 16th Annual First Conference on Computer Security Incident Handling,
Budapest.

[14] Giovanni Camurati and AurÃ©lien Francillon. 2022. Noise-SDR: Arbitrary mod-
ulation of electromagnetic noise from unprivileged software and its impact on
emission security. In IEEE Symposium on Security and Privacy (San Francisco,
CA). IEEE Computer Society.

[15] Giovanni Camurati, Sebastian Poeplau, Marius Muench, TomHayes, and Aurelien
Francillon. 2018. Screaming Channels: When Electromagnetic Side Channels
Meet Radio Transceivers. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. ACM, Toronto Canada, 163–177.
https://doi.org/10.1145/3243734.3243802

[16] Shane S. Clark, Benjamin Ransford, Amir Rahmati, Shane Guineau, Jacob Sor-
ber, Wenyuan Xu, and Kevin Fu. 2013. WattsUpDoc: Power Side Channels to
Nonintrusively Discover Untargeted Malware on Embedded Medical Devices.
In 2013 USENIX Workshop on Health Information Technologies (HealthTech 13).
USENIX Association, Washington, D.C. https://www.usenix.org/conference/

https://www.gnuradio.org/about/
https://greatscottgadgets.com/hackrf/one/
https://greatscottgadgets.com/hackrf/one/
https://www.ptsecurity.com/ww-en/analytics/rootkits-evolution-and-detection-methods/
https://www.ptsecurity.com/ww-en/analytics/rootkits-evolution-and-detection-methods/
https://media.defense.gov/2020/Aug/13/2002476465/-1/-1/0/CSA_DROVORUB_RUSSIAN_GRU_MALWARE_AUG_2020.PDF
https://media.defense.gov/2020/Aug/13/2002476465/-1/-1/0/CSA_DROVORUB_RUSSIAN_GRU_MALWARE_AUG_2020.PDF
https://doi.org/10.1109/TDSC.2010.38
https://eprint.iacr.org/2013/717.pdf
https://doi.org/10.1145/3243734.3243802
https://www.usenix.org/conference/healthtech13/workshop-program/presentation/clark
https://www.usenix.org/conference/healthtech13/workshop-program/presentation/clark

RAID 2022, October 26–28, 2022, Limassol, Cyprus D.P. Pham et al.

healthtech13/workshop-program/presentation/clark
[17] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti.

2018. Understanding Linux malware. In S&P 2018, 39th IEEE Symposium
on Security and Privacy, May 21-23, 2018, San Francisco, CA, USA, IEEE (Ed.).
San Francisco. 2018 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted component of this work in other
works must be obtained from the IEEE..

[18] Sanjeev Das, JanWerner, Manos Antonakakis, Michalis Polychronakis, and Fabian
Monrose. 2019. SoK: The challenges, pitfalls, and perils of using hardware
performance counters for security. In 2019 IEEE Symposium on Security and
Privacy (SP). IEEE, 20–38.

[19] Fei Ding, Hongda Li, Feng Luo, Hongxin Hu, Long Cheng, Hai Xiao, and Rong Ge.
2020. DeepPower: Non-intrusive and deep learning-based detection of IoT mal-
ware using power side channels. In Proceedings of the 15th ACM Asia Conference
on Computer and Communications Security. 33–46.

[20] Shawn Embleton, Sherri Sparks, and Cliff C Zou. 2013. SMM rootkit: a new breed
of OS independent malware. Security and Communication Networks 6, 12 (2013),
1590–1605.

[21] Nicolas Falliere, Liam O Murchu, and Eric Chien. 2011. W32. stuxnet dossier.
White paper, Symantec Corp., Security Response 5, 6 (2011), 29.

[22] Ibraheem Frieslaar and Barry Irwin. 2017. Recovering AES-128 encryption
keys from a Raspberry Pi. In Southern Africa Telecommunication Networks and
Applications Conference (SATNAC). 228–235.

[23] Ibraheem Frieslaar and Barry Irwin. 2017. Recovering AES-128 encryption
keys from a Raspberry Pi. In Southern Africa Telecommunication Networks and
Applications Conference (SATNAC). 228–235.

[24] I Frieslaar and B Irwin. 2018. Developing an electromagnetic noise generator to
protect a Raspberry Pi from side channel analysis. SAIEE Africa Research Journal
109, 2 (2018), 85–101.

[25] Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar. 2006. Templates
vs. Stochastic Methods. In Cryptographic Hardware and Embedded Systems -
CHES 2006, 8th International Workshop, Yokohama, Japan, October 10-13, 2006,
Proceedings (Lecture Notes in Computer Science, Vol. 4249), Louis Goubin and
Mitsuru Matsui (Eds.). Springer, 15–29. https://doi.org/10.1007/11894063_2

[26] Mordechai Guri, Yuri Poliak, Bracha Shapira, and Yuval Elovici. 2015. JoKER:
Trusted detection of kernel rootkits in android devices via JTAG interface. In
2015 IEEE Trustcom/BigDataSE/ISPA, Vol. 1. IEEE, 65–73.

[27] Seunghun Han. 2020. Adore-NG v2.5. https://github.com/kkamagui/adore-ng
Accessed: 2022-02-10.

[28] Seunghun Han and JH Park. 2018. Shadow-box v2: The practical and omnipotent
sandbox for arm. 2018, slideshow at Blackhat Asia (2018).

[29] David Harley and Andrew Lee. 2007. The root of all evil?-rootkits revealed.
[30] Annelie Heuser and Michael Zohner. 2012. Intelligent Machine Homicide -

Breaking Cryptographic Devices Using Support Vector Machines. In Constructive
Side-Channel Analysis and Secure Design - Third International Workshop, COSADE
2012, Darmstadt, Germany, May 3-4, 2012. Proceedings (Lecture Notes in Computer
Science, Vol. 7275), Werner Schindler and Sorin A. Huss (Eds.). Springer, 249–264.
https://doi.org/10.1007/978-3-642-29912-4_18

[31] Trammell Hudson and Larry Rudolph. 2015. Thunderstrike: EFI firmware bootkits
for Apple MacBooks. In Proceedings of the 8th ACM International Systems and
Storage Conference. 1–10.

[32] Arun Prakash Jana. 2021. spy v1.8. https://github.com/jarun/spy Accessed:
2022-02-10.

[33] Xingbin Jiang, Michele Lora, and Sudipta Chattopadhyay. 2020. Efficient and
Trusted Detection of Rootkit in IoT Devices via Offline Profiling and Online
Monitoring. In Proceedings of the 2020 on Great Lakes Symposium on VLSI. 433–
438.

[34] George H. John, Ron Kohavi, and Karl Pfleger. 1994. Irrelevant Features and
the Subset Selection Problem. In Machine Learning, Proceedings of the Eleventh
International Conference, Rutgers University, New Brunswick, NJ, USA, July 10-13,
1994, William W. Cohen and Haym Hirsh (Eds.). Morgan Kaufmann, 121–129.
https://doi.org/10.1016/b978-1-55860-335-6.50023-4

[35] Juho Junnila. 2020. Effectiveness of Linux Rootkit Detection Tools. (2020).
[36] Haider Adnan Khan, Nader Sehatbakhsh, Luong N. Nguyen, Milos Prvulovic,

and Alenka Zajić. 2019. Malware Detection in Embedded Systems Using Neural
Network Model for Electromagnetic Side-Channel Signals. Journal of Hardware
and Systems Security (Aug. 2019). https://doi.org/10.1007/s41635-019-00074-w

[37] Iain Kyte, Pavol Zavarsky, Dale Lindskog, and Ron Ruhl. 2012. Enhanced side-
channel analysis method to detect hardware virtualization based rootkits. In
World Congress on Internet Security (WorldCIS-2012). 192–201.

[38] John Levine, Julian Grizzard, and Henry Owen. 2004. A methodology to detect
and characterize kernel level rootkit exploits involving redirection of the system
call table. In Second IEEE International Information Assurance Workshop, 2004.
Proceedings. IEEE, 107–125.

[39] Patrick Luckett, J Todd McDonald, William B Glisson, Ryan Benton, Joel Daw-
son, and Blair A Doyle. 2018. Identifying stealth malware using CPU power

consumption and learning algorithms. Journal of Computer Security 26, 5 (2018),
589–613.

[40] m0hamed. 2015. lkm-rootkit: A rootkit implemented as a linux kernel module.
https://github.com/m0hamed/lkm-rootkit Accessed: 2022-02-10.

[41] m0nad. 2021. Diamorphine: a LKM rootkit. https://github.com/m0nad/
Diamorphine Accessed: 2022-02-10.

[42] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. 2007. Power analysis
attacks - revealing the secrets of smart cards. Springer.

[43] Ciarán McNally. 2015. maK_it-Linux-Rootkit. https://web.archive.org/web/
20190119045332/https://r00tkit.me/ Accessed: 2022-02-10.

[44] mempodippy. 2019. vlany: a Linux LD_PRELOAD rootkit. https://github.com/
mempodippy/vlany Accessed: 2022-02-10.

[45] Nelson Murilo and Klaus Steding-Jessen. 2001. Métodos para detecção local
de rootkits e módulos de kernel maliciosos em sistemas UNIX. In Anais do III
Simpósio sobre Segurança em Informática (SSI’2001). 133–139.

[46] A. Nazari, N. Sehatbakhsh, M. Alam, A. Zajic, and M. Prvulovic. 2017. EDDIE:
EM-based detection of deviations in program execution. In 2017 ACM/IEEE 44th
Annual International Symposium on Computer Architecture (ISCA). 333–346. https:
//doi.org/10.1145/3079856.3080223

[47] Kalle Ngo, Elena Dubrova, Qian Guo, and Thomas Johansson. 2021. A Side-
Channel Attack on a Masked IND-CCA Secure Saber KEM Implementation. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2021, 4 (2021), 676–707. https://doi.org/10.
46586/tches.v2021.i4.676-707

[48] Stefano Ortolani, Cristiano Giuffrida, and Bruno Crispo. 2010. Bait your hook:
a novel detection technique for keyloggers. In International workshop on recent
advances in intrusion detection. Springer, 198–217.

[49] Nick L Petroni Jr, Timothy Fraser, Jesus Molina, and William A Arbaugh. 2004.
Copilot-a Coprocessor-based Kernel Runtime Integrity Monitor.. In USENIX
security symposium. San Diego, USA, 179–194.

[50] Duy-Phuc Pham, Damien Marion, Mathieu Mastio, and Annelie Heuser. 2021. Ob-
fuscation Revealed: Leveraging Electromagnetic Signals for Obfuscated Malware
Classification. In Annual Computer Security Applications Conference.

[51] Valerian Rey, Pedro Miguel Sánchez Sánchez, Alberto Huertas Celdrán, and
Gérôme Bovet. 2021. Federated Learning for Malware Detection in IoT Devices.
204 (2021), 108693. https://doi.org/10.1016/j.comnet.2021.108693

[52] Khaled Riad, Teng Huang, and Lishan Ke. 2020. A dynamic and hierarchical
access control for IoT in multi-authority cloud storage. Journal of Network and
Computer Applications 160 (2020), 102633.

[53] Joanna Rutkowska. 2006. Introducing blue pill. The official blog of the invisi-
blethings. org 22 (2006), 23.

[54] Asanka Sayakkara, Nhien-An Le-Khac, and Mark Scanlon. 2019. Leveraging
Electromagnetic Side-Channel Analysis for the Investigation of IoT Devices.
Digital Investigation 29 (July 2019), S94–S103. https://doi.org/10.1016/j.diin.2019.
04.012

[55] Tobias Schneider and Amir Moradi. 2016. Leakage assessment methodology -
Extended version. J. Cryptogr. Eng. 6, 2 (2016), 85–99. https://doi.org/10.1007/
s13389-016-0120-y

[56] N. Sehatbakhsh, A. Nazari, M. Alam, F. Werner, Y. Zhu, A. Zajic, and M. Prvulovic.
2020. REMOTE: Robust External Malware Detection Framework by Using Elec-
tromagnetic Signals. IEEE Trans. Comput. 69, 3 (2020), 312–326.

[57] Baljit Singh, Dmitry Evtyushkin, Jesse Elwell, Ryan Riley, and Iliano Cervesato.
2017. On the detection of kernel-level rootkits using hardware performance
counters. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security. 483–493.

[58] Unix-Thrust. 2017. Unix-Thrust/Beurk: Beurk Experimental unix rootkit. https:
//github.com/unix-thrust/beurk Accessed: 2022-02-10.

[59] Danilo Valerio. 2008. Open source software-defined radio: A survey on gnura-
dio and its applications. Forschungszentrum Telekommunikation Wien, Vienna,
Technical Report FTW-TR-2008-002 (2008).

[60] Xueyang Wang and Ramesh Karri. 2013. Numchecker: Detecting kernel control-
flow modifying rootkits by using hardware performance counters. In 2013 50th
ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, 1–7.

[61] Xiao Wang, Quan Zhou, Jacob Harer, Gavin Brown, Shangran Qiu, Zhi Dou,
John Wang, Alan Hinton, Carlos Aguayo Gonzalez, and Peter Chin. 2018. Deep
learning-based classification and anomaly detection of side-channel signals. In
Cyber Sensing 2018, Vol. 10630. International Society for Optics and Photonics,
1063006.

[62] Zhi Wang, Xuxian Jiang, Weidong Cui, and Peng Ning. 2009. Countering ker-
nel rootkits with lightweight hook protection. In Proceedings of the 16th ACM
conference on Computer and communications security. 545–554.

[63] Adam Zabrocki. 2018. Linux Kernel Runtime Guard (LKRG) under the Hood. In
CONFidence Conference.

[64] Boyou Zhou, Anmol Gupta, Rasoul Jahanshahi, Manuel Egele, and Ajay Joshi.
2018. Hardware performance counters can detect malware: Myth or fact?. In
Proceedings of the 2018 on Asia Conference on Computer and Communications
Security. 457–468.

https://www.usenix.org/conference/healthtech13/workshop-program/presentation/clark
https://doi.org/10.1007/11894063_2
https://github.com/kkamagui/adore-ng
https://doi.org/10.1007/978-3-642-29912-4_18
https://github.com/jarun/spy
https://doi.org/10.1016/b978-1-55860-335-6.50023-4
https://doi.org/10.1007/s41635-019-00074-w
https://github.com/m0hamed/lkm-rootkit
https://github.com/m0nad/Diamorphine
https://github.com/m0nad/Diamorphine
https://web.archive.org/web/20190119045332/https://r00tkit.me/
https://web.archive.org/web/20190119045332/https://r00tkit.me/
https://github.com/mempodippy/vlany
https://github.com/mempodippy/vlany
https://doi.org/10.1145/3079856.3080223
https://doi.org/10.1145/3079856.3080223
https://doi.org/10.46586/tches.v2021.i4.676-707
https://doi.org/10.46586/tches.v2021.i4.676-707
https://doi.org/10.1016/j.comnet.2021.108693
https://doi.org/10.1016/j.diin.2019.04.012
https://doi.org/10.1016/j.diin.2019.04.012
https://doi.org/10.1007/s13389-016-0120-y
https://doi.org/10.1007/s13389-016-0120-y
https://github.com/unix-thrust/beurk
https://github.com/unix-thrust/beurk

ULTRA: Ultimate Rootkit Detection over the Air RAID 2022, October 26–28, 2022, Limassol, Cyprus

APPENDICES
Bait specification

Algorithm 1 Algorithm of bait 𝛽𝑖
Require: 𝑐 ≥ 1

𝛽 (𝑖, 𝑎𝑟𝑔𝑠, 𝑐) : ⊲ 𝑖: index, 𝑎𝑟𝑔𝑠: arguments, c: iterations
𝐶 ← 𝑐

while 𝐶 > 0 do
𝛽𝑖 (𝑎𝑟𝑔𝑠)
𝐶 ← 𝐶 − 1

end while

Table 13: Tuned iteration configuration values (𝑐) for bait
corresponding with the targeted devices.

Devices 𝛿
Baits 𝛽𝑖 Raspberry Ci20
getdents 5000 3000
readir 5000 5000
open 6000 6000
kill 400000 400000
read 225000 200000
write 350000 300000
stat 70000 70000
renameat 50000 50000
tcp 30 30
emu 5 5

Code 1: Network TCP bait script
for i in {1..30};
do (cat /proc/net/tcp > /dev/null)
done

1

2

Figure 6: Hardware keyboard emulator bait consists of one
Blue Pill STM32 board 1 connected to a ST-link v2 2 which
under control of ULTRA host agent.

Probe dislocation

1 2

Figure 7: Invariant to probe position. Framework setup with
2 probes of the same type placing contactless at 2 different
locations placed 10mm above the processor 1 2 .

RAID 2022, October 26–28, 2022, Limassol, Cyprus D.P. Pham et al.

Patch snippet for static string obfuscation

Code 2: Patch diff between original and obfuscated rootkit
to evade static signature
--- m0hamed/rootkit.c
+++ m0hamed-obed/cm9vdGtpdAo.c
-void hide_module(void) {
+void aGlkZV9tb2R1bGUK(void) {

/*snippet*/
-asmlinkage int hacked_getdents(unsigned int

fd, struct linux_dirent *dirp, unsigned
int count)

+asmlinkage int aGFja2VkX2dldGRlbnRzCg(
unsigned int fd, struct linux_dirent *
dirp, unsigned int count)

/*snippet*/
- syscall_table[__NR_getdents] =

hacked_getdents;
+ syscall_table[__NR_getdents] =

aGFja2VkX2dldGRlbnRzCg;
/*snippet*/
- hide_module();
+ aGlkZV9tb2R1bGUK();
/*snippet*/

Neural network architectures

Table 14: MLP architecture

Layer Size Filter Activation
Flatten spectrogram_size _ leaky relu
Dense 500 _ leaky relu
Dense 200 _ leaky relu
Dense 100 _ leaky relu

softmax (multi-class)Dense N _ or sigmoid (two-class)

ULTRA’s bill of materials

Table 15: ULTRA’s bill of materials

Equipment Rate/Unit Count Amount (Euro)
HackRF One SDR 309 1 309
SMA Male BNC Female RG316 5 1 5
Amplifier Langer PA-303 BNC 375 1 375
Probe Langer RF-U 5-2∗ 250 1 250
Total 939
∗ This can be omitted in the case of using a hand-crafted probe.

Enhancement through meaning testing traces

1 3 5 7 9

50

60

70

80

90

100

MLP

1 3 5 7 9

NB

1 3 5 7 9

SVM

number of t per mean

B
a
la

n
ce

d
A

cc
u

ra
cy

(B
A

)

getdents, δci20 getdents, δrasp.

Figure 8: Balanced accuracy (BA) of the Table 5 displaying the
mean process over 𝑡 = [1, 2, . . . 10] samples per class (infected
or clean) in the test dataset.

1 3 5 7 9

50

60

70

80

90

100

MLP

1 3 5 7 9

NB

1 3 5 7 9

SVM

number of t per mean

B
a
la

n
ce

d
A

cc
u

ra
cy

(B
A

)

m→ m, δci20

mo → mo, δci20

m→ mo, δci20

mo → m, δci20

d→ d, δci20

do → do, δci20

d→ do, δci20

do → d, δci20

m→ m, δrasp.

mo → mo, δrasp.

m→ mo, δrasp.

mo → m, δrasp.

d→ d, δrasp.

do → do, δrasp.

d→ do, δrasp.

do → d, δrasp.

Figure 9: Balanced accuracy (BA) of the Table 7 displaying the
mean process over 𝑡 = [1, 2, . . . 10] samples per class (infected
or clean) in the test dataset.

ULTRA: Ultimate Rootkit Detection over the Air RAID 2022, October 26–28, 2022, Limassol, Cyprus

1 3 5 7 9

20

30

40

50

60

70

80

90

100

MLP

1 3 5 7 9

NB

1 3 5 7 9

SVM

number of t per mean

B
a
la

n
ce

d
A

cc
u

ra
cy

(B
A

)

s→ m, swkb, δci20

s→ m, hwkb, δci20

m→ s, swkb, δci20

m→ s, hwkb, δci20

s→ m, swkb, δrasp.

s→ m, hwkb, δrasp.

m→ s, swkb, δrasp.

m→ s, hwkb, δrasp.

Figure 10: Balanced accuracy (BA) of the Table 8 displaying
the mean process over 𝑡 = [1, 2, . . . 10] samples per class (in-
fected or clean) in the test dataset.

1 3 5 7 9

30

40

50

60

70

80

90

100

MLP

1 3 5 7 9

NB

1 3 5 7 9

SVM

number of t per mean

B
a
la

n
ce

d
A

cc
u

ra
cy

(B
A

)

S0 S1

Figure 11: Balanced accuracy (BA) of the Table 9 displaying
the mean process over 𝑡 = [1, 2, . . . 10] samples per class (in-
fected or clean) in the test dataset.

1 3 5 7 9

50

60

70

80

90

100

MLP

1 3 5 7 9

NB

1 3 5 7 9

SVM

number of t per mean

B
a
la

n
ce

d
A

cc
u

ra
cy

(B
A

)

N → Q, δci20

Q→ N , δci20

N → N , δci20

N → Q, δrasp.

Q→ N , δrasp. N → N , δrasp.

Figure 12: Balanced accuracy (BA) of the Table 10 displaying
the mean process over 𝑡 = [1, 2, . . . 10] samples per class (in-
fected or clean) in the test dataset.

1 3 5 7 9

50

60

70

80

90

100

MLP

1 3 5 7 9

NB

1 3 5 7 9

SVM

number of t per mean

B
a
la

n
ce

d
A

cc
u

ra
cy

(B
A

)

{0, 0} → {0, 0}
{0, 0} → {1, 0}

{0, 0} → {2, 1} {1, 0} → {1, 0} {2, 1} → {2, 1}

Figure 13: Balanced accuracy (BA) of the Table 12 displaying
the mean process over 𝑡 = [1, 2, . . . 10] samples per class (in-
fected or clean) in the test dataset.

RAID 2022, October 26–28, 2022, Limassol, Cyprus D.P. Pham et al.

Algorithm 2 Bandwidth extraction procedure

1: nicv = NICV (learning_set) ∈ R𝐹×𝐷 ⊲ the learning set is composed of labed spectrogram of dimension 𝐹 × 𝐷
2: max_nicv = max𝐷 (nicv) ∈ R𝐹
3: sorted_bandwidth = argsort (max_nicv)

4: last_added = 0 ⊲ use as stopping criterion
5: current_acc = 0
6: current_bandwidth = sorted_bandwidth [0] ⊲ start with the bandwidth with the highest NICV

7: while last_added < len (sorted_bandwidth) do
8: compute model of the𝑚 on current_bandwidth of the learning_set ⊲ ML or DL learning phase
9: tmp_res = eval (𝑚, current_bandwidth of the validating_set) ⊲ evaluate the model accuracy on the validating set
10: if tmp_res > current_res then
11: remove first element of sorted_bandwidth ⊲ the last added bandwidth will be concerved in the optimal list
12: last_added = 0 ⊲ to test all remaining bandwidth with the current optimal list
13: current_res = tmp_res
14: else
15: put the first element of sorted_bandwidth to its end
16: last_added += 1
17: end if
18: add to the current_bandwidth the first sorted_bandwidth
19: end while

20: if len (sorted_bandwidth) > 0 then
21: remove last added element of current_bandwidth ⊲ the last added is not part of the optimal selection
22: end if
23: return current_bandwidth

Table 16: Classification scenario distinguishing kernel-space and user-space rootkits in (𝑆0), then in (𝑆1) we add benign samples.

𝛿ci20 𝛿rasp.

KPCA + NB KPCA + SVM KPCA + NB KPCA + SVM

Scenario BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR BA [𝜖opt] TPR TNR
𝑆0 100[95] 100 100 97.6[95] 97.6 97.6 82.7[1] 86.8 82.7 98.4[5] 98.4 98.4
𝑆1 99.2[50] 99.2 99.2 96.5[25] 96.5 96.5 65.9[9] 74.3 65.9 90.5[8] 91.4 90.5

ULTRA: Ultimate Rootkit Detection over the Air RAID 2022, October 26–28, 2022, Limassol, Cyprus

beu
rk

a
d
o
re

vla
n

y

MLP on δci20

beurk

adore

vlany

100

91.1

80.4

91.7

100

96.5

99.6

58.1

100

P
ro

fi
li

n
g

o
n

beu
rk

a
d
o
re

vla
n

y

KPCA + NB on δci20

100

50.3

100

82.4

100

100

74.9

51.2

100

testing on

beu
rk

a
d
o
re

vla
n

y

KPCA + SVM on δci20

100

50.8

99.5

100

100

100

65.5

52.7

100

MLP on δrasp.

beurk

adore

vlany

100

94.7

62.1

100

100

50.0

84.0

55.6

95.9

KPCA + NB on δrasp.

100

100

69.6

98.2

100

59.1

84.4

65.0

100

KPCA + SVM on δrasp..

100

92.8

60.1

100

100

53.1

88.0

56.0

100 0

20

40

60

80

100

(a) 𝛽 = {tcp}

beu
rk

a
d
o
re

vla
n

y

MLP on δci20

beurk

adore

vlany

100

100

100

95.8

100

100

63.4

65.0

100

P
ro

fi
li

n
g

o
n

beu
rk

a
d
o
re

vla
n

y

KPCA + NB on δci20

100

51.0

97.5

99.5

99.6

95.5

100

50.0

100

testing on

beu
rk

a
d
o
re

vla
n

y

KPCA + SVM on δci20

100

50.6

100

100

99.6

100

100

50.3

100

MLP on δrasp.

beurk

adore

vlany

100

78.8

51.0

100

100

56.4

65.2

53.7

94.6

KPCA + NB on δrasp.

99.5

80.3

61.5

99.5

100

94.4

73.4

53.5

99.6

KPCA + SVM on δrasp..

99.0

87.9

50.7

93.9

100

71.3

96.3

56.7

100 0

20

40

60

80

100

(b) 𝛽 = {readir}

m
0
h
a
m

ed

beu
rk

a
d
o
re

vla
n

y

MLP on δci20

m0hamed

beurk

adore

vlany

100

50.0

100

50.0

50.0

100

99.0

96.9

62.9

95.2

100

50.0

50.0

100

59.4

100

P
ro

fi
li
n
g

o
n

m
0
h
a
m

ed

beu
rk

a
d
o
re

vla
n

y

KPCA + NB on δci20

100

50.1

50.0

50.0

50.0

100

50.0

90.5

58.9

69.1

100

50.2

50.0

100

50.0

100

testing on

m
0
h
a
m

ed

beu
rk

a
d
o
re

vla
n

y

KPCA + SVM on δci20

100

50.0

50.0

50.0

100

100

51.8

100

100

75.9

100

50.6

66.8

100

54.0

100

MLP on δrasp.

m0hamed

beurk

adore

vlany

100

100

58.3

79.8

100

100

98.6

99.6

100

100

100

100

100

100

86.3

100

KPCA + NB on δrasp.

100

98.1

59.6

97.9

100

100

79.4

100

100

100

100

100

100

100

65.4

100

KPCA + SVM on δrasp..

100

77.2

51.7

89.1

100

100

82.8

100

100

100

100

100

100

100

54.0

100
0

20

40

60

80

100

(c) 𝛽 = {open}

Figure 14: Novelty rootkit detection. Same description as the Fig. 4, but with differents baits 𝛽 .

	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Rootkits
	3.2 Software defined radios (SDR)
	3.3 Dimension reduction and features extraction techniques

	4 ULTRA:Ultimate Rootkit Detection over the Air framework
	4.1 Threat model and methodology
	4.2 Dataset
	4.3 Baits to trigger rootkit hooks

	5 Practical use case of ULTRA
	5.1 Target devices
	5.2 Data aquisition
	5.3 Detection and classification framework

	6 Results and Discussion
	6.1 Scenarios and metrics
	6.2 Results
	6.3 Discussion

	7 CONCLUSIONS AND PERSPECTIVES
	References

