

DEVELOPMENT OF NANOCLAY REINFORCED POLY(LACTIC ACID) CELLULAR MATERIALS

Influence Of The Filler Content And The Addition Of Maleic Anhydride-Grafted-PLA On Physical Properties And Cell Morphology

V. Masson^{1,2,3}, M.F. Lacrampe², A. Bergeret³, J.-C. Quantin³, J.-C. Bénézet³

¹Univ. Lille Nord de France, 59000, Lille, France. ²Ecole des Mines de Douai , Technologie des Polymères et Composites & Ingénierie Mécanique, 941 Rue Charles Bourseul, BP 10838, 59508 Douai, France. ³Ecole des Mines d'Alès, Centre des Matériaux de Grande Diffusion, 6 Avenue de Clavières, 30319 Alès, France.

- Background and objectives
- Materials and processing method
- Results and discussion
- Conclusion and perspectives

Poly(lactic acid) (PLA)

- ✓ Bio-based & biodegradable
- ✓ Eco-friendly alternative
- ✓ Mechanical properties
 - High tensile modulus
 - High tensile strength
- ✓ More reasonable cost (bioplastics)

× Higher cost (synthetic plastics)

× Brittleness

× Impact resistance

× Melt strength (linear PLA)

× Service temperature (amorphous)

	PLA	PET	PS
T _g (°C)	55	75	105
Tensile strength at break (MPa)	53	54	45
Tensile modulus (GPa)	3.4	2.8	2.9
Elongation at break (%)	6	130	7
N. Izod impact strength (J/m)	13	59	27
Gardner impact (J)	0.06	0.32	0.51
Cost (\$/lb)	1-1.5	0.70-0.72	0.99-1.01

Adapted from: H. Liu, J. Zhang, Journal of Polymer Science Part B: Polymer Physics 49 (2011) 1051-1083.

Solutions to overcome PLA shortcomings

Plasticization, copolymerization, melt blending

 Flexibility and toughening 	H. Liu, J. Zhang, Journal of Polymer Science Part B: Polymer Physics 49 (2011) 1051-1083.
 Tensile strength and modulus 	L.M. Matuana, C.A. Diaz, Industrial and Engineering Chemistry Research 49 (2010) 2186-2193

Chemistry Research 49 (2010) 2186-2193.

PLA nanocomposites : organo-modified montmorillonite (OMMT)

- Physical, chemical and mechanical properties,
- OMMT (2.5 wt %) : Higher strain at break (fourfold increase).

L. Jiang, J. Zhang, M.P. Wolcott, Polymer 48 (2007) 7632-7644.

PLA foams

Microcellular foams: impact resistance, strain at break and toughness,

• Nanocomposites foams : control cellular structures and properties.

L.M. Matuana, Bioresource Technology 99 (2008) 3643-50.

Y. Di, S. Iannace, E. Di Maio, L. Nicolais, Journal of Polymer Science Part B: Polymer Physics 43 (2005) 689-698.

Foam processing

Physical Blowing Agent

PBA : hydrocarbons, CO₂, N₂

- Batch process,
- Expanded PLA beads,
- Continuous extrusion foaming,
- Continuous injection foaming.
 - ✓ Low density foams (R<0.1)
 - ✓ Microcellular foams
 - × Specific equipments

Chemical Blowing Agent

CBA: azodicarbonamide, acid/carbonate

- Continuous extrusion foaming,
- Continuous injection foaming.
- ✓ No specific equipment
- × Low density reduction of 50 %

Few studies (continuous extrusion) :

S.T. Lee, L. Kareko, J. Jun, Journal of Cellular Plastics 44 (2008) 293.

L.M. Matuana, O. Faruk, C.A. Diaz, Bioresource Technology 100 (2009) 5947-54.

Objectives

Investigation of the chemical foaming of PLA/clay nanocomposites through extrusion process

Could the foaming of PLA /clay nanocomposites balance the mechanical properties of neat PLA ?

Materials

✓ Linear PLA : Grade Ingeo[™] 7000D (NatureWorks[®] LLC)
 D content = 6.4 %, T_m = 145-155 C, M_w = 370 kDa.

 Clay : Cloisite[®] 30B (Southern Clay Products Inc.) organo-modified montmorillonite, 4 contents : 1, 3, 5, 7 wt % (CN1, CN3, CN5 and CN7).

Maleic anhydride-grafted PLA (MA-g-PLA)
 3 grafting contents : 0.25, 0.41, 0.48 wt % (g1, g2 and g3),
 10 wt % MA-(g1, g2, g3)-PLA + 3 wt % Cloisite[®] 30B
 CN3-g1, CN3-g2 and CN3-g3

D. Carlson, L. Nie, R. Narayan, P. Dubois, Journal of Applied Polymer Science 72 (1999) 477-485.

✓ CBA : Hydrocerol[®] CT 3108 (Clariant Masterbatches) endothermic, T_d = 138-216 C (TGA), CBA content : 3 wt %.

Foam processing

✓ Single screw extruder (Fairex)

- ✓ Slit die (1.5 mm x 40)
- ✓ 2 temperature profiles :

Temperature (°C)	zone 1	zone 2	zone 3	zone 4	zone 5	Slit die
195	130	150	165	165	170	195
155	140	180	195	155	155	155

✓ 2 Types of specimens punched :

- T1 : Flexural properties (ISO 178), voids fraction, SEM images Dimensions : 80 mm x 10 mm x thickness
- T2 : Tensile properties (ISO 527-2) Dimensions : type 1BA

Die

Coole

Rollers

PLA

foam

Effect of the die temperature and the addition of 3 wt % of nanoclays

Void fraction : V_f

- Temperature : V_f reduction of both neat PLA and CN3

- Nanoclay addition :

- 155 C: decreased V_f
- 195 C: increased V_f

Nanoclay addition increases melt viscosity which will results in increased or decreased void fractions depending on the foaming temperature.
 A foaming temperature of 155 C was chosen as it leads to higher void fraction.

Effect of the filler content

Void fraction : V_f

The void fraction of the nanocomposite foams decreases with increasing filler content.

□ Higher viscosity due to organoclays during foaming restricts the expansion of cells

Effect of the MA-g-PLA addition and content

Void fraction : Vf

The void fraction of the nanocomposite foams increases with MA-g-PLA addition.

□ Unexpected results as the addition of MA-g-PLA increases the complex viscosity of the modified nanocomposites : Further investigations

Cell morphology and cell-population density

- PLA foams show large-scale inhomogeneities,
- Nanocomposites : improvement in quality, no significant differences for the modified and unmodified nanocomposites

Cell morphology and cell-population density

- <u>Filler addition:</u> decreases cell
 size and increases the cell
 population density
- <u>MA-g-PLA addition</u>: no significant changes in comparison with CN3

Organoclay contribution :

promotes heterogeneous nucleation
 increases the melt strength

- stabilizes the cell wall
- limits cell coalescences

Effect of the filler content and MA-g-PLA addition

Mechanical properties: Specific flexural and tensile Moduli

Foaming : specific moduli reductions

Specific moduli increase with the filler content
 MA-g-PLA : no significant improvement

Effect of the filler content and MA-g-PLA addition

Mechanical properties: Specific tensile strength and strain at break

Slight increase of the tensile strength with the filler content
 Low filler content : prevent propagation of cracks
 High filler content : flaws (agglomerates) trigger early failure
 MA-g-PLA : Enhanced plastic deformation (g2)

Effect of the filler content and MA-g-PLA addition

Mechanical properties: Fracture energy

- Significant reduction of the fracture energy after foaming.
- Enhanced fracture energy at low nanoclay content
- Beneficial effect of the compatibilizer g2 in comparison with CN3

Conclusions

✓ Chemical foaming of PLA leads to reasonable void fraction (50 %)

✓ Foaming :

reduces mechanical properties (ultimate and specific)

✓ Addition of nanoclay (foaming temperature : 155 C)

- decreases the void fraction
- lower cell size and higher cell population density
- globally balances mechanical properties : enhanced specific moduli, fracture energy (except for the tensile strength)

✓ Addition of a compatibilizer

- increases the void fraction (up to 56 %)
- Mechanical properties : no significant changes except for the fracture energy (g2)

Perspectives

 ✓ Extensional viscosity measurement might help us to understand the effect of maleic anhydride-grafted-PLA on the void fraction

✓ Impact tests : Higher speed tests are more realistic than tensile testing and the results might differ because high strain rate testing can change a ductile material into a brittle one

✓ Morphological characterizations : transverse direction to the extrusion flow

Thank you for your attention