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THEORETICAL FORMALISM

Cumulants of the horizontal displacement

The fourth cumulant is obtained by direct computation

〈X4
t 〉c ≡ 〈X4

t 〉 − 3〈X2
t 〉2 = 12

∫ t

0

ds

∫ t

0

ds′ 〈D‖(Zs)D‖(Zs′)〉 − 〈D‖(Zs)〉〈D‖(Zs′)〉, (S1)

where we have used Wick’s theorem. The translational invariance in the x direction means that all odd cumulants
are zero. The cumulant can be rewritten as

〈X4
t 〉c = 12

∫ t

0

ds

∫ t

0

ds′
〈[
D‖(Zs)−

〈
D‖(Zs)

〉] [
D‖(Zs′)−

〈
D‖(Zs′)

〉]〉
= 12

〈[∫ t

0

ds D‖(Zs)−
〈
D‖(Zs)

〉]2
〉
.

(S2)

The latter equation has the same Kubo-type structure as the second cumulant in the Taylor-dispersion problem [1].
Interestingly, from the last expression in Eq. (S2), we see that 〈X4

t 〉c is always positive values, regardless of the
expression of D‖(z).

To proceed, we introduce the propagator p(z|z′; t), i.e. the probability to go from z′ at time zero to z at time t, for
the process Zt. The propagator obeys

∂p(z|z′; t)
∂t

= −Hp(z|z′; t), (S3)

where the operator H acts on the variable z, and is given by Eq. (1) of the main text, with the initial condition
p(z|z′; 0) = δ(z − z′). In this framework, for the process Xt starting from equilibrium, one has:

〈X4
t 〉c = 24

∫ t

0

ds

∫ s

0

ds′
∫ H

−H
dz D‖(z)

∫ H

−H
dz′D‖(z

′) [p(z|z′; s− s′)− p0(z)] p0(z′). (S4)

We now introduce the left and right eigenfunctions, respectively ψLλ and ψRλ, of H which obey:{
H†ψLλ = λψLλ,
HψRλ = λψRλ,

(S5)

with λ the associated eigenvalue and H† the adjoint operator of H, which is in general not self-adjoint. The solution
of Eq. (S3) for p(z|z′; t) then has the decomposition

p(z|z′; t) =
∑
λ

ψRλ(z)ψLλ(z′) exp(−λt). (S6)

The right eigenfunctions satisfy the no-flux boundary condition{
D⊥(z)

[
dψRλ

dz
+ βV ′(z)ψRλ(z)

]}
z=±H

= 0, (S7)

and one can show [2] that the left eigenfunctions satisfy the Neumann condition: d
dzψLλ(z)|z=±H = 0. The eigenfunc-

tions corresponding to λ = 0 can be written as: ψR0(z) = p0(z) and ψL0(z) = 1, so that they respect the normalization
condition

∫
dz ψR0(z)ψL0(z) = 1. Using this representation of p(z|z′; t) in the Kubo formula of Eq. (S4), the fourth

cumulant can be rewritten as:

〈X4
t 〉c = 24

∫ H

−H
dz

∫ H

−H
dz′D‖(z)D‖(z

′)p0(z′)
∑
λ>0

[
t

λ
− 1

λ2
+

exp(−λt)
λ2

]
ψRλ(z)ψLλ(z′), (S8)

which is Eq. (5) of the main text. In principle, Eq. (S8) can be computed explicitly if the relevant eigenfunctions and
eigenvalues are known, however in most cases they are not known explicitly. Nevertheless, they can still be computed
numerically using standard numerical packages and thus used to predict the full temporal behavior of 〈X4

t 〉c. In
contrast, the short-time and long-time behaviors can be extracted analytically from Eq. (S8), as explained in the
following subsection.
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Asymptotic behavior of the fourth cumulant

In the limit where t→ 0, Eq. (S8) simplifies to

〈X4
t 〉c '

t→0
12 t2

∫ H

−H
dz

∫ H

−H
dz′D‖(z)D‖(z

′)p0(z′)
∑
λ>0

ψRλ(z)ψLλ(z′). (S9)

Furthermore, the completeness relation leads to:∑
λ>0

ψRλ(z)ψLλ(z′) = δ(z − z′)− p0(z). (S10)

Then, Eq. (S9) becomes

〈
X4
t

〉
c
'
t→0

12 t2
[〈
D2
‖

〉
0
−
〈
D‖
〉2

0

]
. (S11)

The short-time behavior of the fourth cumulant is thus quadratic in time, and is proportional to the variance of D‖
with respect to the equilibrium measure.

The fourth cumulant can also be computed in the limit where t→∞, i.e. for t� λ−1
1 , where λ1 is the first non-zero

eigenvalue of H. This is done by using a formulation in terms of Green’s functions [3, 4], which can be shown to be
intimately linked to the macro-transport theory [5]. In this case, Eq. (S8) simplifies to:

〈X4
t 〉c '

t→+∞
24 (D4t− C4) , (S12)

with

D4 =

∫ H

−H
dz

∫ H

−H
dz′D‖(z)D‖(z

′)p0(z′)
∑
λ>0

ψRλ(z)ψLλ(z′)

λ
, (S13)

and

C4 =

∫ H

−H
dz

∫ H

−H
dz′D‖(z)D‖(z

′)p0(z′)
∑
λ>0

ψRλ(z)ψLλ(z′)

λ2
. (S14)

Using the method described in [1] (see Section III. A therein), we obtain

D4 =

〈(
JeβV

)2
D⊥

〉
0

, (S15)

with

J(z) =

∫ z

−H
dz′ exp[−βV (z′)][D‖(z

′)− 〈D‖〉0]. (S16)

This form is particularly useful to carry out numerical computations with arbitrary potentials and diffusion tensors.
One can also show that

C4 =
〈
R2
〉

0
− 〈R〉20 , (S17)

with

R(z) =

∫ z

−H
dz′

J(z′) exp [βV (z′)]

D⊥(z′)
. (S18)
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Analytical solutions

In this part, we consider the simple case where there is no potential and where the channel has a sufficiently narrow
width with respect to the particle size so that the diffusion constant can be taken to vary quadratically within the
channel:

D⊥(z) = D⊥0

(
1− z2

H2

)
, D||(z) = D||0

(
1− z2

H2
s

)
, (S19)

where Hs a characteristic length that can be considered as a diffusive slip length when Hs > H and D⊥ vanishes at
z = ±H. The coefficients D⊥0 and D||0 depend on the effective channel height H and a. The quadratic model of the
diffusion constant in the height direction has been proposed in a theoretical context by a number of authors [6, 7].

In the absence of an external potential, one has p0(z) = (2H)−1 and the effective longitudinal diffusion constant is
given by 〈

D||
〉

0
= D||0

(
1− H2

3H2
s

)
. (S20)

Using the results from section (S15, S17), we find that

D4 =
2D2
||0H

6

135D⊥0H4
s

, C4 =
D2
||0H

8

405D2
⊥0H

4
s

. (S21)

Since the diffusivities show quadratic profiles, a more detailed analysis, involving full time dependence is available. In
fact, the operator H (see Eq. (1)) is self adjoint and its normalized eigenfunctions are given by

ψn(z) =

√
2n+ 1

2H
Pn

( z
H

)
, (S22)

where Pn denotes the nth degree Legendre polynomial, with associated eigenvalue:

λn =
D||0

H2
n(n+ 1). (S23)

If we write D||(z) in terms of Legendre polynomials, we get:

D||(z)

D||0
=

(
1− H2

3H2
s

)
P0

( z
H

)
− 2H2

3H2
s

P2

( z
H

)
. (S24)

From Eq. (S8), the full time dependent behavior of the fourth cumulant is then given by

〈X4
t 〉c

24
=

2D2
||0H

6

135D⊥0H4
s

t−
D2
||0H

8

405D2
⊥0H

4
s

[
1− exp

(
−6D⊥0t

H2

)]
. (S25)

which is Eq. (18) in the main text. From the latter, one can recover the late time corrections given in Eq. (S21).
This solution of the fourth cumulant can be extended to arbitrary expressions of D‖ as long as it can be expressed

on the basis of Legendre polynomials:

D||(z) =

∞∑
n=0

dnPn

( z
H

)
, (S26)

with

dn =
2n+ 1

2

∫ 1

−1

dζ Pn(ζ)D||(ζH). (S27)

The fourth cumulant reads in this general case:

〈X4
t 〉c

24
=
∑
n≥1

[
H2

D⊥0n(n+ 1)
t− H4

D2
⊥0n

2(n+ 1)2
+
H4 exp(−D⊥0

H2 n(n+ 1)t)

D2
⊥0n

2(n+ 1)2

]
d2
n

2n+ 1
. (S28)
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EXPERIMENTAL DETAILS

The experimental data presented in the main text corresponds to spherical polystyrene spheres of nominal radius
1.5 µm purchased from Polybead©. A single sphere is 3-dimensionally tracked using a self-calibrated interferometric
method based on Mie Holography [8].

A previously-calibrated plane wave (wavelength 532 nm) illuminates a dilute sphere suspension. The light scattered
by the interesting sphere interferes with the incident beam in the focal plane of a x100-objective and the interference
pattern, called hologram, is magnified toward a CCD camera. Then, the strong dependency of a hologram on
both the physical properties and the position of the sphere leads to the precise measurement of the aforementioned
characteristics. The first 10000 holograms are fitted to determine the physical properties of the sphere, namely its
radius and optical index. Those physical properties are then set and all the holograms are fitted, leading to the
trajectory of the sphere, and, after its statistical analysis, to the observables depicted in the main text.

The experimental equilibrium PDF p0 shown in Fig. 2(a) of the main text is obtained by binning the z position of
the sphere on a logarithmic normal grid.

The ensemble averages required in the computation of the experimental second and fourth cumulants, defined in the
first equalities of Eqs. (6) and (7) and depicted in Fig. 2(c,d) of the main text, are obtained through sliding temporal
averages, assuming ergodicity:

〈Xn
t 〉 =

1

N

N−1∑
j=0

[x(t+ tj)− x(tj)]
n ≡ 1

N

N−1∑
j=0

[∆x(t | tj)]n , (S29)

where n,N ∈ N, x(t) is the x position of the sphere at time t and tj = j f−1
a with fa = 100 Hz the frame rate of the

acquisition.

The experimental local diffusion coefficients depicted in Fig. 2(b) of the main text are obtained by a stochastic force

inference algorithm [9]. An unbiased estimator d̂ of the local diffusion coefficient in the x direction (the adaptation
to the z direction being straightforward) is built as follows:

d̂(tj) =
[∆x(δt | tj−1) + ∆x(δt | tj)]2

4δt
+

∆x(δt | tj−1)∆x(δt | tj)
2δt

, (S30)

where δt is a chosen multiple of f−1
a and ∆x(δt | tj) is the distance traveled by the sphere over a time δt and starting

at tj . Each of the above values of d̂ corresponds to a given height H + z and their distribution is estimated on a
normal grid {z̃} with a polynomial function basis of order 3

∑
ak(z̃)(H + z)k , in which the ak are real functions.

The accuracy of the method is confirmed a posteriori by the agreement with the theoretical predictions, as shown
in Fig. 2. Besides, note that the first term on the right-hand side of Eq. (S30) arises from the temporal linearity the
MSD (see Eq. (6) of the main text) while the second one is a correction that allows to estimate accurately the local
diffusion coefficients close to the surface (H + z ≤ 100 nm) where the experimental data is not abundant.

Finally, several observables that stem from the sphere’s trajectory – which include the ones described above –
depend on the physical parameters of the system, namely B, lD and lB defined in Eq. (19) of the main text, and are
thus fitted simultaneously to increase the method’s precision.

NUMERICAL SIMULATIONS

We consider hereafter the three overdamped Langevin equations:
dXt =

√
2D‖(Zt) dBx,t,

dYt =
√

2D‖(Zt) dBy,t,

dZt = D′⊥(Zt)dt− βD⊥(Zt)V
′(Zt)dt+

√
2D⊥(Zt) dBz,t,

(S31)

where the first right-hand-side term of the last equation corresponds to the spurious force in the Ito convention and
where dBx,t, dBy,t and dBz,t are independent Brownian increments. The simulation takes into account the bottom
and top walls positioned at ±Hp. The potential V (z) is given by Eq. (19) of the letter.
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The friction coefficient perpendicular to a single wall given by Eq. (20) of the letter and in the case of the relatively
wide channel studied experimentally we can use the superposition approximation which approximates the excess drag
force, with respect to the bulk, due to two widely separated surfaces as the sum of the excess drag from the individual
surfaces. That is to say that the total drag when there are two surfaces is given by µTi (z)

µTi (z)− µ0 ' µ+
i (z)− µ0 + µ−i (z)− µ0, (S32)

with i ∈ {‖,⊥} and µ±i (z) denotes the drag generated by the upper and lower walls. The Stokes-Einstein relation
then gives

Di(z) '
kBT

6πa
[
µ+
i (z) + µ−i (z)− µ0

] . (S33)

We discretize Eq. (S31) by using an Euler scheme where solutions are approximated by Xt(t) ≈ Xn(tn), Yt(t) ≈
Yn(tn) and Zt(t) ≈ Zn(tn), with tn = n∆t, ∆t being the simulation time step. The Brownian increments white
noise dBk,t (k ∈ {x, y, z}) are approximated ∆Bk,n = Wk,n where Wkn are independent Gaussian distributed random
variables of zero mean and unit variance. This leads to the discrete stochastic equation:

Xn+1 = Xn +
√

2D‖(Zn)Wx,n

√
∆t,

Yn+1 = Yn +
√

2D‖(Zn)Wy,n

√
∆t,

Zn+1 = Zn +D′⊥(Zn)∆t− βD⊥(Zn)V ′(Zn)∆t+
√

2D⊥(Zn)Wz,n

√
∆t.

(S34)

We numerically solve (S34) with ∆t = 0.01 s, for a total time of 1000 s, with identical physical parameters as the
experimental ones. From approximately 12 millions trajectories, we extract the numerical fourth cumulant 〈X4

t 〉c
at all times using the PDF of displacements Xt+∆τ − Xt written p(u,∆τ) generated from the histogram of sliding
temporal averaging. The fourth cumulant is calculated numerically using the formula

〈X4
t=∆τ 〉c =

∫ +∞

−∞
u4P (u,∆τ) du− 3

[∫ +∞

−∞
u2P (u,∆τ)du

]2

. (S35)

Finally, as shown in Fig. 2-d), the numerical results are in good agreement with both the theoretical and experimental
results.
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