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Abstract
Research efforts in syntactic parsing have focused on written

texts. As a result, speech parsing is usually performed on
transcriptions, either in unrealistic settings (gold transcriptions) or
on predicted transcriptions. Parsing speech from transcriptions,
though straightforward to implement using out-of-the-box tools for
Automatic Speech Recognition (ASR) and dependency parsing has
two important limitations. First, relying on transcriptions will lead
to error propagation due to recognition mistakes. Secondly, many
acoustic cues that are important for parsing (prosody, pauses, . . . )
are no longer available in transcriptions.

To address these limitations, we introduce wav2tree, an
end-to-end dependency parsing model whose only input is the raw
signal. Our model builds on a pretrained wav2vec2 encoder with
a CTC loss to perform ASR. We extract token segmentation from
the CTC layer to construct vector representations for each predicted
token. Then, we use these token representations as input to a generic
parsing algorithm. The whole model is trained end-to-end with a
multitask objective (ASR, parsing) to reduce error propagation. Our
experiments on the Orféo treebank of spoken French show that direct
parsing from speech is feasible: wav2tree outperforms a pipeline
approach based on wav2vec (for ASR) and FlauBERT (for parsing).
Index Terms: speech recognition, dependency parsing, end-to-end,
raw signal, spontaneous speech

1. Introduction
Progress on syntactic parsing of written text has been remarkable
in the last decade, thanks to the use of bi-LSTM [1] and pretrained
language models such as BERT [2]. Most of the work on syntactic
parsing of speech has been done on transcribed speech, either from
a human annotator (gold) leading to unrealistic parsing settings or
from automatic speech recognition tools [3, 4]. Spoken language,
as opposed to written language, exhibits specific phenomena, such
as disfluencies, hesitations, false starts, that arguably make syntactic
parsing harder.

However, parsing transcriptions is unsatisfactory since listeners
use prosodic cues to help solve ambiguity [5] and transcriptions
no longer provide access to prosodic information. Indeed, using
acoustic cues has proven to be a viable way to improve parsing
on transcribed speech [6]. Thus, previous work focused mainly on
integrating acoustic cues from the signal and using a multimodal
model with both text and features extracted from the audio such
as word duration and fundamental frequency [7]. Another line
of work has focused on automatically detecting disfluencies and
ASR mistakes while parsing transcriptions [8, 9, 10, 11, 12]. The
disfluencies detection mitigates the error propagation due to the
ASR model. Moreover, it allows transition-based parsers to prune
disfluency nodes with specific repair actions [10].

We focus on dependency parsing, where each word in a
sentence is attached to its head word with a syntactic function
(subject, object, modifier,. . . ). In this paper, we introduce wav2tree,
an end-to-end neural model for speech parsing. Wav2tree jointly

Figure 1: Wav2tree end-to-end architecture.

Figure 2: Feature grouping using CTC segmentation.

predicts a transcription and its syntactic analysis (a labeled
dependency tree and a sequence of part-of-speech tags), using only
the raw signal as input. The motivations for designing an end-to-end
model for this task are manifold. End-to-end models are known to
reduce error propagation thanks to shared error optimization, unlike
pipeline approaches, where an error in a previous component will
trigger errors in downstream tasks. We compare wav2tree to several
pipeline baselines that use pretrained models for both the speech
and text modalities. To the best of our knowledge, this is the first
attempt to only use signal representations for syntactic parsing. In
summary, our contributions are threefold:

• We introduce a new architecture to parse speech directly
from the signal;

• We provide an evaluation on our model on a spoken treebank
for French;

• We publicly release the code of this architecture online along
with pretrained models.1

1https://gricad-gitlab.univ-grenoble-alpes.fr/
pupiera/wav2tree_release



(a) Gold sentence dependency tree (b) New best tree from ASR output. (c) ASR tree without Oracle

Figure 3: An example of the tree produced by the oracle with the relative encoding labeling.

2. Wav2tree: an end-to-end architecture for
parsing speech

The objective of our model is to take the raw signal corresponding
to a sentence2 as input and compute the sequence of words and the
dependency tree contained within this signal. The architecture of
our model is divided into three parts: (i) the representation extractor
module, (ii) the ASR module, and (iii) the parsing module, as
illustrated in Figures 1 and 2.

The first module of our architecture is the representation ex-
tractor. From a signal S, we compute a feature matrix X as follows:

X=FNNenc(f(S)), (1)

where f is any feature extraction method (MFCC, wav2vec, . . . )
and FNNenc is a feedforward neural network. Another possible
instantiation for FNNenc is a convolutional recurrent (CRNN)
encoder [13], but any neural architecture can be used.

2.1. ASR module

The automatic speech recognition module is composed of a fully
connected layer with a softmax activation. The model predicts a
character for each audio feature, the sequence of characters is then
collapsed through Connectionist Temporal Classification [14, 15,
CTC]. We do not use any language model or beam search, despite
what is usually done in ASR. Indeed, we are not aware of any
pre-trained language model for transcriptions of spontaneous French.
Using a language model trained on French books or data crawled
from the web would introduce bias, due to linguistic differences
between spoken and written French.

2.2. Dependency parsing module

The dependency parsing module is composed of two parts: (i) the
audio word embedding extraction and (ii) the parsing model. For
the first one, we use the CTC segmentation of the audio features,
through the prediction of the whitespace characters, to compute an
embedding for each predicted token. Each audio feature, except for
the ones corresponding to whitespaces, from the encoder module
is part of one word, and every feature between two whitespace
characters belongs to the same word. Thanks to this property, we
map each feature to a word, and we use this mapping to compute
our audio word embedding through an LSTM. This process is
described in Figure 2 and is formally described in eqs. (2) and (3):

Xwi =X[xj,...,xk], (2)
ewi =LSTMhidden(Xwi), (3)

where X is the representation matrix from the encoder defined in
eq. (1), j and k are the boundary of the word i, and ewi is the word
embedding corresponding to token i.

2The term ‘sentence’ is questionable when referring to spontaneous
speech. We keep it here by analogy to written text parsing.

Once we have computed an “audio word embedding” for
each token in a sentence, we can use any generic dependency
parsing method. For the sake of simplicity and speed, we used the
dep2Label method [16], that reduces the parsing problem into a
sequence tagging problem. Each token is assigned three labels for
(i) its part of speech tag, (ii) the relative position of its head, and
(iii) its syntactic function. For example, in Figure 3a, the gold labels
for token j’ (I) are: CLS, 2VPP, subj, meaning j’ is the subject
of the second past participle verb (VPP) on its right. Our model
computes scores for each token and each subtask as follows:

Z=biLSTMoutput(E), (4)
Ppos=Softmax(FNNpos(Z)), (5)
Phead=Softmax(FNNhead(Z)), (6)
Pdep=Softmax(FNNdep(Z)), (7)

where E is the matrix containing the sequence of audio word
embeddings and FFNs are feedforward networks.

3. Training wav2tree
3.1. Training objective

To train our model, we minimize the sum of the negative
log-likelihood on the three classification tasks, and we add the CTC
loss for the automatic speech recognition task:

L(θ,S,c,p,h,d)=−α·logP(p|S;θ)−β·logP(h|S;θ)
−γ ·logP(d|S;θ)−δ·logP(c|S;θ) (8)

whereθ are the model parameters,S is the signal,p is the target POS
sequence, h is the target sequence of relative positions encoding the
dependency tree, d is the target sequence of syntactic functions, c
is the sequence of gold tokens, and (α,β,γ,δ) are hyperparameters.

3.2. Oracle

The token segmentation depends on the ASR frame-level predic-
tions. An error in the segmentation makes the gold tree no longer
attainable. As a result, the parsing models cannot always output
the correct tree. The parsing model loss should not increase in these
cases since the mistakes come from the ASR module. The most
common problem is a mismatch in the number of tokens between
the supervision and the prediction. In this case, giving the parsing
model good supervision is crucial. Using the original supervision
to the model would introduce noise when the segmentation is not
correct as illustrated in Figure 3c. Thus, we need to compute the
best possible dependency tree given (i) the gold tree and (ii) a noisy
ASR segmentation. This process is similar to the method used
in [11] to transfer the gold annotation to the noisy ASR output.
Such a computation requires knowing which tokens are added or
missing. To do so, we use an alignment tool: Sclite.3 Sclite uses the

3https://github.com/usnistgov/SCTK



transcriptions and the gold text to detect the added or missing tokens.
We use the following heuristics to compute the best possible tree:

• Insertions are attached to the root (single root constraint).
• When a token is deleted, all the orphaned tokens are attached

to the closest parent of the deleted tokens. Either the parent
of the deleted token, or recursively until the root.

• In the case of a missing root, the closest element to the root
becomes the new root. If there are several possibilities, the
leftmost candidate is chosen.

Thus, when computing the loss in eq. (8), we substitute p, d and
h by the sequences computed by the oracle. The oracle is illustrated
in Figure 3b built from the original tree in Figure 3a.

4. Experiments and result
Questions Our main objective is to assess whether using only
the raw signal as input for the syntactic analysis task is feasible in a
multitask setting where we simultaneously predict the transcription
(ASR), POS tags, and the dependency tree.

Experimental settings We used a pretrained wav2vec2[17]
architecture as our feature extractor f for the raw signal, namely
LeBenchmark/wav2vec2-FR-7K-large [18] available
online.4 Before we train the syntax model, we wait for the ASR mod-
ule to reach a WER lower than 50 on the dev set (usually, one epoch
is enough). Since the syntax module depends on the segmentation
of the ASR, training it from the very beginning (with low-quality
segmentations) could confuse or slow down learning. The FNNenc

function has 3 fully connected layers with 1024 units and uses
Leaky ReLu activation function. The audio frame LSTMhidden that
computes audio word embeddings has 500 hidden units and 2 layers.
The sentence level bi-LSTMoutput has 800 hidden units and 2 layers.
The implementation of our model uses the Speechbrain framework
[19]. The loss function weight for each of the tasks is set to δ=0.4
for ASR (CTC) and α=β=γ=0.2 for all the sequence labeling
tasks (dependency parsing task) based on preliminary experiments.
Due to limited resources, we could not tune the value of the
hyperparameters, except for the number of epochs (to minimize the
validation set WER). Thus, our result might improve with a hyperpa-
rameter search. The end-to-end model was trained for approximately
135 hours on a Quadro RTX 8000 GPU. Training the pipeline
basline was quicker, with around 100 hours on the same GPU. How-
ever, the end-to-end model has several unoptimized computations,
such as the call to Sclite during the oracle computation.

Dataset We evaluate our model on the Orféo treebank [20],
composed of multiple corpora of spoken French with 5 dependency
tree annotations, aligned with audio files at the sentence level. For
this paper, we did not consider any sentence containing a multi-word
expression, to ensure that the segmentations are comparable for
ASR and dependency parsing. The multiple corpora include
many domains, most of which feature spontaneous conversations.
Domains range from prepared French fairy tales narrated by
storytellers (Oral-Narrative) to recordings at checkouts of cheese
shops (Clapi) or interviews with Parisian people about their life in
the city (Cfpp). The diversity of speaking situations, along with the
lower quality of some recordings, makes Orféo harder than standard

4https://huggingface.co/LeBenchmark/wav2vec2-
FR-7K-large

5Around 5% of the Orféo treebank has been manually annotated (gold),
the rest of the corpus is automatically annotated (good quality silver data).
See the gitlab code release for more information on gold/silver breakdown
statistics for each sub-corpus.

Table 1: Subcorpora in the Orféo treebank along with their types
of speech and sizes in number of sentences and duration in hours.

Corpus Type Train size Dev size Test size

Cfpb spontaneous 3030 (2.2h) 389 (0.3h) 362 (0.3h)
Cfpp [21] spontaneous 25500 (19.1h) 3175 (2.3h) 3232 (2.4h)
Clapi [22] spontaneous 7682 (5.3h) 1001 (0.7h) 967 (0.7h)
Coralrom [23] spontaneous 10889 (9.6h) 1342 (1.2h) 1376 (1.2h)
Crfp [24] spontaneous 17357 (15.3h) 2198 (2.0h) 2259 (2.0h)
Fleuron [25] spontaneous 1779 (1.4h) 207 (0.1h) 217 (0.2h)
Oral-Narrative [26] prepared/read 8388 (7.3h) 1074(1.0h) 1050 (1h)
Ofrom [27] spontaneous 11665 (9.3h) 1461 (1.2h) 1476 (1.2h)
Reunions spontaneous 10067 (8.0h) 1283 (1h) 1245 (1h)
Tcof [28] spontaneous 16063 (11.6h) 1971 (1.5h) 1997 (1.5h)
Tufs spontaneous 35990 (24.3h) 4431 (3.0h) 4525 (3.0h)
Valibel mixed 21095 (17.5h) 2769 (2.3h) 2753 (2.3h)

Total mixed 169505 (130.9h) 21301 (16.6h) 21459 (16.8h)

benchmarks for French ASR. The composition of the train, dev and
test set is presented in Table 1.

Evaluation We compare wav2tree to two pipeline baselines that
first perform ASR, and then parse the transcriptions. We first train
an ASR model on Orféo (train section) and predict transcriptions
for the test section. The pipelines use the same parsing algorithm
as wav2tree (see Section 2.2), but the inputs to the parser are embed-
dings from a pretrained language model representing the predicted
tokens. Both pipelines use flaubert-large [29] to compute
the embedding representation of each word (last embedding of each
word in the last layer). We avoid overfitting by saving the model
with the best UAS score on the validation set. The first model is
trained on gold transcriptions from the training set and tested on
the noisy ASR test file. The second baseline, pipeline+oracle, is
trained on ASR transcriptions of the train set, whose trees have been
processed by the oracle defined in Section 3.2.

We compute all evaluation metrics with a customized version
of the 2018 shared task evaluation script6 based on the token order
and not on the form of each word, to account for minor errors (e.g.
spelling) in the ASR. The script is also based on Sclite alignment,
and allows us to evaluate our results even when the word forms
do not match between the gold and predicted trees. We use word
error rate (WER) and Character error rate (CER) for ASR, and the
traditional metrics for dependency parsing: UPOS (Universal Part
of Speech) accuracy, UAS (unlabeled attachment score), and LAS
(labeled attachment score).

Results For the first experiment, we train on all the subcorpora in
Orféo and report the results in Table 2 broken down by subcorpus.
The high WER on Orféo might be due to the type of speech; spon-
taneous speech is harder to recognize for ASR systems. Moreover,
the recording conditions are of low quality for some corpora leading
to very high WER in some cases (e.g. clapi). The baseline without
the oracle has the worst results, showing that training on ASR
output is important for the model and better matches the test settings.
Wav2tree outperforms both baselines, showing that using only the
signal as input for syntactic parsing is feasible. A notable fact is that
this method naturally avoids the out-of-vocabulary problem since
our model work on the character level for the ASR module, and
our parser module only uses learnt representations extracted from
a continuous span of audio representations. The only word-level
information used is the boundary of the word. Thus, the only
vocabulary needed for our model is the one used by the ASR. In this
experiment, it is composed of the Latin alphabet and some diacritics.

6https://universaldependencies.org/conll18/
evaluation.html



Table 2: Results by corpus with our model and baseline with and without the oracle. The model is trained on all the corpora and then tested
on each of them. The model in the pipeline is dep2Label trained for 100 epochs.

Wav2tree (end2end) Pipeline Pipeline + oracle
Parser input Signal Train: Gold - Test: ASR Train: ASR - Test: ASR
Pre-trained Wav2vec2 Wav2vec2 + FlauBERT Wav2vec2 + FlauBERT
Parameters 350M+33M 350M+373M+32M 350M+373M+32M

Corpus WER CER UPOS UAS LAS WER CER UPOS UAS LAS WER CER UPOS UAS LAS

Cfpb 29.2 18.0 77.6 73.4 68.8 28.2 17.0 76.6 71.8 67.5 28.2 17.0 78.0 73.0 68.5
Cfpp 35.7 24.2 71.8 66.6 61.8 35.5 24.2 69.9 64.8 60.2 35.5 24.2 70.7 65.0 60.4
Clapi 53.6 35.4 58.8 54.4 47.6 53.2 35.0 56.4 53.5 46.7 53.2 35.0 57.4 53.75 47.0
Coralrom 22.5 11.9 83.9 77.8 74.5 22.0 11.8 82.0 75.3 71.8 22.0 11.8 83.0 75.9 72.4
Crfp 24.3 14.5 81.7 75.9 72.2 23.5 14.3 80.3 74.0 70.4 23.5 14.3 81.3 74.8 71.1
Fleuron 36.1 23.1 71.9 65.3 60.5 35.5 21.6 71.0 65.1 61.3 35.5 21.6 72.1 66.0 61.1
Oral-Narrative 11.1 4.7 93.2 87.9 85.7 10.2 4.3 92.1 86.1 83.4 10.2 4.3 93.0 86.6 84.2
Ofrom 20.0 11.6 85.2 79.3 75.9 19.1 11.2 84.2 77.9 74.7 19.1 11.2 85.1 78.4 75.1
Reunions 40.9 26.1 67.7 61.8 56.3 41.3 26.0 65.5 60.3 55.1 41.3 26.0 66.7 60.8 55.6
Tcof 34.1 20.8 74.3 67.4 62.7 33.6 20.4 72.3 65.4 60.8 33.6 20.4 73.2 65.6 61.0
Tufs 33.1 20.8 75.2 69.6 65.1 32.5 20.3 73.5 67.8 63.5 32.5 20.3 74.6 68.7 64.1
Valibel 23.0 12.8 82.8 76.9 73.2 22.3 12.5 81.3 75.4 71.7 22.3 12.5 82.2 75.7 71.8

Orféo full 31.0 19.4 77.4 71.7 67.5 29.1 17.9 75.8 70.0 65.8 29.1 17.9 76.7 70.5 66.2

Table 3: Results with models trained only on the corpus with the best
WER score: Oral-Narrative. The Pipeline model uses dep2Label
and FlauBERT language model, and is trained for 100 epochs.

Models WER UPOS UAS LAS

Wav2tree (end2end) 10.9 93.18 86.60 84.31
Pipeline 10.9 91.67 82.94 79.89
Pipeline + Oracle 10.9 91.77 83.46 80.66
Pipeline gold test 0 97.21 88.80 86.48

Moreover, the end-to-end model has around 350M parameters,
whereas the pipelines use the same model for the ASR task and
then use a pre-trained language model with 373M parameters
(flaubert-large). The end-to-end model outperforms the
pipeline while using less than half the parameters. The WER
and the parsing results (UAS) are correlated (Pearson coefficient:
-0.9648), meaning that noisy or hard-to-understand recordings are
harder to parse. Thus, any improvement in the speech recognition
process should have a positive effect on dependency parsing.

For the second experiment, we focus on parsing only the corpus
with the best WER of Orféo, namely French-oral-narrative. We train
our model for 50 epochs on this corpus and the pipeline for 100
epochs. This corpus features prepared speech (readings) unlike other
Orféo subcorpora; in this case, the corpus is composed of storytellers
narrating fairy tales. The objective of this experiment is to see if our
model still outperforms the pipeline approach on less noisy corpora.
The results, as seen in Table 3, show that wav2tree still outperforms
the baseline, even on the corpus favorable to the pipeline approach
where the risk of error propagation is lower. Another notable result
is that the model only trained on one corpus had worse results than
the one trained on all of Orféo for 30 epochs. This is probably due
to the sheer size difference between the two train sets. We conclude
that the model can leverage information from other corpora.

5. Conclusion
We introduced a new architecture able to parse speech directly from
the raw audio signal. We have shown that it outperforms a pipeline
approach working on transcribed speech with twice the number

of parameters. This model can use any generic parsing algorithm
on top of the audio word embedding extractor, allowing for high
modularity. We have shown that using only the raw signal for the
dependency parsing task is feasible, meaning that the raw signal
contains syntactic information. For this purpose, we designed a
method to create audio word embedding from the CTC whitespace
prediction usable in any task requiring word-level segmentation such
as named entity recognition (NER), or word sense disambiguation
(WSD). However, further research on the performance of these audio
word embeddings is required, for instance comparing them to a
baseline using both word embedding and prosody-acoustics features.

Extending this method to use multimodality is a promising idea
to improve performance. We could use the predicted text as input for
any Bert model and combine the word embeddings from Bert and
the audio word embeddings. We also plan to use a language model
on top of the CTC loss and experiment with other ASR methods.
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université de Neuchâtel. [Online]. Available: www.unine.ch/ofrom

[28] ATILF, “Tcof : Traitement de corpus oraux en
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A. Allauzen, B. Crabbé, L. Besacier, and D. Schwab, “FlauBERT:
Unsupervised language model pre-training for French,” in
Proceedings of the 12th Language Resources and Evaluation
Conference. Marseille, France: European Language Resources
Association, May 2020, pp. 2479–2490. [Online]. Available:
https://aclanthology.org/2020.lrec-1.302


