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Non-Gaussian diffusion near surfaces

We study the diffusion of particles confined close to a single wall and in double-wall planar channel geometries where the local diffusivities depend on the distance to the boundaries. Displacement parallel to the walls is Brownian as characterized by its variance, but it is non-Gaussian having a nonzero fourth cumulant. Establishing a link with Taylor dispersion, we calculate the fourth cumulant and the tails of the displacement distribution for general diffusivity tensors along with potentials generated by either the walls or externally, for instance gravity. Experimental and numerical studies of the motion of a colloid in the direction parallel to the wall give measured fourth cumulants which are correctly predicted by our theory. Interestingly, contrary to models of Brownian-yet-non-Gaussian diffusion, the tails of the displacement distribution are shown to be Gaussian rather than exponential. All together, our results provide additional tests and constraints for the inference of force maps and local transport properties near surfaces.

The transport properties of colloidal particles in complex media can be very different from those observed in simple fluids. In the bulk of simple fluids, beyond molecular length and time scales, the motion of a colloidal particle satisfies two important properties: (i) its Mean Squared Displacement (MSD) increases linearly with time (diffusive behavior) and (ii) the probability distribution functions (PDF) of position increments are Gaussian. In complex media, exhibiting dynamical and spatial heterogeneities, or in presence of flows or active forces, both properties (i) and (ii) are generally not satisfied. Examples range from non-Gaussian transport in hydrodynamic flows, with consequences for chemical delivery in microfluidic environments [START_REF] Aminian | How boundaries shape chemical delivery in microfluidics[END_REF], to experimental observations of anomalous diffusion in complex fluids and biological media [START_REF] Bressloff | Stochastic models of intracellular transport[END_REF][START_REF] Höfling | Anomalous transport in the crowded world of biological cells[END_REF][START_REF] Ernst | Fractional brownian motion in crowded fluids[END_REF][START_REF] Tolić-Nørrelykke | Anomalous diffusion in living yeast cells[END_REF][START_REF] Shen | Single particle tracking: from theory to biophysical applications[END_REF].

Colloidal dynamics in a large class of complex media can be described as either Fickian-yet-non-Gaussian, anomalous-yet-Brownian or Brownian-yet-Non-Gaussian Diffusion (BNGD). [START_REF] Wang | Anomalous yet brownian[END_REF][START_REF] Wang | When brownian diffusion is not gaussian[END_REF][START_REF] Skaug | Intermittent molecular hopping at the solid-liquid interface[END_REF][START_REF] Leptos | Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms[END_REF][START_REF] Guan | Even hard-sphere colloidal suspensions display fickian yet non-gaussian diffusion[END_REF][START_REF] Chakraborty | Disorder-induced fickian, yet non-gaussian diffusion in heterogeneous media[END_REF]. These terms all refer to processes with linear-in-time MSDs but non-Gaussian PDFs, usually having exponential tails. A generic explanation for this phenomenon is the diffusing-diffusivity mechanism Ref. [START_REF] Chubynsky | Diffusing diffusivity: A model for anomalous, yet brownian, diffusion[END_REF]. In this scenario, BNGD is generated by a fluctuating diffusion constant, arising for example from fluctuations of the local density or of the gyration radius of complex macromolecules [START_REF] Yamamoto | Universal relation between instantaneous diffusivity and radius of gyration of proteins in aqueous solution[END_REF]. The diffusingdiffusivity mechanism has been further explored [START_REF] Chechkin | Brownian yet non-gaussian diffusion: from superstatis-tics to subordination of diffusing diffusivities[END_REF][START_REF] Sposini | First passage statistics for diffusing diffusivity[END_REF][START_REF] Lanoiselée | Diffusionlimited reactions in dynamic heterogeneous media[END_REF][START_REF] Lanoiselée | A model of nongaussian diffusion in heterogeneous media[END_REF][START_REF] Jain | Diffusion in a crowded, rearranging environment[END_REF][START_REF] Jain | Diffusing diffusivity: survival in a crowded rearranging and bounded domain[END_REF][START_REF] Yin | Non-gaussian normal diffusion in low dimensional systems[END_REF][START_REF] Miotto | Length scales in brownian yet non-gaussian dynamics[END_REF][START_REF] Hidalgo-Soria | Hitchhiker model for laplace diffusion processes[END_REF], but in most studies the assumptions invoked for the dynamically evolving diffusivity are generic but rather phenomenological. To the best of our knowledge, with the exception of the Brownian motion of an ellipsoidal particle [START_REF] Han | Brownian motion of an ellipsoid[END_REF][START_REF] Munk | Effective perrin theory for the anisotropic diffusion of a strongly hindered rod[END_REF][START_REF] Czajka | Effects of hydrodynamic interactions on the near-surface diffusion of spheroidal molecules[END_REF], there is currently no experimental realization of a system exhibiting fluctuating diffusivity at all times where the local diffusivity is quantified both experimentally, numerically and theoretically over broad spatial and temporal ranges.

In this Letter, we study the non-Gaussian diffusive motion of a colloidal particle near a hard wall. Hydrodynamic interactions at walls strongly modify the stochastic motion of neighboring objects [START_REF] Felderhof | Effect of the wall on the velocity autocorrelation function and long-time tail of brownian motion[END_REF][START_REF] Elgeti | Physics of microswimmers-single particle motion and collective behavior: a review[END_REF][START_REF] Jeney | Anisotropic memory effects in confined colloidal diffusion[END_REF][START_REF] Huang | Effect of interfaces on the nearby brownian motion[END_REF][START_REF] Choudhury | Active colloidal propulsion over a crystalline surface[END_REF][START_REF] Hertlein | Direct measurement of critical casimir forces[END_REF][START_REF] Helden | Direct measurement of thermophoretic forces[END_REF]. The local diffusivity parallel to the wall depends on the distance to the wall which itself fluctuates due to diffusion perpendicular to the wall, thus generating the diffusing-diffusivity mechanism. Note that a similar situation was previously considered in Ref. [START_REF] Matse | Test of the diffusing-diffusivity mechanism using near-wall colloidal dynamics[END_REF], but that study mainly focused on the motion perpendicular to the wall: in this case, the non-Gaussian behavior due to diffusing diffusivity can be observed only at small times, since at long times the presence of an interaction potential with the wall induces non-Gaussian displacements -even for uniform diffusivity. Furthermore, the non-Gaussianity of the motion in the parallel direction could not be resolved in Ref [START_REF] Matse | Test of the diffusing-diffusivity mechanism using near-wall colloidal dynamics[END_REF]. Here, we focus on the motion parallel to the wall which is a genuine realization of diffusing diffusivity at all times. Our theoretical analysis identifies a formal link with Taylor dispersion. In particular, we provide a calculation, that we verify experimentally and numerically, of the fourth cumulant of the displacement along the walls, which quantifies non-Gaussianity at all times. We also show that the tails of the PDF are Gaussian rather than exponential.

Physical model. We consider a Brownian particle of radius a that is confined between two walls separated by a distance 2H p , as shown in Fig. 1. The particle diffuses along the channel (i.e. the x-axis) and perpendicularly to it (i.e. the z-axis) with respective height-dependent diffusion coefficients D ∥ (z) and D ⊥ (z), and is subject to a potential V (z). The probability density p(z, t) about z at time t thus obeys the Fokker-Planck equation ∂ t p = -Hp(z, t), where

H• = - ∂ ∂z D ⊥ (z) ∂ ∂z • +β ∂V (z) ∂z • , (1) 
with β = 1/(k B T ), where k B is Boltzmann's constant and T is the temperature. We assume no-flux conditions at the walls. In the long-time limit, the system equilibrates along the z direction and attains a Gibbs-Boltzmann distribution (see Fig. 2(a)):

p 0 (z) = e -βV (z) H -H e -βV (z ′ ) dz ′ . (2) 
We denote by Z t ∈ [-H, H] the height of the center of the particle, H = H p -a the effective channel height available to the particle, and X t the position of the center of the particle along the channel. The second and fourth cumulants

⟨X 2 t ⟩ c ≡ ⟨X 2 t ⟩, ⟨X 4 t ⟩ c ≡ ⟨X 4 t ⟩ -3⟨X 2 t ⟩ 2 , (3) 
characterize the transport properties of the particle.

Here, ⟨•⟩ denotes the ensemble average, and the initial condition is X t=0 = 0, while Z t=0 follows the equilibrium distribution p 0 . Note that ⟨X 4 t ⟩ c vanishes if X t is Gaussian, therefore its evaluation is the simplest way to quantify the non-Gaussian nature of the process X t . We also define the related non-Gaussianity parameter

α(t) ≡ ⟨X 4 t ⟩ c /⟨X 2 t ⟩ 2 c
. General theory. The process X t obeys the stochastic differential equation:

dX t = 2D ∥ (Z t )dB x,t , (4) 
where the Gaussian increments dB x,t have ⟨dB x,t ⟩ = 0 and ⟨dB 2 x,t ⟩ = dt. In Eq. ( 4), we use the Ito prescription of the stochastic calculus, however D ∥ (Z t ) is independent of X t and so this choice is unimportant. Integrating Eq. ( 4) gives

X t = t 0 2D ∥ (Z τ )dB x,τ . (5) 
Squaring this and using the independence of dB x,t and Z t , then taking the average yields

⟨X 2 t ⟩ c ≡ ⟨X 2 t ⟩ = 2t H -H dz D ∥ (z)p 0 (z) = 2 D ∥ 0 t , (6) 
where ⟨•⟩ 0 denotes the average with respect to the equilibrium distribution p 0 (z). The MSD is purely linear in time, so that X t is Brownian at all times. Taking the fourth-power of Eq. ( 5) and using Wick's (or Isserlis') theorem [START_REF] Coffey | The Langevin equation: with applications to stochastic problems in physics[END_REF] gives [39]

⟨X 4 t ⟩ c 12 = t 0 ds t 0 ds ′ [⟨D ∥ (Z s )D ∥ (Z s ′ )⟩ -⟨D ∥ ⟩ 2 0 ]. (7) 
Here, we draw an analogy with Taylor dispersion, for the dispersion of particles in channels in presence of hydrodynamic flows. We imagine the same process Z t , but consider the convective displacement given along the channel by Y t = t 0 ds u(Z s ), where u(z) is an arbitrary imposed flow field along the channel. The first two cumulants of Y t in this problem are

⟨Y t ⟩ c = ⟨u⟩ 0 t, ⟨Y 2 t ⟩ c = t 0 ds t 0 ds ′ [⟨u(Z s )u(Z s ′ )⟩ -⟨u⟩ 2 0 ]. (8) 
Comparing the above expressions with Eqs. ( 6) and [START_REF] Wang | Anomalous yet brownian[END_REF] we see that the second and fourth cumulants of X t are proportional to the average and the variance of Y t in a Taylor dispersion problem with the formal correspondence u(z) = D ∥ (z). Taylor dispersion has been widely studied [START_REF] Barton | On the method of moments for solute dispersion[END_REF][START_REF] Biswas | Taylor dispersion with absorbing boundaries: A stochastic approach[END_REF][START_REF] Vedel | Time-dependent tayloraris dispersion of an initial point concentration[END_REF][START_REF] Li | Near-wall nanovelocimetry based on total internal reflection fluorescence with continuous tracking[END_REF][START_REF] Guérin | Force-induced dispersion in heterogeneous media[END_REF][START_REF] Guérin | Kubo formulas for dispersion in heterogeneous periodic nonequilibrium systems[END_REF][START_REF] Vilquin | Time dependence of advection-diffusion coupling for nanoparticle ensembles[END_REF][START_REF] Brenner | Macrotransport Processes[END_REF][START_REF] Mercer | A complete model of shear dispersion in pipes[END_REF][START_REF] Balakotaiah | Dispersion of chemical solutes in chromatographs and reactors[END_REF][START_REF] Marbach | Active control of dispersion within a channel with flow and pulsating walls[END_REF][START_REF] Watt | The accurate dynamic modelling of contaminant dispersion in channels[END_REF][START_REF] Alexandre | Generalized Taylor dispersion for translationally invariant microfluidic systems[END_REF], and we can exploit existing results for the MSD at all times from Ref. [START_REF] Alexandre | Generalized Taylor dispersion for translationally invariant microfluidic systems[END_REF], yielding the explicit expression:

⟨X 4 t ⟩ c = 24 H -H dz H -H dz ′ D ∥ (z)D ∥ (z ′ )p 0 (z ′ ) × λ>0 t λ - 1 -e -λt λ 2 ψ Rλ (z)ψ Lλ (z ′ ) , (9) 
where ψ Rλ (z) and ψ Lλ (z) respectively denote the right and left eigenfunctions of H, with eigenvalue λ, and the normalization

H -H dz ψ Lλ (z)ψ Rλ (z) = 1.
In practice, this general expression can be evaluated by numerically computing the eigenfunctions after discretizing the operator H. This formula simplifies at short times into (see SI [39]):

X 4 t c ≃ t→0 12 t 2 D 2 ∥ 0 -D ∥ 2 0 . ( 10 
)
We see that the initial non-Gaussianity parameter α(t = 0) is finite and is proportional to the variance of D ∥ (z) with respect to the equilibrium distribution, as in Ref. [START_REF] Chubynsky | Diffusing diffusivity: A model for anomalous, yet brownian, diffusion[END_REF]. The late-time behavior is (see SI [39]) 17) and [START_REF] Lanoiselée | A model of nongaussian diffusion in heterogeneous media[END_REF]. (c) Experimentally-measured second cumulant ⟨X 2 t ⟩c. The solid line corresponds to Eq. ( 6), with ⟨D ∥ ⟩0 = 0.58 D0. The slope triangle indicates an exponent 1. (d) Experimentally-measured (green stars) and numericallysimulated (blue dots) fourth cumulant ⟨X 4 t ⟩c. The red solid line represents the prediction of Eq. ( 9), while the black dashed and dotted lines are its short-time and long-time asymptotics of Eqs. [START_REF] Leptos | Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms[END_REF] and [START_REF] Guan | Even hard-sphere colloidal suspensions display fickian yet non-gaussian diffusion[END_REF], with no adjustable parameter. The slope triangles indicate exponents 2 and 1. (e) Non-Gaussianity parameter α ≡ ⟨X 4 t ⟩c/⟨X 2 t ⟩ 2 c as a function of time t, computed from the data and theoretical predictions in (c) and (d). The red dashed line shows the predicted ∼ 1/t decay (see SI [39]). (f) PDF in horizontal displacement, at time increment t = 0.01 s, from experiments (green stars) and numerical simulations (blue dots). The Gaussian tail predicted in Eq. (S45) (see SI [39]) is also shown (solid line), as well as a simple Gaussian distribution (dashed line) with the proper mean and variance of the data.

⟨X 4 t ⟩ c ≃ t→+∞ 24 (D 4 t -C 4 ) , (11) 
where the explicit expression of C 4 is given in the Sup-plementary Information (SI) [39], and where:

D 4 = J(z)e βV (z) 2 D ⊥ (z) 0 , (12) 
with:

J(z) = z -H dz ′ e -βV (z ′ ) D ∥ (z ′ ) -⟨D ∥ ⟩ 0 . (13) 
From the above we see that the non-Gaussianity parameter satisfies α(t) ∝ 1/t, for large t. Analytic strong confinement theory. We consider the case of a narrow channel where we approximate the local diffusion coefficients by the quadratic expressions [39, [START_REF] Lau | State-dependent diffusion: Thermodynamic consistency and its path integral formulation[END_REF][START_REF] Avni | Brownian motion of a charged colloid in restricted confinement[END_REF]:

D ⊥ (z) ≈ D ⊥0 1 - z 2 H 2 , D ∥ (z) ≈ D ||0 1 - z 2 H 2 s , (14) 
where H s is a characteristic distance that can be considered as a slip-like length if H s > H. The coefficients D ⊥0 and D ||0 depend on the effective channel height H and on the particle radius a. In principle, the no-slip boundary condition must impose that D ∥ (z) is zero at the walls, which would imply that H s = H. However, numerically, D ∥ (z) is found to be quadratic near the channel center and decays rapidly to zero near the walls [39,[START_REF] Avni | Brownian motion of a charged colloid in restricted confinement[END_REF]. Here, Eq. ( 9) can be evaluated by noting that the eigenfunctions are the Legendre polynomials P n (z/H) of degree n, leading to:

⟨X 4 t ⟩ c 24 = 2D 2 ||0 H 6 t 135D ⊥0 H 4 s - D 2 ||0 H 8 1 -e -6D ⊥0 t H 2 405D 2 ⊥0 H 4 s . (15) 
In this model, there is only one relaxation time, equal to the time for the particle to diffuse perpendicularly. This result can be generalized to arbitrary D ∥ (z), keeping the same form of D ⊥ , in which case many relaxation times appear (see SI [39]). The non-Gaussianity is such that α(0) = (12H 4 )/(5(3H 2 s -H 2 ) 2 ) and is thus of order one. At short times, if one takes H s = H then α(0) = 3/5.

Experimental system. A polystyrene bead, with radius a = 1.519 ± 0.009 µm diffuses in an aqueous NaCl solution confined between two glass walls. Its trajectory is tracked in three dimensions using Mie holography [START_REF] Lavaud | Stochastic inference of surface-induced effects using brownian motion[END_REF]. Here, H p = 40 µm, so that H p ≫ a. The density mismatch of the particle is chosen such that the particle is visibly localized near the lower wall due to gravity (see Fig. 2(a)). So, the effect of the upper wall is negligible both in terms of hydrodynamic and conservative forces. The bead is submitted to a potential:

βV (z) = B e -H+z l D + B e -H-z l D + z l B . ( 16 
)
The first two terms of the right-hand side are the screened electrostatic interactions between the negatively-charged surfaces of the walls and the bead, as given mean-field theory [START_REF] Israelachvili | Intermolecular and surface forces[END_REF], where l D is the Debye length and B is a dimensionless number depending in particular on the wall and bead surface charges. We have used the superposition approximation, valid for gaps large compared to l D so that the two potentials can be simply summed. The third term accounts for gravity: l B = k B T /( 4 3 πa 3 ∆ρg) is the Boltzmann length, with g the gravitational acceleration, and ∆ρ the density mismatch between the polystyrene bead and the solution. Equations ( 2) and ( 16) are used to fit the experimentally measured equilibrium distribution p 0 (z). The agreement is good with B = 5.0 ± 0.3, l D = 88 ± 2 nm and l B = 526 ± 5 nm, as shown in Fig. 2(a). Assuming a perfect sphere, the value of l B gives a density mismatch ∆ρ = 53 kg/m 3 , which is within 5% error of the tabulated value of 50 kg/m 3 .

Moving on to hydrodynamic interactions, D ∥ and D ⊥ are inferred from the experimentally observed trajectories [START_REF] Lavaud | Stochastic inference of surface-induced effects using brownian motion[END_REF]39] and are shown in Fig. 2(b). The results agree with the Stokes-Einstein relations

D i (z) = k B T /[6πaµ i (z)]
, where i ∈ {∥, ⊥} and where µ i are the components of the effective viscosity tensor [START_REF] Brenner | The slow motion of a sphere through a viscous fluid towards a plane surface[END_REF]. The transverse component reads [START_REF] Faxen | Die bewegung einer starren kugel langs der achse eines mit zaher flussigkeit gefullten rohres[END_REF]:

µ ∥ (z) = µ 0 1 - 9 16 ζ + 1 8 ζ 3 - 45 256 ζ 4 - 1 16 ζ 5 -1 , (17) 
with ζ = a/(z + H p ), and where µ 0 is the bulk viscosity. The normal component was derived in Ref. [START_REF] Brenner | The slow motion of a sphere through a viscous fluid towards a plane surface[END_REF] as an infinite sum, which can be Padé-approximated to within 1% numerical accuracy by [START_REF] Bevan | Hindered diffusion of col-loidal particles very near to a wall: Revisited[END_REF] µ

⊥ (z) = µ 0 6 (z + H) 2 + 9a (z + H) + 2a 2 6 (z + H) 2 + 2a (z + H) . (18) 
These expressions, through the associated diffusion coefficients, are in agreement with the experimental data at room temperature and with µ 0 = 1 mPa.s for water, as shown in Fig. 2(b). Combined with the previouslymentioned equilibrium properties (see Eq. ( 16)), they can thus be used as inputs to compute the theoretical values of the fourth cumulant of X t .

Comparison with theory. Experimentally, the displacements X t are used to estimate ⟨X 2 t ⟩ c and ⟨X 4 t ⟩ c , computed using the method of sliding averages described in SI [39] and leading to Figs. 2(c,d). First, the effective diffusion constant, ⟨D ∥ ⟩ 0 defined in Eq. ( 6), is given numerically by ⟨D ∥ ⟩ 0 = 0.58 D 0 , where D 0 = k B T /(6πaµ 0 ) is the bulk diffusion constant. This is in agreement with the experimental data shown in Fig. 2(c). Secondly, the short-time theoretical prediction in Eq. ( 10) correctly predicts the experimental data for ⟨X 4 t ⟩ c , with no adjustable parameter (see Fig. 2(d)). Lack of data at long times makes it difficult to check the late-time prediction given by Eq. ( 11). This result can however be verified through numerical simulations, as shown in Fig. 2(d), where the simulation details are given in SI [39]. The whole range of experimental and numerical data can be reproduced, up to error bars, by the exact prediction of Eq. ( 9), where the eigenfunctions and eigenvalues of H are computed numerically. We thus have a wellcontrolled experimental system with a MSD that is linear in time, at all times, as well as non-Gaussian statistics.

Distribution of displacements. We now study the PDF p(x, t) of the displacement x at time t, in order to determine in particular whether or not it displays apparent exponential tails, as often observed in BNGD [START_REF] Wang | Anomalous yet brownian[END_REF][START_REF] Wang | When brownian diffusion is not gaussian[END_REF][START_REF] Chakraborty | Disorder-induced fickian, yet non-gaussian diffusion in heterogeneous media[END_REF][START_REF] Chechkin | Brownian yet non-gaussian diffusion: from superstatis-tics to subordination of diffusing diffusivities[END_REF][START_REF] Miotto | Length scales in brownian yet non-gaussian dynamics[END_REF][START_REF] Chaudhuri | Universal nature of particle displacements close to glass and jamming transitions[END_REF][START_REF] Rusciano | Fickian Non-Gaussian Diffusion in Glass-Forming Liquids[END_REF][START_REF] Xue | Probing non-Gaussianity in confined diffusion of nanoparticles[END_REF][START_REF] Xue | Diffusion of nanoparticles with activated hopping in crowded polymer solutions[END_REF][START_REF] Pastore | Rapid Fickian yet non-Gaussian diffusion after subdiffusion[END_REF] and other contexts [START_REF] Silva | Exponential distribution of financial returns at mesoscopic time lags: a new stylized fact[END_REF]. We consider a class of systems bounded in the z direction, with a single maximum in D || (z), as is the case in our simulations, experiments and the simple channel model. First, at short times, it is well known [START_REF] Chubynsky | Diffusing diffusivity: A model for anomalous, yet brownian, diffusion[END_REF][START_REF] Chechkin | Brownian yet non-gaussian diffusion: from superstatis-tics to subordination of diffusing diffusivities[END_REF][START_REF] Han | Brownian motion of an ellipsoid[END_REF][START_REF] Lavaud | Stochastic inference of surface-induced effects using brownian motion[END_REF] that

p(x, t) ≃ H -H dz p 0 (z) e -x 2 /[4D ∥ (z)t] 4πD ∥ (z)t . ( 19 
)
An analysis of this expression shows that, for large x, one has p(x, t) ≃ Ae -x 2 /4D || (z * )t , where z * is the point where D || (z) is maximal. In SI [39], we compute A, and we show in Fig. 2(f) that such a Gaussian tail is quantitatively recovered in the numerical simulations and experiments. At late times, the PDF can be analysed using its moment-generating function g(q, t) = ⟨e qXt ⟩, which reads: g(q, t) = e q t 0 dBx,s

√ 2D ∥ (Zs) = e q 2 t 0 dsD ∥ (Zs) , (20) 
where the last equality is obtained by averaging over the Gaussian noise dB x,s . Interestingly, g(q, t) = ⟨e q 2 Yt ⟩ is related to the moment-generating function for the abovementioned Taylor dispersion problem. We can thus use the tools introduced in the context of Taylor dispersion [START_REF] Haynes | Dispersion in the largedeviation regime. part 2. cellular flow at large péclet num-ber[END_REF][START_REF] Haynes | Dispersion in the largedeviation regime. part 1: shear flows and periodic flows[END_REF][START_REF] Kahlen | Large deviations in taylor dispersion[END_REF] to obtain the extreme tails of p(x, t) at long times, with p(x, t) ∼ e -tf (x/t) . By extreme tails, we mean that ξ = x/t is O(1), thus far from the diffusive scaling limit at late times where x/ √ t is O(1). In SI [39], we show that for large ξ,

f (ξ) = 1 4D || (z * )   ξ + sgn(ξ) |D ′′ || (z * )|D ⊥ (z * ) 2   2 . (21) 
The paths contributing to f (ξ) in this regime stay close to the region of maximal diffusivity, but they are rare and are exponentially suppressed with respect to paths which scale diffusively. The presence of Gaussian tails is thus generic for the class of problems studied here, and the exponential tails seen in other diffusing-diffusivity models [START_REF] Chubynsky | Diffusing diffusivity: A model for anomalous, yet brownian, diffusion[END_REF] are absent. The fact that D ∥ (z) has a maximal value is the main difference between our system and those considered in Ref. [START_REF] Chubynsky | Diffusing diffusivity: A model for anomalous, yet brownian, diffusion[END_REF], where the diffusion constant is unbounded. In fact, it was already noted in Ref. [START_REF] Chubynsky | Diffusing diffusivity: A model for anomalous, yet brownian, diffusion[END_REF] that the PDF tails are generally not strictly exponential, depending on the local diffusivity distribution. The Gaussian tails in our system contrast with the case of Continuous Time Random Walks [START_REF] Barkai | Packets of diffusing particles exhibit universal exponential tails[END_REF], and diffusion in confined disordered media [START_REF] Chakraborty | Disorder-induced fickian, yet non-gaussian diffusion in heterogeneous media[END_REF][START_REF] Xue | Probing non-Gaussianity in confined diffusion of nanoparticles[END_REF][START_REF] Xue | Diffusion of nanoparticles with activated hopping in crowded polymer solutions[END_REF] or glassy [START_REF] Chaudhuri | Universal nature of particle displacements close to glass and jamming transitions[END_REF][START_REF] Rusciano | Fickian Non-Gaussian Diffusion in Glass-Forming Liquids[END_REF] systems, where exponentials tails are present. These situations tend to involve trapping, hoping or caging mechanisms (possibly due to heterogeneities) which are absent in our system.

The late-time corrections to Gaussianity in the diffusive-scaling region are dominated by the fourthorder cumulant, which gives a correction to the PDF that decays as ∼ 1/t (see SI [39]). Finally, replacing q = -ik in Eq. ( 20) gives the Fourier transform p(k, t) = ∞ -∞ dx e -ikx p(x, t). This can be computed numerically (see SI [39]). Taking the inverse Fourier transform gives a numerical evaluation of p(x, t) in good agreement with the numerical and experimental PDFs (see Fig. S2 in SI [39]). We have also examined the case where the channel width is much smaller (H p = 5.5 µm). Similar effects are seen, but the asymptotic regime of linear temporal growth of the fourth cumulant is attained much more quickly.

Conclusion. We have addressed a physical realization of diffusing-diffusivity motion based on confined colloids by establishing a mapping onto Taylor dispersion, where the diffusivity formally corresponds to a flow field. This analogy gives quantitative predictions for the diffusion along the channel, which agree with experimental and numerical data with no additional fitting parameter apart from the physical ones obtained independently in the experiments. We have also shown that the tails of the PDF are not exponential but modified Gaussian in this generic class of models, both at short and long times. One should note that the effective diffusion constant along the channel only depends on the equilibrium properties of the process normal to the wall, and is otherwise independent of its dynamics. The fourth cumulant however depends on the precise details of the dynamics via the two-point probability density functions. The fourth cumulant thus carries extra information on the dynamics, and, as such, appears to be a key statistical observable that can further contribute to improve the experimental resolution for the inference of force maps and local transport properties in heterogeneous environments [START_REF] Serov | Statistical tests for force inference in heterogeneous environments[END_REF][START_REF] Frishman | Learning force fields from stochastic trajectories[END_REF] and near surfaces [START_REF] Lavaud | Stochastic inference of surface-induced effects using brownian motion[END_REF].

FIG. 1 .

 1 FIG.1. Schematic: a particle of radius a diffuses in two dimensions, between two walls separated by a distance 2Hp.
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 2 FIG. 2. (a)Experimental long-time PDF p0 for position z, as a function of the distance H + z to the bottom wall. Solid lines show the best fit to the Gibbs-Boltzmann distribution of Eq. (2), using V (z) in Eq. (16), with B = 5.0, lD = 88 nm and lB = 526 nm at room temperature. Here, Hp = 40 µm. Error bars give 95% confidence intervals. (b) Experimentally-measured horizontal (i =∥) and vertical (i =⊥) local diffusion coefficients Di(z), normalized by the bulk value D0. Solid lines are theoretical predictions Di(z) using Eqs. (17) and[START_REF] Lanoiselée | A model of nongaussian diffusion in heterogeneous media[END_REF]. (c) Experimentally-measured second cumulant ⟨X 2 t ⟩c. The solid line corresponds to Eq. (6), with ⟨D ∥ ⟩0 = 0.58 D0. The slope triangle indicates an exponent 1. (d) Experimentally-measured (green stars) and numericallysimulated (blue dots) fourth cumulant ⟨X4 t ⟩c. The red solid line represents the prediction of Eq. (9), while the black dashed and dotted lines are its short-time and long-time asymptotics of Eqs. (10) and[START_REF] Guan | Even hard-sphere colloidal suspensions display fickian yet non-gaussian diffusion[END_REF], with no adjustable parameter. The slope triangles indicate exponents 2 and 1. (e) Non-Gaussianity parameter α ≡ ⟨X 4 t ⟩c/⟨X 2 t ⟩ 2 c as a function of time t, computed from the data and theoretical predictions in (c) and (d). The red dashed line shows the predicted ∼ 1/t decay (see SI[39]). (f) PDF in horizontal displacement, at time increment t = 0.01 s, from experiments (green stars) and numerical simulations (blue dots). The Gaussian tail predicted in Eq. (S45) (see SI[39]) is also shown (solid line), as well as a simple Gaussian distribution (dashed line) with the proper mean and variance of the data.
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