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ABSTRACT 

Recording from deep neural structures such as hippocampus non-invasively and yet with 

high temporal resolution remains a major challenge for human neuroscience. Although it has 

been proposed that deep neuronal activity might be recordable during cognitive tasks using 

magnetoencephalography (MEG), this remains to be demonstrated as the contribution of deep 

structures to MEG recordings may be too small to be detected or might be eclipsed by the 

activity of large-scale neocortical networks. In the present study, we disentangled mesial activity 

and large-scale networks from the MEG signals thanks to blind source separation (BSS). We then 

validated the MEG BSS components using intracerebral EEG signals recorded simultaneously in 

patients during their presurgical evaluation of epilepsy. In the MEG signals obtained during a 

memory task involving the recognition of old and new images, we identified with BSS a putative 

mesial component, which was present in all patients and all control subjects. The time course of 

the component selectively correlated with SEEG signals recorded from hippocampus and rhinal 

cortex, thus confirming its mesial origin. This finding complements previous studies with 

epileptic activity and opens new possibilities for using MEG to study deep brain structures in 

cognition and in brain disorders. 
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INTRODUCTION 

Magnetoencephalography (MEG) is a non-invasive technique that measures the 

electromagnetic fields generated by the brain with a millisecond time scale. MEG is widely used 

to analyze cortical activity in a variety of scientific and clinical settings (Baillet, 2017; Bartolomei 

et al., 2006; Hämäläinen et al., 1993; Wacongne et al., 2011). In most of these applications, a 

challenging inverse problem needs to be solved in order to determine the neuronal sources 

generating the recorded MEG signal (Fokas et al., 2004; Friederici et al., 2000; Hillebrand et al., 

2005). Neuronal sources located relatively near the sensors (i.e. at the cortical surface) are 

notoriously easier to identify than sources located more distally (Huotilainen et al., 1998; 

Mosher et al., 1993). Sources located in deep neuronal structures such as mesial structures 

provide the more challenging case, and the reliability of their identification is a matter of 

ongoing debates (Bénar et al., 2021; Pu et al., 2018; Ruzich et al., 2019). Biophysical models 

have suggested how, under certain conditions, it might be possible to identify the magnetic 

activity originating from deep structures and to separate the activity of various closed-field 

sources (Attal et al., 2012; Meyer et al., 2017; Stephen et al., 2005). Some empirical studies 

have reported deep MEG sources taken to reflect hippocampal activity (Barry et al., 2019; 

Costers et al., 2020; Fellner et al., 2019; Guderian et al., 2009; Taylor et al., 2011; Xu et al., 

2020). This interpretation hinged primarily on the link between the activity of interest and the 

behavioral performance in a cognitive task, but the studies lacked a neuronal ground truth that 

could confirm the origin of the signals. 

Intracerebral recordings, in the form of Stereo-ElectroEncephaloGraphy (SEEG, Bancaud 

et al., 1970), give an unrivalled opportunity for measuring directly time-resolved neuronal 

activities in human deep brain structures. This invasive technique is commonly used as part of 

the pre-surgical diagnosis procedure in drug-resistant epilepsy to delineate the epileptogenic 

network (Bartolomei et al., 2017). It has been successfully employed in cognitive studies, 

allowing to track both evoked and oscillatory activities (Barbeau et al., 2017, 2008; Despouy et 

al., 2020; Hagen et al., 2020; Jonas et al., 2016; Lachaux et al., 2005; Nelson et al., 2017; Tallon-

Baudry et al., 2005). Because the SEEG signal is recorded locally within the implanted structures, 

it can be taken as a unique ground truth to which non-invasive measures can be confronted to, 
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although recent studies have suggested that recording EEG or MEG responses to intracranial 

stimulation may represent a ground truth for source localization algorithms (Mikulan et al., 

2020; Parmigiani et al., 2021). Still, in order to optimize the measure of correspondence 

between MEG and intracranial data, their recordings should be simultaneous (Rampp et al., 

2010; Shigeto et al., 2002; Sutherling et al., 2001). Simultaneous recordings are the only ones 

that allow computing time-resolved correlations between depth and surface signals (Boran et 

al., 2020; Crespo-García et al., 2016; Dalal et al., 2009; Dubarry et al., 2014; Korczyn et al., 2013; 

Pizzo et al., 2019), thus ensuring that the very same activity is measured on both recordings. 

Studies based on simultaneous recordings present the strongest evidence supporting the 

detectability of deep activity (Crespo-García et al., 2016; Dalal et al., 2009; Korczyn et al., 2013), 

with a strong correlation between contacts placed in the hippocampus and the MEG signals 

(Dalal et al., 2009).  

Surface signals are non-invasive but capture a complex mixture of signals, where 

hippocampal activity proper might be present but hidden. Spatial filtering, either within a 

source localization framework or with blind source separation (BSS), can help retrieving activity 

from deep structures, disentangling it from more superficial signals that present higher 

amplitudes on MEG (Attal et al., 2007; Attal and Schwartz, 2013; Dubarry et al., 2014; Oswal et 

al., 2016; Pizzo et al., 2019). Importantly, BSS exploits the sparsity of the brain sources 

(Daubechies et al., 2009), which has been pointed out as a key element for the identification of 

deep activity (Krishnaswamy et al., 2017). In prior work from our laboratory involving patients 

with temporal lobe epilepsy, we used independent component analysis, a kind of BSS, to show 

that interictal spikes generated in the hippocampus and amygdala were indeed detectable with 

MEG (Pizzo et al., 2019). However, the amplitude of the epileptic spikes is much higher than the 

spontaneous non-pathological activity, and therefore easier to detect from the surface. Using a 

cognitive paradigm, Dalal and collaborators have shown zero-lag correlation for theta activity in 

the hippocampus (Korczyn et al., 2013), although the possibility of zero-lag phase synchrony 

with a third structure could not be ruled out in that dataset. 

Here we sought to firmly establish the link between MEG and SEEG signals evoked by a 

cognitive task. We used a well-tested experimental paradigm that activates mesial structures 
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during short-term picture memorization and recognition. We acquired simultaneously MEG and 

SEEG and used BSS to quantify the single-trial correlation between BSS-MEG components and 

intracerebral data across a total of six patients. Additionally, we recorded the MEG signals from 

six healthy volunteers as a control. Based on the available biophysical models, we hypothesized 

that the activation of mesial structures during memory processes would be detected with MEG.  
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METHODS 

Patients and records selection 

 We studied six patients (two females) by means of simultaneous MEG-SEEG recordings. 

Table 1 shows the clinical information for each patient. We also recorded and analyzed MEG 

data from six healthy volunteers (three females, mean age 31.7 years SD ± 5.5) performing the 

same protocol. This research has been approved by the relevant Institutional Review Board 

(Comité de Protection des Personnes, Sud-Méditerranée I, ID-RCB 2012-A00644–39). All 

participants signed a written informed consent form regarding this research.  

 Age Epilepsy Hand dominance 
Language 

organization  

Patient 1 36 Bilateral temporo-mesial Bilateral 
Atypical 

bilateral 

Patient 2 37 Bilateral temporo-mesial Right Left typical 

Patient 3 17 Left Operculo-Insular Right Left typical 

Patient 4 36 Right temporo-mesial Right Left typical 

Patient 5 26 
Bilateral extensive on 

heterotopia 
Left Right atypical 

Patient 6 21 Left temporal Right Left typical 

 

Table 1: Clinical information of each patient. 

Simultaneous SEEG-MEG recordings 

 The six patients were undergoing intracerebral stereotaxic EEG (SEEG) investigation for 

presurgical evaluation of focal drug-resistant epilepsies at the Epileptology and Cerebral 

Rhythmology Unit, APHM, Marseille, France. We acquired SEEG and MEG recordings 

simultaneously during 15 minutes of resting state (patient relaxed with eyes closed) and 

subsequently during a memory task (see below). The methodology for the simultaneous 

recordings is detailed in previous studies (Badier et al., 2017; Dubarry et al., 2014). MEG signals 

were acquired on a 4D Neuroimaging™ 3600 whole head system with 248 magnetometers at a 
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sampling rate of 2034.51 Hz. We acquired between 161 and 223 SEEG contacts per patient 

(total contacts recorded: 1206; mean of 201 contacts, SD ± 23) at 2048 Hz of sampling rate, as 

well as EOG and ECG channels. The electrodes had a diameter of 0.8 mm, and contained 10 to 

15 contacts, each being 2 mm long and separated from each other by 1.5 mm (Alcis, Besançon, 

France). The implantation of the intracranial SEEG was decided based on clinical hypotheses 

regarding the location of the epileptogenic zone. A description of the SEEG setup is detailed in 

Pizzo et al. (Pizzo et al., 2019).  

Memory protocol 

 Each block of the recognition memory task started with an encoding phase, during which 

12 pictures were presented, one after the other, and the participant was asked to memorize 

them. Each picture was a simple colored drawing of a familiar item (e.g. a dog or a car) on a grey 

background; pictures were obtained from the standardized database Multipic (Duñabeitia et al., 

2018). After a distracting video of one minute (silent excerpts from a documentary showing 

birds and landscapes), the recognition phase involved a larger set of pictures from the same 

source. Half of these pictures had been presented during the encoding phase, while the other 

12 were new never-presented pictures. Participants were asked to press a button with the right 

hand if they recognized the image as having been presented earlier (“old”) during encoding, or a 

button with the left hand if the image was “new” to them. Stimuli presentation and response 

logging were controlled by the software E-prime 3.0 (Psychology Software Tools, Pittsburgh, 

PA).  

 Each trial started with a fixation cross presented in the center of the screen for 1000 ms, 

followed by the experimental picture, presented for 1000 ms in the encoding sub-block and for 

1500 ms in the recognition sub-block. The subsequent inter-trial interval was fixed to 1000 ms. 

For each participant, a total of 7 blocks were programmed to be displayed consecutively, using 

different images.  

We selected 24 x 7 = 168 images to be used as experimental materials from the database 

of Duñabeitia et al., 2018. They were selected as having high name agreement (above 90%), and 

a relatively short name (1, 2, or 3 syllables in French). To ensure that the observations were not 
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driven by item-specific properties, different experimental lists were created for each 

participant. The items were separated into two matched groups of 84 items to serve as old and 

new, alternatively across patients. Across the “old” and “new” groups of items there were 

roughly equal numbers of natural and artefact stimuli, with matched visual complexities; their 

names in French were matched for name agreement, length in syllables, and (log) lexical 

frequency of use (normative data from Duñabeitia et al., 2018 or New et al., 2004). The 84-item 

groups were further broken down into 7 groups to be used in the different blocks, with items 

matched for visual complexity and (log) lexical frequency across the 7 groups. All matching 

across picture groups was performed with the MATCH utility (van Casteren and Davis, 2006). In 

the encoding phases, the 12 items were presented in a random order; in the recognition phases, 

the items were presented in a pseudo-random order, with the constraint that there were never 

more than 3 “old” or “new” items in a row.  

MEG and SEEG pre-processing 

All data analysis was done using a combination of the in-house AnyWave software 

(Colombet et al., 2015; available at http://meg.univ-amu.fr/wiki/AnyWave), the Fieldtrip 

toolbox (Oostenveld et al., 2011), and custom-made Matlab scripts (The Mathworks Inc., 

Naticks, MA, USA). Each trial was epoched from 500 ms pre-stimulus to 1500 ms post-stimulus. 

After visual inspection, MEG and SEEG channels with noise or flat signal were removed, as well 

as all trials with artifacts in either the MEG or SEEG signal. Continuous data was bandpass 

filtered between 0.5 and 120 Hz (FIR filter) and two notch filters at 50 and 100 Hz were applied 

to remove line noise and its first harmonic. To remove eye blinks, movements and cardiac 

components on MEG data, independent component analysis (ICA) was computed on the 

cleaned data using the Infomax algorithm (Bell and Sejnowski, 1995) implemented in AnyWave. 

Before ICA, we performed a principal component analysis (PCA) to reduce the number of 

dimensions to 100. Based on the time course and the scalp topography, components related to 

cardiac activity or eye blinking were rejected (Jung et al., 2000). 

Separation of neuronal sources 
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To identify and separate the different brain sources that contribute to the MEG 

recordings, we used second-order blind identification (SOBI; Belouchrani et al., 1997, 1993; 

Tang et al., 2005a). SOBI takes advantage of the temporal correlation within sources; it finds an 

unmixing matrix by minimizing the sum-squared cross-correlation between one component at 

time t and another component at time t + s, across a set of time delays. This way, SOBI allows 

the identification of highly temporally correlated neuronal sources (Belouchrani et al., 1993). 

For each patient, we concatenated all trials across all conditions, seeking one unmixing 

matrix per participant. We applied PCA on the preprocessed MEG data to reduce its 

dimensionality to 100. Then, we computed SOBI using the Fieldtrip algorithm with 100 time 

delays (~50 ms, Tang et al., 2005a). For comparison purposes, we repeated the analysis with 50 

and 150 dimensions, without notable differences in the results. Although only some of the 

components were putative neuronal sources, we did not discard any of them at this point. 

Identification of components responding to the stimulus 

For each SOBI and SEEG channel we checked if they had a significant event-related 

potentials (ERP) based on all triggers (old and new). To do so, for each channel we tested that 

each time point across trials was significantly different from zero with a t-test, obtaining a p-

value and a t-value. Then, we used the local false discovery rate (LFDR; Benjamini and Heller, 

2007) with a LFDR alpha of 0.2 (Pizzo et al., 2019). This resulted in a threshold on the t-values 

that takes into account multiple comparisons between samples and components. Briefly, LFDR 

identifies which values stand out from the noise, whose distribution is assumed to be Gaussian. 

In our case, given a distribution with all t-values, LFDR determines the threshold (one positive 

and another negative) from which the values are considered statistically significant. For 

example, we computed one LFDR for all SOBI components during recognition (“old” trials), 

obtaining a single threshold for all the datasets of a participant in that condition. To remove 

artifactual single points, we selected only those points during the first second after the stimulus 

and we imposed a minimum number of consecutive significant time samples (10 ms in this 

work). We repeated this process in each subject and condition, for SEEG and for SOBI data 

separately.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2022. ; https://doi.org/10.1101/2022.02.28.482228doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.482228
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

Selection of deep SOBI-MEG components 

First, we rejected all the components with a noisy topography. To determine putative 

deep SOBI components, we visually reviewed all the components with a significant response 

and compared their topographies across patients. We identified only one component with a 

robust topography that was similar across patients and that reflected a putative deep origin. 

The source and sink of the dipolar topography were far from each other, indicating an origin 

remote from the recording sensors. We selected this SOBI component as a putative deep SOBI-

MEG. 

Differences between "old” and “new” conditions 

We evaluated whether each SEEG and SOBI component with a significant ERP was also 

modulated as a function of the experimental conditions. For each patient and time point, we 

compared with a t-test defined across trials the amplitude of the ERPs between old and new 

conditions. Then, to correct for multiple comparisons, we computed LFDR on the t-values for 

each dataset (i.e., each patient), leading in a test for all SEEG channels and SOBI components for 

significant ERP differences. 

Depth-surface temporal correlation 

We computed the zero-lag correlation (Matlab function corrcoeff) between the SEEG 

and SOBI components on their continuous time-series during stimuli presentation (around 8 

minutes of recordings). The use of many time points implies that even very low values of 

correlation can be identified as significant. Here too, we used LFDR on the correlation values to 

determine which pairs of SEEG-SOBI correlations were statistically significant. To improve the 

distribution estimation in the LFDR analysis, we included all the SEEG and SOBI-MEG signals, not 

only those with a significant ERP. in. We applied a Fischer transformation on the correlation 

coefficients to approximate a Gaussian distribution (Pizzo et al., 2019). Then, we applied LFDR 

on all the correlation values for each patient, considering as significant those pairs with a 

correlation, in absolute value, higher that the LFDR threshold. 

Partial correlation between SOBI-MEG and SEEG across mesial structures 
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 We determined the location of each SEEG contact using the software GARDEL, ( available 

at https://meg.univ-amu.fr, Medina Villalon et al., 2018). This tool allows automatic electrode 

localization and contact labelling according to a given atlas. Here, we used the VEP atlas (Wang 

et al., 2020), based on Destrieux parcellation (Destrieux et al., 2010) and subdivided to 

correspond more to anatomical and functional clinical areas. We selected three regions located 

in the temporal lobe: anterior hippocampus, rhinal cortex, and middle temporal gyrus. We 

chose these structures because they were recorded in most of the patients (four out of five) and 

because they presented differences between the old and new conditions in all patients. For 

each region, we selected the contact with the highest correlation with the SOBI-MEG. To 

discriminate the contribution of each region to the SOBI-MEG, we applied a partial correlation 

analysis between the continuous data of the three SEEG contacts and the SOBI-MEG (Marrelec 

et al., 2006). For each pair of signals, the partial correlation aims to disentangle the information 

present only in both signals (direct correlation) from the activity that originates in other regions 

(indirect correlation). 

To determine whether the values of partial correlation were significantly different from zero we 

followed a surrogate approach (Cohen, 2014). We used the continuous time-series (i.e. trials 

were concatenated) to generate the surrogates. For each patient we created a subset of 

surrogate data (N=1000) by randomly displacing in time the SEEG traces. Each SEEG signal was 

divided into two segments of random length and their order was switched. This way, the 

temporal relationship between signals is broken, but their autocorrelation is preserved (Pereda 

et al., 2005). We then computed the partial correlation between the surrogate SEEG and the 

SOBI-MEG. The surrogate results of each region approximate a normal distribution. Thus, the p 

value of significance can be computed as the distance (in units of standard deviation) from the 

original value to the mean of the surrogate distribution. The threshold of significance was set to 

p=0.025 for each patient and region. 

Source localization of SOBI-MEG 

If SOBI correctly separates brain sources into different components, the obtained 

component topographies are expected to be dipolar (Delorme et al., 2012). Their localization 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2022. ; https://doi.org/10.1101/2022.02.28.482228doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.482228
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

can be estimated with an equivalent current dipole. In some cases, the SOBI components may 

correspond to a bilateral activation of homologous brain regions that can be modeled by 

symmetric dipoles (Bénar et al., 2021; Piazza et al., 2020). We assumed the latter for the SOBI-

MEG, representing a bilateral activation of the mesial network. Thus, to localize the source of 

each SOBI-MEG topography, we applied a two-dipole fitting procedure that was symmetric with 

respect to the longitudinal plane. For the forward model, we used the shaped single shell 

approximation implemented in FieldTrip (Oostenveld et al., 2011), which is based in Nolte’s 

solution (Nolte, 2003). Each point of a grid within the brain volume was associated to a triplet of 

orthogonal dipoles. We compared the projection of the model composed by those triplets with 

the SOBI topography, computing the goodness of fit (GOF) at each location as one minus the 

ratio of the sum of squared difference between the SOBI map and the model divided by the sum 

of square of the SOBI map. A confidence interval was estimated by including all points between 

the maximum GOF minus the distance from the maximum GOF to 1 (Pizzo et al., 2019): 

��� � max����	 
 �1 
 max ����		 
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RESULTS 

Identification of putative deep sources on MEG with SOBI 

We performed simultaneous recordings of MEG and SEEG in six patients with focal drug-

resistant epilepsy. To identify the different sources mixed on the MEG signals, we used SOBI on 

the MEG signals recorded during the task. A visual review revealed one SOBI-MEG component 

that was present in all patients, with similar topographies (Figure 1) and ERPs (Figure 2). We 

selected this component as a putative deep source. Its topography resembles a single dipole 

located far from the surface, with the positive and negative poles of the radial component of 

the magnetic field topography over the temporal lobes (Figure 1a). Its ERP presents a complex 

pattern (Figure 2a). It has the earliest response at 110 ms, which matches in time with the N110 

visual component recorded in many areas, including the fusiform gyrus and the inferior frontal 

gyrus (Barbeau et al., 2008). The second component peaks at 250 ms, followed by a third peak 

of inverse polarity (note that the polarity of the signal is arbitrary in SOBI, as it depends on the 

interaction between spatial and temporal components) and a maximum amplitude occurring 

between 400 and 600 ms (Figure 2a). 

To confirm that the origin of the source was physiological and not pathological, we 

repeated the same memory protocol for MEG recordings obtained from six healthy volunteers. 

We identified a SOBI component with the same pattern as the one found in patients, sharing a 

similar deep topography (Figure 1b), and with the same time response, characterized by the 

maximums of opposite polarities at ~250 and ~500 ms (Figure 2b).  
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Figure 1: Second-Order Blind Identification (SOBI) magneto encephalographic (MEG) component of a putative 

deep source. 

a) Topography of the putative deep SOBI-MEG for all patients. The topography is extracted from the mixing 

matrixes obtained with the SOBI algorithm and represents the contribution of the SOBI source to each sensor.  

b) Topography of the SOBI-MEG in all controls. 

 

SOBI-MEG differentiates old and new images 

 The hippocampal formation and surrounding areas have been shown to present 

characteristic ERPs in recognition memory tasks, during which their activity is modulated by 

object recognition (Axmacher et al., 2010; Barbeau et al., 2017, 2008; Merkow et al., 2015; Rugg 

and Curran, 2007). If the putative deep SOBI-MEG is related to the activity of mesial structures, 

a modulation of its ERP during the memory task is expected. To test this hypothesis, we 
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compared the ERP responses in old versus new trials, testing for different amplitudes between 

both conditions at each time point. In good agreement with our hypothesis, we found 

statistically significant differences in five of the six patients and in all healthy controls (Figure 2). 

This modulation is observed at around 500 ms, with higher amplitudes, in absolute value, for old 

images. This result coincides with the hippocampal P600 responses for memory recognition 

(Barbeau et al., 2017, 2008; Merkow et al., 2015). Intriguingly, the differences between 

conditions are not only observed in amplitude but also in delay. ERPs have the same amplitude 

profile during the first 400 ms; then, there is an early peak in the recognition of old images 

(around 500 ms) that appears later in new images (around 600 ms, Figure 2). Together, these 

results support the deep origin of the SOBI-MEG topography. 

SOBI-MEG correlates with mesial areas in intracranial recordings 

To further elucidate the putative origin of the SOBI-MEG component, we resorted to the 

intracranial field potentials recorded simultaneously with MEG from different regions. We 

compared the time courses of both datasets (SOBI-MEG and SEEG) by computing the zero-lag 

correlation, within each patient, between the SOBI-MEG topographies and all the recorded 

SEEG channels. A high correlation between SOBI-MEG and SEEG would indicate that both signals 

carry similar information, most likely because the source of the SOBI-MEG is close to the 

recorded channel. In Figure 3b, we have summarized the results for all patients, where color 

codes the correlation between the SOBI-MEG and the SEEG channels within the electrode (there 

were between 8 and 15 channels per electrode). For two patients (patients 4 and 6), the 

distribution of the correlation values and the threshold of significance with LFDR is represented 

in Figure 3c. The specific location of the contacts for each patient and their correlation with 

SOBI-MEG is represented in Figure 3d.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2022. ; https://doi.org/10.1101/2022.02.28.482228doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.482228
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

 

Figure 2: SOBI-MEG response to recognition. 

Response of the SOBI-MEG components represented in Figure 1. Solid and dashed traces are the averaged ERP 

(mean ± s.e.m. across trials) for old (recognition) and new trials, respectively. Stars indicate statistically significant 

differences in amplitude between old and new trials (unpaired t-test corrected using LFDR).  
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Figure 3: SOBI-MEG correlated with mesial intracerebral recordings. 

a) General intracerebral implantation scheme and nomenclature. 

b) Absolute value of zero-lag correlation between continuous time-series in the SOBI-MEG and in SEEG. On the y 

axis are the names of the SEEG electrodes. For each electrode, the channel with the highest correlation is 

represented. Light grey indicates that the electrode was not implanted in the patient. 

c) Distribution of correlation values between all SOBI-MEG and SEEG pairs for two patients. Red crosses are the 

threshold of significance obtained with LFDR. 

d) Reconstructed 3D brain mesh for each patient with SEEG contacts and their color-coded correlation with SOBI-

MEG. Blue lines represent the contacts across each electrode, and both the color and size of the spheres 

indicate the correlation of that contact. Only significant correlation values are displayed. 

 

In five out of six patients, the highest correlation values were found in electrodes located 

in mesial structures, maximal in TB (with contacts located in the anterior temporo-basal cortex, 

including the rhinal cortex), followed by B (with contacts located in the head of hippocampus), A 
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(amygdala) and TP (temporal pole). Therefore, we focused the analysis on the brain structures 

recorded with these electrodes (Table 2). Note that electrodes TB, TP and A were not implanted 

in patient 3, limiting the opportunities for observing correlations with mesial structures. We also 

computed the contrast between experimental conditions (i.e., old vs new items) for each 

structure during the same window where the SOBI-MEG was modulated (400-600 ms). We 

found differences in the hippocampus, rhinal cortex and middle temporal gyrus of all patients 

with recordings in these locations. We also found differences in amygdala, temporal pole and 

inferior temporal sulcus in three out of the five patients implanted in these regions (Table 2).  

 
Correlation 

Patient 1 2 3 4 5 6 

Hippocampus 0.24
#
 0.10

#
 0.10

#
 0.24

#
 0.12

#
 0.09

#
 

Amygdala 0.28
#
 0.10

#
 - 0.19 0.14

#
 0.01 

Temporal pole 0.07 0.25
#
 - 0.26 0.13

#
 0.07

#
 

Rhinal cortex 0.34
#
 0.18

#
 - 0.40

#
 - 0.10

#
 

Middle temp gyrus 0.19
#
 0.18

#
 - 0.29

#
 0.20

#
 0.06

#
 

Inferior temp gyrus 0.16 0.14 - 0.22 0.19 - 

Inferior temp sulcus 0.38
#
 0.20 - 0.37

#
 0.05

#
 0.04 

 

Table 2: Correlation between SOBI-MEG and SEEG across mesial structures. A hashmark indicates that the region 

showed differences in the ERP for old and new images between 400 and 600 ms. A dash means that no SEEG 

contact was present in this region for this patient. 

The three mesial structures showing differences between old and new items in all the 

patients with available recordings were hippocampus, rhinal cortex, and middle temporal gyrus 

(Figure 4a). In figure 4b we show the averaged ERPs of the three regions for one patient. The 

hippocampus has a positive maximum at  400 ms in both old and new conditions, a component 

previously labelled hippocampal P600 (hP600, Barbeau et al., 2017). Moreover, this peak is 

followed by a fast decay, with a negative peak at 570 and 670 ms for old and new images, 

respectively. The rhinal cortex has a negative peak at 360 ms, that corresponds to the N360 

previously reported in this area (Barbeau et al., 2017, 2008). Similar to the hippocampus, the 

negative peak is followed by a positive peak, with maxima at 510 and 650 ms for old and new 

images respectively. The middle temporal gyrus has the earliest response, with a double peak of 

opposite polarity at 150 and 210 ms. This activity may correspond to the visual response that 

can be recorded in several occipitotemporal brain areas (Barbeau et al., 2008). Moreover, 
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following the dynamics of the other structures, it has a later response, with different delays for 

each condition. In short, the negative and positive peaks of old images were at 400 and 580 ms, 

respectively, while they were at 460 and 680 ms for new images. 

The fact that the activity in these regions is correlated during the cognitive task (Figure 

4b) may affect the correlation between SOBI-MEG and SEEG. A high correlation value may not 

indicate that we have recorded the actual brain source but another region whose activity is 

correlated with the source of interest. To differentiate these scenarios, we computed the partial 

correlation between the SOBI-MEG and the selected structures as recorded in SEEG (Figure 4c). 

This analysis tests whether the correlation between the SOBI-MEG and one region is direct (high 

partial correlation) or undirect, meaning that the common information is also in other regions 

(high correlation but low partial correlation). We excluded patients 3 and 5 from this analysis 

because the three regions were not recorded in those cases. The results confirmed the high 

partial correlation between the hippocampus and rhinal cortex with the SOBI-MEG. The highest 

partial correlation was found in the rhinal cortex (0.187 ± 0.145, mean ± SD), followed by the 

hippocampus (0.086 ± 0.037) and the middle temporal gyrus (0.031 ± 0.016). The values were 

significant in all patients for the hippocampus and rhinal cortex, but not the middle temporal 

gyrus (surrogate analysis, see Materials and methods).  
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Figure 4: Partial correlation between SEEG signals and SOBI-MEG component. 

a) MRI (3D T1) with reconstruction of SEEG electrodes for patient 4. Arrows indicate the locations of the 

contacts for each selected region. 

b) Averaged ERPs for old (solid line) and new (dashed line) conditions from the three analyzed regions in 

patient 4 (mean ± s.e.m. across trials). Stars indicate statistically significant differences in amplitude 

between old and new trials (unpaired t-test corrected by LFDR). 

c) Absolute value of partial correlation between the SEEG recorded in three structures using a monopolar 

montage and the SOBI-MEG. Black lines represent the threshold of significance at p=0.025 for each patient 

(surrogate analysis).  

d) Same partial correlation analysis but using a bipolar montage for the SEEG recordings.  

e) Example of difference between averaged ERPs across trials in old minus new conditions in one patient. It 

can be appreciated the recognition effect at ~500 ms.  

f) Representative traces of hippocampal activity (monopolar SEEG montage) highly correlated with the SOBI-

MEG component during the task.  

 

One limitation of the monopolar montage used in this analysis is that activities arising 

from remote areas may affect the time course recorded at a given sensor due to volume 

conduction, and consequently the correlation between them and the SOBI-MEG. We converted 

the data with a bipolar montage, which aims to represent only the local activity, and we 

repeated the partial correlation analysis (Figure 4d) in the same sensors as in Figure 4c. The 

results corroborated the findings, with the highest partial correlation in the rhinal cortex in all 

patients (0.167 ± 0.090), followed by the hippocampus (0.037 ± 0.010) and the middle temporal 

gyrus (0.035 ± 0.019). The latter was significant in only three of the four analyzed patients 

(surrogate analysis). Finally, we focused on whether the memory effect in SOBI-MEG was the 

same as in the regions analyzed in Table 2. We measured the difference of the ERP between old 

and new conditions in both SOBI-MEG and SEEG contacts (Figure 4e) and we computed the 

correlation between them (Table 3). In good agreement with the previous results (Table 3 and 

Figures 4c and d), the maximum correlation value was found in the rhinal cortex in three out of 

four patients where we recorded this structure (0.668 ± 0.156), followed by middle temporal 

gyrus (0.584 ± 0.197) and hippocampus (0.534 ± 0.161). Overall, these results suggested that the 

origin of the SOBI-MEG is not a single structure, but it is the combination of multiple coactivated 

sources, including the hippocampus and the rhinal cortex (Figure 4f), confirming the notion of a 

mesial network. 
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Correlation ERP old-new (bipolar) 

Patient 1 2 3 4 5 6 

Hippocampus 0.56 0.60 0.61 0.74 0.27 0.45 

Amygdala 0.61 0.53 - 0.83 0.34 0.28 

Temporal pole 0.61 0.51 - 0.49 0.30 0.22 

Rhinal cortex 0.69 0.55 - 0.88 - 0.55 

Middle temp gyrus 0.67 0.40 - 0.84 0.64 0.37 

Inferior temp gyrus 0.48 0.38 - 0.83 0.39 - 

Inferior temp sulcus 0.16 0.46 - 0.76 0.45 0.53 

 

Table 3: Correlation of the memory effect between SOBI-MEG and mesial structures. Bold values represent the 

area with highest correlation in each patient. 

Source localization analysis places the origin of the SOBI-MEG in the mesial temporal lobe  

Finally, we performed a source localization analysis on the SOBI topography. As there 

was no clear laterality in the SOBI-MEG topography, we assumed that the SOBI-MEG 

represented a bilateral activation of the mesial network (Piazza et al., 2020). Therefore, we 

computed the inverse problem with two dipoles that were symmetric with respect to the 

sagittal plane (Figure 5). We considered all points within the brain volume as potential solutions, 

without constraining the analysis to sub-cortical regions. The results revealed that the 

confidence interval for the source was not a single, well-localized point, but instead included a 

large area across the deep mesial cortex with a high goodness of fit (GOF>0.9; Figure 5). This 

reinforces the interpretation of the SOBI-MEG as a mesial network involved in memory 

recognition. 
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Figure 5: Source localization of the SOBI-MEG topography. 

Source localization of the SOBI-MEG topography with two symmetric dipoles for each patient. 
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DISCUSSION 

We report the identification of mesial activity in MEG during a recognition memory task 

in patients with focal drug-resistant epilepsy. Using SOBI, a BSS technique developed to 

disentangle the activity of sources that are mixed on the MEG sensors, we extracted one 

component, or SOBI-MEG, with a putative deep origin. This component was robust across 

patients, with similar topographies (Figure 1a) and time courses (Figure 2). It was likewise 

detected in all healthy controls. With simultaneous MEG-SEEG recordings serving as a ground 

truth of the brain activity, we confirmed the origin of the SOBI component as a mesial network 

comprising the hippocampus and the rhinal cortex.  

The time-tested recognition memory task we used is well known to involve the mesial 

temporal lobe, with different responses between old and new images, especially in the 

hippocampus and the rhinal cortex (e.g. Barbeau et al., 2017, 2008; Despouy et al., 2020). We 

found that differences in the SOBI-MEG ERP were related in time to those observed in SEEG ERP 

across structures in the mesial temporal lobe. A partial correlation analysis confirmed the origin 

of the SOBI-MEG as a combination of the activities from, at least, the hippocampus and the 

rhinal cortex. Importantly, this analysis revealed that the SOBI-MEG is not only capturing the 

common activity between these structures, but also that it contains information specific to each 

node of the mesial network and not shared by the other areas included in the analysis (Figure 4c 

and d).  

Detectability of deep sources with BSS on simultaneous MEG-SEEG 

 The possibility to detect deep brain sources related to cognitive processes using surface 

sensors, with a special focus on the hippocampus, has been a matter of debates in recent years 

(Pu et al., 2018; Ruzich et al., 2019). Very few previous studies have used simultaneous 

intracranial and surface recordings to explore this issue. Such kind of co-registration is the only 

way to ensure the origin of the signals detected noninvasively, although it is not exempt of 

limitations (see below). Korczyn and colleagues (Korczyn et al., 2013) identified hippocampal 

theta on the MEG sensors, with a spatial pattern indicative of a deep source. While these results 

exhibited an accurate correlation between surface and deep signals, the authors limited their 
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analysis to the hippocampus. Therefore, the possibility remains that the MEG sensor was 

recording a third region highly coherent at zero lag with the hippocampus rather than 

hippocampus itself. Moreover, because the activity recorded at the surface is the combination 

of several brain sources, the raw MEG data cannot be easily linked to a single source. It is 

necessary to resort to a methodology that can separate the different sources, such as BSS, to 

recover the time series associated with one region or one coherent network.  

A popular BSS technique is independent component analysis (ICA). ICA assumes that the 

sources have specific spatial distributions that are invariant during the recording session 

(Comon and Jutten, 2010), and that the time-series of the components are independent, 

although it is robust to even high levels of source correlation (Makarova et al., 2011). Due to its 

versatility, ICA has been widely used to remove artifacts (Jung et al., 2000) and to separate 

neuronal sources in local field potentials (Herreras et al., 2015; Makarov et al., 2010), 

particularly in EEG and MEG (Debener et al., 2005; Delorme et al., 2002; Malinowska et al., 

2014; Onton et al., 2005; Tang et al., 2002). Moreover, a recent study has compared the 

effectiveness of different BSS algorithms when analyzing dynamical functional connectivity on 

MEG (Tabbal et al., 2021). It has been argued that ICA relies not only on the independence of 

the sources, but also on their sparsity (Daubechies et al., 2009), which has been recently 

proposed as a key element to discriminate deep sources from the rest of the signals 

(Krishnaswamy et al., 2017). SOBI (Belouchrani et al., 1997, 1993), the alternative BSS method 

used here, is based on covariance; it minimizes the sum-squared cross-correlation between the 

components across a set of time delays and emphasizes processes that are correlated across 

neighboring time-points. We decided to use SOBI in this work because, contrary to ICA, it does 

not assume independency at each time point, and because its reliance on second order statistics 

makes it more robust to limited data length with a lower computational cost (Sahonero-Alvarez 

and Calderon, 2017). Furthermore, it has been argued that SOBI is more robust to variations in 

the underlying mixing matrix (Lio and Boulinguez, 2013) and in cases of temporal jitter (Huster 

et al., 2015).  

ICA and simultaneous MEG-SEEG recordings were previously combined to identify 

epileptic spikes in the MEG sources (Pizzo et al., 2019). Because the signal of interest correlated 
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with the hippocampus or the amygdala, but not with any other recorded structure, these 

structures were taken to be the sources of some independent components. However, it is 

important to note that the amplitude of the pathological epileptic spikes is much higher than 

the spontaneous physiological activity, and thus presumably much easier to detect from the 

surface. It remained unclear whether non-pathological hippocampal activity resulting from 

cognitive processes could be detected on MEG, which was the goal of the present study. The 

data reported here confirm that hippocampal and rhinal cortex activity can be detected with 

MEG during a cognitive task. Although the analyzed SOBI-MEG represents a network and not a 

single region, the partial correlation analysis revealed that both regions do contribute to the 

network and, importantly, that this contribution is unique and not shared by the other analyzed 

structures. 

We further supported these results with a source localization analysis on the SOBI 

topographies (Figure 5). We decided to use two symmetric dipoles as brain sources obtained 

with BSS on MEG can often be explained with a dipole (Delorme et al., 2012), even though this is 

not guaranteed. Moreover, dipoles are justified for several reasons. First the non-dipolar part of 

the sources decreases very rapidly with distance and can be neglected for deep sources (Jerbi et 

al., 2004). Second, and in opposition with distributed source imaging methods, the equivalent 

dipole fitting does not absolutely require a noise covariance matrix, which cannot be easily 

estimated for BSS topographies. Third, the dipole fitting is robust to high level of correlations 

(Bénar et al., 2005) that are expected in cognitive paradigms. The source localization analysis 

was highly accurate to explain the SOBI-MEG topographies in Figure 1a, with large deep mesial 

areas with high GOF values (Figure 5). This is compatible with the interpretation of the SOBI-

MEG as a mesial network including the hippocampus and rhinal cortex (Figure 4), but it is 

important to keep in mind that deep sources are expected to have large confidence intervals 

due to the low spatial frequencies on the scalp (large changes in position are needed to produce 

significant changes in the topography). 

The challenge that still lies ahead is to fully reconstruct the time course of each structure 

in the MEG signal, and to differentiate it from other coactivated neuronal sources. The partial 

correlation analysis confirmed a certain degree of decorrelation between the sources 
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conforming the SOBI-MEG, thus it is reasonable to expect that BSS algorithms can separate 

them. Still, the co-activation of the regions within the mesial network across trials can increase 

the temporal correlation and prevent perfect separation. Indeed, if there is not enough 

independency in space and in time between the sources, the BSS algorithm may not be able to 

separate them, and it will gather several sources into a single component. The combination of 

several protocols involving different structures may increase decorrelation and facilitate the 

separation of the regions. 

Memory response 

 The hippocampal formation, which comprises the hippocampus, the subiculum and the 

entorhinal cortex, is a key structure for spatial navigation and memory processes (Andersen et 

al., 2006; Eichenbaum, 1999; Morris et al., 1982). In humans, studies using SEEG have shown an 

increase of the P300 component in the ERP of the hippocampus during novelty detection 

(Halgren et al., 1995; Ludowig et al., 2010; Polich, 2007), while memory formation and face 

recognition elicited a hippocampal P600 component (Axmacher et al., 2010; Barbeau et al., 

2017, 2008; Merkow et al., 2015; Rugg and Curran, 2007). In the rhinal cortex, an ERP with a 

double negative peak at N240 and N360 is also identified during memory recognition, 

concurrently with the activation of the amygdala and temporal pole (Barbeau et al., 2017, 2008; 

Despouy et al., 2020).  

The fine analysis of the temporal dynamics of the SOBI-MEG during recognition memory 

is beyond the scope of the current study. Nevertheless, several features can be inferred from 

our results. In scalp EEG, the ERP is characterized by two components responding to old and 

new conditions (Hoppstädter et al., 2015; Rugg and Curran, 2007). The first occurs between 

300-500 ms and is related to the prefrontal cortex. The second (400-800 ms) is linked with the 

hemodynamic response of the hippocampus and parahippocampal cortex (Hoppstädter et al., 

2015), although this relation does not determine the origin of the electrical field in EEG. In the 

present work, the differences found in the SOBI-MEG occurred around 500 ms, corresponding 

probably to the second component reported in EEG. Intracranial signals corroborated the origin 

of the component, as old/new effects were also recorded in the hippocampus and rhinal cortex 
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during the same time window (Figure 3b and 4a). Differences were observed not only in 

amplitude, but also in time, with shorter time delays for old versus new trials (Figure 2and 4a, 

Trautner et al., 2004). Interestingly, the duration of this delay was between 100-150 ms, which 

corresponds to one theta cycle (~8 Hz). In the hippocampus, theta rhythms coordinate the 

activity between structures (Colgin et al., 2009; López-Madrona et al., 2020; López-Madrona 

and Canals, 2021), providing different temporal windows for communication, with different cells 

active at different phases (Schomburg et al., 2014). Furthermore, it has been suggested that 

both the encoding and the retrieval of events are segregated in the theta rhythm, either in the 

phase of the theta cycle (Hasselmo et al., 2002), or in different cycles of the same (Lopes-Dos-

Santos et al., 2018; Zhang et al., 2019) or distinct theta oscillations (López-Madrona et al., 2020). 

To account for the old-new delay we observed here, we hypothesize that old and new images 

may be processed at distinct cycles of the hippocampal theta rhythm. For the old condition, the 

information about the memorized images in the thalamocortical working memory loop would 

coherently integrate in the hippocampus with the entorhinal input transmitting information 

about the external stimulus (de Vries et al., 2020; Raghavachari et al., 2006), thus facilitating the 

recognition in a first theta cycle. On the contrary, such integration would not occur in the new 

condition, as both inputs would mismatch. Consequently, the image would not be retrieved in 

the first theta cycle. The persistent external stimulus would enhance the entorhinal input in 

successive cycles, triggering the hippocampal circuit. 

Limitations of SEEG 

There are two main restrictions inherent to SEEG recordings that may limit the 

conclusions of our study. Firstly, only a small part of the brain activity can be sampled with 

SEEG. Therefore, it is possible that the SOBI-MEG corresponds to a source not recorded with the 

available SEEG probes. Nonetheless, the timing of the different responses that we captured with 

SOBI-MEG have been reported across many studies primarily in the mesial structures included in 

the current study (Barbeau et al., 2017, 2008; Merkow et al., 2015). This reduces the likelihood 

that non-visible areas may have contributed to the SOBI-MEG component that we described. 

Secondly, the activity at each SEEG site is itself also composed of multiple field potentials 

converging on each contact, and the recorded activity may not be entirely local (Herreras, 
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2016). Bipolar montages (computed as the difference between adjacent contacts) allow a more 

precise characterization of local transient events. However, they may not recover the correct 

time-course of each area during ongoing field potentials (Fernández-Ruiz and Herreras, 2013; 

Martín-Vázquez et al., 2013) as, for instance, close generators with uncorrelated activities would 

cancel the resultant current. BSS methods have been proposed as a powerful methodology to 

extract the time course associated with different sources, either local or propagated, with 

promising results in the rat hippocampus and cortex (López-Madrona et al., 2020; Makarov et 

al., 2010; Ortuño et al., 2019). Nevertheless, the interpretation of the different components is 

not straightforward, and requires prior knowledge of the brain sources and the geometrical 

propagation of the fields in order to correctly infer the origin of the components (Herreras et al., 

2015). More work is needed to investigate the use of BSS on SEEG signals in the context of 

cognitive paradigms. 

Conclusion 

Blind-source separation methods reveal deep mesial activities in the MEG surface 

recordings whose localization could be reliably established through correlations with 

intracerebral SEEG recordings. This result has direct implications for clinical and cognitive 

neuroscience research. For example, accessing mesial structure activity with MEG could help to 

better understand processes underlying pathologies such as Alzheimer’s disease or epilepsy 

and, in particular, the detection of their early stages (Friston et al., 2015; Sharma and Nadkarni, 

2020). The use of MEG could improve our knowledge of mesial temporal lobe processing in 

humans and of the implication of this region in memory processes. Overall, this opens new 

venues for the use of non-invasive MEG signals for characterizing physiological deep activity. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2022. ; https://doi.org/10.1101/2022.02.28.482228doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.482228
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

ACKNOWLEDGMENTS 

We thank Emmanuel Barbeau for his help in protocol design. This study was performed thanks 

to a FLAG ERA/HBP grant from Agence Nationale de la recherche, ANR-17-HBPR-0005 SCALES 

and UEFISCDI COFUND-FLAGERA II-SCALES, as well as thanks to the Swiss National Science 

Foundation (grants SNSF 192749 and CRSII5 170873 to S. Vulliemoz). The data was acquired on 

a platform member of France Life Imaging network (grant ANR-11-INBS-0006), supported in part 

by grants ANR-16-CONV-0002 (ILCB) and the Excellence Initiative of Aix-Marseille University 

(A*MIDEX). 

CONFLICT OF INTERESTS 

The authors declare no potential conflict of interest. 

DATA AVAILABILITY STATEMENT 

The original raw data supporting the findings of this study are available upon request to the 

corresponding authors.  

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2022. ; https://doi.org/10.1101/2022.02.28.482228doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.482228
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

BIBLIOGRAPHY 

Andersen, P., Morris, R., Amaral, D., Bliss, T., O’Keefe, J., 2006. The Hippocampus Book. Oxford University 
Press. 

Attal, Y., Bhattacharjee, M., Yelnik, J., Cottereau, B., Lefèvre, J., Okada, Y., Bardinet, E., Chupin, M., 
Baillet, S., 2007. Modeling and detecting deep brain activity with MEG & EEG. Annu. Int. Conf. 
IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Int. Conf. 2007, 4937–4940. 
https://doi.org/10.1109/IEMBS.2007.4353448 

Attal, Y., Maess, B., Friederici, A., David, O., 2012. Head models and dynamic causal modeling of 
subcortical activity using magnetoencephalographic/electroencephalographic data. Rev. 
Neurosci. 23, 85–95. https://doi.org/10.1515/rns.2011.056 

Attal, Y., Schwartz, D., 2013. Assessment of Subcortical Source Localization Using Deep Brain Activity 
Imaging Model with Minimum Norm Operators: A MEG Study. PLOS ONE 8, e59856. 
https://doi.org/10.1371/journal.pone.0059856 

Axmacher, N., Cohen, M.X., Fell, J., Haupt, S., Dümpelmann, M., Elger, C.E., Schlaepfer, T.E., Lenartz, D., 
Sturm, V., Ranganath, C., 2010. Intracranial EEG correlates of expectancy and memory formation 
in the human hippocampus and nucleus accumbens. Neuron 65, 541–549. 
https://doi.org/10.1016/j.neuron.2010.02.006 

Badier, J.M., Dubarry, A.S., Gavaret, M., Chen, S., Trébuchon, A.S., Marquis, P., Régis, J., Bartolomei, F., 
Bénar, C.G., Carron, R., 2017. Technical solutions for simultaneous MEG and SEEG recordings: 
towards routine clinical use. Physiol. Meas. 38, N118–N127. https://doi.org/10.1088/1361-
6579/aa7655 

Baillet, S., 2017. Magnetoencephalography for brain electrophysiology and imaging. Nat. Neurosci. 20, 
327–339. https://doi.org/10.1038/nn.4504 

Bancaud, J., Angelergues, R., Bernouilli, C., Bonis, A., Bordas-Ferrer, M., Bresson, M., Buser, P., Covello, 
L., Morel, P., Szikla, G., Takeda, A., Talairach, J., 1970. Functional stereotaxic exploration (SEEG) 
of epilepsy. Electroencephalogr. Clin. Neurophysiol. 28, 85–86. 

Barbeau, E.J., Chauvel, P., Moulin, C.J.A., Regis, J., Liégeois-Chauvel, C., 2017. Hippocampus duality: 
Memory and novelty detection are subserved by distinct mechanisms. Hippocampus 27, 405–
416. https://doi.org/10.1002/hipo.22699 

Barbeau, E.J., Taylor, M.J., Regis, J., Marquis, P., Chauvel, P., Liégeois-Chauvel, C., 2008. Spatio temporal 
dynamics of face recognition. Cereb. Cortex N. Y. N 1991 18, 997–1009. 
https://doi.org/10.1093/cercor/bhm140 

Barry, D.N., Barnes, G.R., Clark, I.A., Maguire, E.A., 2019. The Neural Dynamics of Novel Scene Imagery. J. 
Neurosci. 39, 4375–4386. https://doi.org/10.1523/JNEUROSCI.2497-18.2019 

Bartolomei, F., Bosma, I., Klein, M., Baayen, J.C., Reijneveld, J.C., Postma, T.J., Heimans, J.J., Dijk, B.W. 
van, Munck, J.C. de, Jongh, A. de, Cover, K.S., Stam, C.J., 2006. How do brain tumors alter 
functional connectivity? A magnetoencephalography study. Ann. Neurol. 59, 128–138. 
https://doi.org/10.1002/ana.20710 

Bartolomei, F., Lagarde, S., Wendling, F., McGonigal, A., Jirsa, V., Guye, M., Bénar, C., 2017. Defining 
epileptogenic networks: Contribution of SEEG and signal analysis. Epilepsia 58, 1131–1147. 
https://doi.org/10.1111/epi.13791 

Bell, A.J., Sejnowski, T.J., 1995. An information-maximization approach to blind separation and blind 
deconvolution. Neural Comput. 7, 1129–1159. https://doi.org/10.1162/neco.1995.7.6.1129 

Belouchrani, A., Abed-Meraim, K., Cardoso, J.-F., Moulines, E., 1997. A blind source separation technique 
using second-order statistics. IEEE Trans. Signal Process. 45, 434–444. 
https://doi.org/10.1109/78.554307 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2022. ; https://doi.org/10.1101/2022.02.28.482228doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.482228
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

Belouchrani, A., Abed-meraim, K., Cardoso, J.F., Moulines, E., 1993. Second Order Blind Separation of 
Temporally Correlated Sources. 

Bénar, C.G., Gunn, R.N., Grova, C., Champagne, B., Gotman, J., 2005. Statistical maps for EEG dipolar 
source localization. IEEE Trans. Biomed. Eng. 52, 401–413. 
https://doi.org/10.1109/TBME.2004.841263 

Bénar, C.-G., Velmurugan, J., López-Madrona, V.J., Pizzo, F., Badier, J.M., 2021. Detection and localization 
of deep sources in magnetoencephalography: a review. Curr. Opin. Biomed. Eng. 100285. 
https://doi.org/10.1016/j.cobme.2021.100285 

Benjamini, Y., Heller, R., 2007. False Discovery Rates for Spatial Signals. J. Am. Stat. Assoc. 102, 1272–
1281. https://doi.org/10.1198/016214507000000941 

Boran, E., Fedele, T., Steiner, A., Hilfiker, P., Stieglitz, L., Grunwald, T., Sarnthein, J., 2020. Dataset of 
human medial temporal lobe neurons, scalp and intracranial EEG during a verbal working 
memory task. Sci. Data 7, 30. https://doi.org/10.1038/s41597-020-0364-3 

Cohen, M.X., 2014. Analyzing Neural Time Series Data: Theory and Practice. MIT Press. 
Colgin, L.L., Denninger, T., Fyhn, M., Hafting, T., Bonnevie, T., Jensen, O., Moser, M.-B., Moser, E.I., 2009. 

Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462, 
353–357. https://doi.org/10.1038/nature08573 

Colombet, B., Woodman, M., Badier, J.M., Bénar, C.G., 2015. AnyWave: a cross-platform and modular 
software for visualizing and processing electrophysiological signals. J. Neurosci. Methods 242, 
118–126. https://doi.org/10.1016/j.jneumeth.2015.01.017 

Comon, P., Jutten, C. (Eds.), 2010. Handbook of blind source separation: independent component 
analysis and applications, 1st ed. ed. Elsevier, AmsterdamN; Boston. 

Costers, L., Van Schependom, J., Laton, J., Baijot, J., Sjøgård, M., Wens, V., De Tiège, X., Goldman, S., 
D’Haeseleer, M., D’hooghe, M.B., Woolrich, M., Nagels, G., 2020. Spatiotemporal and spectral 
dynamics of multi-item working memory as revealed by the n-back task using MEG. Hum. Brain 
Mapp. 41, 2431–2446. https://doi.org/10.1002/hbm.24955 

Crespo-García, M., Zeiller, M., Leupold, C., Kreiselmeyer, G., Rampp, S., Hamer, H.M., Dalal, S.S., 2016. 
Slow-theta power decreases during item-place encoding predict spatial accuracy of subsequent 
context recall. NeuroImage 142, 533–543. https://doi.org/10.1016/j.neuroimage.2016.08.021 

Dalal, S.S., Baillet, S., Adam, C., Ducorps, A., Schwartz, D., Jerbi, K., Bertrand, O., Garnero, L., Martinerie, 
J., Lachaux, J.-P., 2009. Simultaneous MEG and intracranial EEG recordings during attentive 
reading. NeuroImage 45, 1289–1304. https://doi.org/10.1016/j.neuroimage.2009.01.017 

Daubechies, I., Roussos, E., Takerkart, S., Benharrosh, M., Golden, C., D’Ardenne, K., Richter, W., Cohen, 
J.D., Haxby, J., 2009. Independent component analysis for brain fMRI does not select for 
independence. Proc. Natl. Acad. Sci. U. S. A. 106, 10415–10422. 
https://doi.org/10.1073/pnas.0903525106 

de Vries, I.E.J., Slagter, H.A., Olivers, C.N.L., 2020. Oscillatory Control over Representational States in 
Working Memory. Trends Cogn. Sci. 24, 150–162. https://doi.org/10.1016/j.tics.2019.11.006 

Debener, S., Makeig, S., Delorme, A., Engel, A.K., 2005. What is novel in the novelty oddball paradigm? 
Functional significance of the novelty P3 event-related potential as revealed by independent 
component analysis. Cogn. Brain Res. 22, 309–321. 
https://doi.org/10.1016/j.cogbrainres.2004.09.006 

Delorme, A., Makeig, S., Fabre-Thorpe, M., Sejnowski, T., 2002. From single-trial EEG to brain area 
dynamics. Neurocomputing, Computational Neuroscience Trends in Research 2002 44–46, 1057–
1064. https://doi.org/10.1016/S0925-2312(02)00415-0 

Delorme, A., Palmer, J., Onton, J., Oostenveld, R., Makeig, S., 2012. Independent EEG sources are dipolar. 
PloS One 7, e30135. https://doi.org/10.1371/journal.pone.0030135 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2022. ; https://doi.org/10.1101/2022.02.28.482228doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.482228
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 

Despouy, E., Curot, J., Deudon, M., Gardy, L., Denuelle, M., Sol, J.-C., Lotterie, J.-A., Valton, L., Barbeau, 
E.J., 2020. A Fast Visual Recognition Memory System in Humans Identified Using Intracerebral 
ERP. Cereb. Cortex N. Y. N 1991 30, 2961–2971. https://doi.org/10.1093/cercor/bhz287 

Destrieux, C., Fischl, B., Dale, A., Halgren, E., 2010. Automatic parcellation of human cortical gyri and sulci 
using standard anatomical nomenclature. NeuroImage 53, 1–15. 
https://doi.org/10.1016/j.neuroimage.2010.06.010 

Dubarry, A.-S., Badier, J.-M., Trébuchon-Da Fonseca, A., Gavaret, M., Carron, R., Bartolomei, F., Liégeois-
Chauvel, C., Régis, J., Chauvel, P., Alario, F.-X., Bénar, C.-G., 2014. Simultaneous recording of 
MEG, EEG and intracerebral EEG during visual stimulation: from feasibility to single-trial analysis. 
NeuroImage 99, 548–558. https://doi.org/10.1016/j.neuroimage.2014.05.055 

Duñabeitia, J.A., Crepaldi, D., Meyer, A.S., New, B., Pliatsikas, C., Smolka, E., Brysbaert, M., 2018. 
MultiPic: A standardized set of 750 drawings with norms for six European languages. Q. J. Exp. 
Psychol. 2006 71, 808–816. https://doi.org/10.1080/17470218.2017.1310261 

Eichenbaum, H., 1999. The hippocampus and mechanisms of declarative memory. Behav. Brain Res. 103, 
123–133. https://doi.org/10.1016/s0166-4328(99)00044-3 

Fellner, M.-C., Gollwitzer, S., Rampp, S., Kreiselmeyr, G., Bush, D., Diehl, B., Axmacher, N., Hamer, H., 
Hanslmayr, S., 2019. Spectral fingerprints or spectral tilt? Evidence for distinct oscillatory 
signatures of memory formation. PLOS Biol. 17, e3000403. 
https://doi.org/10.1371/journal.pbio.3000403 

Fernández-Ruiz, A., Herreras, O., 2013. Identifying the synaptic origin of ongoing neuronal oscillations 
through spatial discrimination of electric fields. Front. Comput. Neurosci. 7, 5. 
https://doi.org/10.3389/fncom.2013.00005 

Fokas, A.S., Kurylev, Y., Marinakis, V., 2004. The unique determination of neuronal currents in the brain 
via magnetoencephalography. Inverse Probl. 20, 1067–1082. https://doi.org/10.1088/0266-
5611/20/4/005 

Friederici, A.D., Wang, Y., Herrmann, C.S., Maess, B., Oertel, U., 2000. Localization of early syntactic 
processes in frontal and temporal cortical areas: A magnetoencephalographic study. Hum. Brain 
Mapp. 11, 1–11. https://doi.org/10.1002/1097-0193(200009)11:1<1::AID-HBM10>3.0.CO;2-B 

Friston, K.J., Bastos, A.M., Pinotsis, D., Litvak, V., 2015. LFP and oscillations-what do they tell us? Curr. 
Opin. Neurobiol. 31, 1–6. https://doi.org/10.1016/j.conb.2014.05.004 

Guderian, S., Schott, B.H., Richardson-Klavehn, A., Düzel, E., 2009. Medial temporal theta state before an 
event predicts episodic encoding success in humans. Proc. Natl. Acad. Sci. 106, 5365–5370. 
https://doi.org/10.1073/pnas.0900289106 

Hagen, S., Jacques, C., Maillard, L., Colnat-Coulbois, S., Rossion, B., Jonas, J., 2020. Spatially Dissociated 
Intracerebral Maps for Face- and House-Selective Activity in the Human Ventral Occipito-
Temporal Cortex. Cereb. Cortex 30, 4026–4043. https://doi.org/10.1093/cercor/bhaa022 

Halgren, E., Baudena, P., Clarke, J.M., Heit, G., Marinkovic, K., Devaux, B., Vignal, J.P., Biraben, A., 1995. 
Intracerebral potentials to rare target and distractor auditory and visual stimuli. II. Medial, lateral 
and posterior temporal lobe. Electroencephalogr. Clin. Neurophysiol. 94, 229–250. 
https://doi.org/10.1016/0013-4694(95)98475-n 

Hämäläinen, M., Hari, R., Ilmoniemi, R.J., Knuutila, J., Lounasmaa, O.V., 1993. Magnetoencephalography-
--theory, instrumentation, and applications to noninvasive studies of the working human brain. 
Rev. Mod. Phys. 65, 413–497. https://doi.org/10.1103/RevModPhys.65.413 

Hasselmo, M.E., Bodelón, C., Wyble, B.P., 2002. A proposed function for hippocampal theta rhythm: 
separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput. 14, 
793–817. https://doi.org/10.1162/089976602317318965 

Herreras, O., 2016. Local Field Potentials: Myths and Misunderstandings. Front. Neural Circuits 10. 
https://doi.org/10.3389/fncir.2016.00101 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2022. ; https://doi.org/10.1101/2022.02.28.482228doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.482228
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 
 

Herreras, O., Makarova, J., Makarov, V.A., 2015. New uses of LFPs: Pathway-specific threads obtained 
through spatial discrimination. Neuroscience 310, 486–503. 
https://doi.org/10.1016/j.neuroscience.2015.09.054 

Hillebrand, A., Singh, K.D., Holliday, I.E., Furlong, P.L., Barnes, G.R., 2005. A new approach to 
neuroimaging with magnetoencephalography. Hum. Brain Mapp. 25, 199–211. 
https://doi.org/10.1002/hbm.20102 

Hoppstädter, M., Baeuchl, C., Diener, C., Flor, H., Meyer, P., 2015. Simultaneous EEG-fMRI reveals brain 
networks underlying recognition memory ERP old/new effects. NeuroImage 116, 112–122. 
https://doi.org/10.1016/j.neuroimage.2015.05.026 

Huotilainen, M., Winkler, I., Alho, K., Escera, C., Virtanen, J., Ilmoniemi, R.J., Jääskeläinen, I.P., Pekkonen, 
E., Näätänen, R., 1998. Combined mapping of human auditory EEG and MEG responses. 
Electroencephalogr. Clin. Neurophysiol. Potentials Sect. 108, 370–379. 
https://doi.org/10.1016/S0168-5597(98)00017-3 

Huster, R.J., Plis, S.M., Calhoun, V.D., 2015. Group-level component analyses of EEG: validation and 
evaluation. Front. Neurosci. 9. https://doi.org/10.3389/fnins.2015.00254 

Jerbi, K., Baillet, S., Mosher, J.C., Nolte, G., Garnero, L., Leahy, R.M., 2004. Localization of realistic cortical 
activity in MEG using current multipoles. NeuroImage 22, 779–793. 
https://doi.org/10.1016/j.neuroimage.2004.02.010 

Jonas, J., Jacques, C., Liu-Shuang, J., Brissart, H., Colnat-Coulbois, S., Maillard, L., Rossion, B., 2016. A 
face-selective ventral occipito-temporal map of the human brain with intracerebral potentials. 
Proc. Natl. Acad. Sci. 113, E4088–E4097. https://doi.org/10.1073/pnas.1522033113 

Jung, T.P., Makeig, S., Humphries, C., Lee, T.W., McKeown, M.J., Iragui, V., Sejnowski, T.J., 2000. 
Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37, 
163–178. 

Korczyn, A.D., Schachter, S.C., Brodie, M.J., Dalal, S.S., Engel, J., Guekht, A., Hecimovic, H., Jerbi, K., 
Kanner, A.M., Johannessen Landmark, C., Mares, P., Marusic, P., Meletti, S., Mula, M., Patsalos, 
P.N., Reuber, M., Ryvlin, P., Štillová, K., Tuchman, R., Rektor, I., 2013. Epilepsy, cognition, and 
neuropsychiatry (Epilepsy, Brain, and Mind, part 2). Epilepsy Behav. EB 28, 283–302. 
https://doi.org/10.1016/j.yebeh.2013.03.012 

Krishnaswamy, P., Obregon-Henao, G., Ahveninen, J., Khan, S., Babadi, B., Iglesias, J.E., Hämäläinen, M.S., 
Purdon, P.L., 2017. Sparsity enables estimation of both subcortical and cortical activity from MEG 
and EEG. Proc. Natl. Acad. Sci. U. S. A. 114, E10465–E10474. 
https://doi.org/10.1073/pnas.1705414114 

Lachaux, J.-P., George, N., Tallon-Baudry, C., Martinerie, J., Hugueville, L., Minotti, L., Kahane, P., Renault, 
B., 2005. The many faces of the gamma band response to complex visual stimuli. NeuroImage 25, 
491–501. https://doi.org/10.1016/j.neuroimage.2004.11.052 

Lio, G., Boulinguez, P., 2013. Greater robustness of second order statistics than higher order statistics 
algorithms to distortions of the mixing matrix in blind source separation of human EEG: 
implications for single-subject and group analyses. NeuroImage 67, 137–152. 
https://doi.org/10.1016/j.neuroimage.2012.11.015 

Lopes-Dos-Santos, V., van de Ven, G.M., Morley, A., Trouche, S., Campo-Urriza, N., Dupret, D., 2018. 
Parsing Hippocampal Theta Oscillations by Nested Spectral Components during Spatial 
Exploration and Memory-Guided Behavior. Neuron 100, 940-952.e7. 
https://doi.org/10.1016/j.neuron.2018.09.031 

López-Madrona, V.J., Canals, S., 2021. Functional Interactions between Entorhinal Cortical Pathways 
Modulate Theta Activity in the Hippocampus. Biology 10, 692. 
https://doi.org/10.3390/biology10080692 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2022. ; https://doi.org/10.1101/2022.02.28.482228doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.482228
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 
 

López-Madrona, V.J., Pérez-Montoyo, E., Álvarez-Salvado, E., Moratal, D., Herreras, O., Pereda, E., 
Mirasso, C.R., Canals, S., 2020. Different theta frameworks coexist in the rat hippocampus and 
are coordinated during memory-guided and novelty tasks. eLife 9. 
https://doi.org/10.7554/eLife.57313 

Ludowig, E., Bien, C.G., Elger, C.E., Rosburg, T., 2010. Two P300 generators in the hippocampal 
formation. Hippocampus 20, 186–195. https://doi.org/10.1002/hipo.20603 

Makarov, V.A., Makarova, J., Herreras, O., 2010. Disentanglement of local field potential sources by 
independent component analysis. J. Comput. Neurosci. 29, 445–457. 
https://doi.org/10.1007/s10827-009-0206-y 

Makarova, J., Ibarz, J.M., Makarov, V.A., Benito, N., Herreras, O., 2011. Parallel readout of pathway-
specific inputs to laminated brain structures. Front. Syst. Neurosci. 5, 77. 
https://doi.org/10.3389/fnsys.2011.00077 

Malinowska, U., Badier, J.-M., Gavaret, M., Bartolomei, F., Chauvel, P., Bénar, C.-G., 2014. Interictal 
networks in magnetoencephalography. Hum. Brain Mapp. 35, 2789–2805. 
https://doi.org/10.1002/hbm.22367 

Marrelec, G., Krainik, A., Duffau, H., Pélégrini-Issac, M., Lehéricy, S., Doyon, J., Benali, H., 2006. Partial 
correlation for functional brain interactivity investigation in functional MRI. NeuroImage 32, 
228–237. https://doi.org/10.1016/j.neuroimage.2005.12.057 

Martín-Vázquez, G., Makarova, J., Makarov, V.A., Herreras, O., 2013. Determining the true polarity and 
amplitude of synaptic currents underlying gamma oscillations of local field potentials. PloS One 
8, e75499. https://doi.org/10.1371/journal.pone.0075499 

Medina Villalon, S., Paz, R., Roehri, N., Lagarde, S., Pizzo, F., Colombet, B., Bartolomei, F., Carron, R., 
Bénar, C.-G., 2018. EpiTools, A software suite for presurgical brain mapping in epilepsy: 
Intracerebral EEG. J. Neurosci. Methods 303, 7–15. 
https://doi.org/10.1016/j.jneumeth.2018.03.018 

Merkow, M.B., Burke, J.F., Kahana, M.J., 2015. The human hippocampus contributes to both the 
recollection and familiarity components of recognition memory. Proc. Natl. Acad. Sci. U. S. A. 
112, 14378–14383. https://doi.org/10.1073/pnas.1513145112 

Meyer, S.S., Rossiter, H., Brookes, M.J., Woolrich, M.W., Bestmann, S., Barnes, G.R., 2017. Using 
generative models to make probabilistic statements about hippocampal engagement in MEG. 
NeuroImage 149, 468–482. https://doi.org/10.1016/j.neuroimage.2017.01.029 

Mikulan, E., Russo, S., Parmigiani, S., Sarasso, S., Zauli, F.M., Rubino, A., Avanzini, P., Cattani, A., 
Sorrentino, A., Gibbs, S., Cardinale, F., Sartori, I., Nobili, L., Massimini, M., Pigorini, A., 2020. 
Simultaneous human intracerebral stimulation and HD-EEG, ground-truth for source localization 
methods. Sci. Data 7, 127. https://doi.org/10.1038/s41597-020-0467-x 

Morris, R.G., Garrud, P., Rawlins, J.N., O’Keefe, J., 1982. Place navigation impaired in rats with 
hippocampal lesions. Nature 297, 681–683. https://doi.org/10.1038/297681a0 

Mosher, J.C., Spencer, M.E., Leahy, R.M., Lewis, P.S., 1993. Error bounds for EEG and MEG dipole source 
localization. Electroencephalogr. Clin. Neurophysiol. 86, 303–321. https://doi.org/10.1016/0013-
4694(93)90043-U 

Nelson, M.J., Karoui, I.E., Giber, K., Yang, X., Cohen, L., Koopman, H., Cash, S.S., Naccache, L., Hale, J.T., 
Pallier, C., Dehaene, S., 2017. Neurophysiological dynamics of phrase-structure building during 
sentence processing. Proc. Natl. Acad. Sci. 114, E3669–E3678. 
https://doi.org/10.1073/pnas.1701590114 

New, B., Pallier, C., Brysbaert, M., Ferrand, L., 2004. Lexique 2: a new French lexical database. Behav. 
Res. Methods Instrum. Comput. J. Psychon. Soc. Inc 36, 516–524. 
https://doi.org/10.3758/bf03195598 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2022. ; https://doi.org/10.1101/2022.02.28.482228doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.482228
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 
 

Nolte, G., 2003. The magnetic lead field theorem in the quasi-static approximation and its use for 
magnetoencephalography forward calculation in realistic volume conductors. Phys. Med. Biol. 
48, 3637–3652. https://doi.org/10.1088/0031-9155/48/22/002 

Onton, J., Delorme, A., Makeig, S., 2005. Frontal midline EEG dynamics during working memory. 
NeuroImage 27, 341–356. https://doi.org/10.1016/j.neuroimage.2005.04.014 

Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.-M., 2011. FieldTrip: Open source software for advanced 
analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 
156869. https://doi.org/10.1155/2011/156869 

Ortuño, T., López-Madrona, V.J., Makarova, J., Tapia-Gonzalez, S., Muñoz, A., DeFelipe, J., Herreras, O., 
2019. Slow-Wave Activity in the S1HL Cortex Is Contributed by Different Layer-Specific Field 
Potential Sources during Development. J. Neurosci. Off. J. Soc. Neurosci. 39, 8900–8915. 
https://doi.org/10.1523/JNEUROSCI.1212-19.2019 

Oswal, A., Jha, A., Neal, S., Reid, A., Bradbury, D., Aston, P., Limousin, P., Foltynie, T., Zrinzo, L., Brown, P., 
Litvak, V., 2016. Analysis of simultaneous MEG and intracranial LFP recordings during Deep Brain 
Stimulation: a protocol and experimental validation. J. Neurosci. Methods 261, 29–46. 
https://doi.org/10.1016/j.jneumeth.2015.11.029 

Parmigiani, S., Mikulan, E.P., Russo, S., Sarasso, S., Zauli, F.M., Rubino, A., Cattani, A., Fecchio, M., 
Giampiccolo, D., Lanzone, J., D’Orio, P., Vecchio, M. del, Avanzini, P., Nobili, L., Sartori, I., 
Massimini, M., Pigorini, A., 2021. Simultaneous stereo-EEG and high-density scalp EEG recordings 
to study the effects of intracerebral stimulation parameters. 
https://doi.org/10.1101/2021.11.15.468625 

Pereda, E., Quiroga, R.Q., Bhattacharya, J., 2005. Nonlinear multivariate analysis of neurophysiological 
signals. Prog. Neurobiol. 77, 1–37. https://doi.org/10.1016/j.pneurobio.2005.10.003 

Piazza, C., Cantiani, C., Miyakoshi, M., Riva, V., Molteni, M., Reni, G., Makeig, S., 2020. EEG Effective 
Source Projections Are More Bilaterally Symmetric in Infants Than in Adults. Front. Hum. 
Neurosci. 14. https://doi.org/10.3389/fnhum.2020.00082 

Pizzo, F., Roehri, N., Medina Villalon, S., Trébuchon, A., Chen, S., Lagarde, S., Carron, R., Gavaret, M., 
Giusiano, B., McGonigal, A., Bartolomei, F., Badier, J.M., Bénar, C.G., 2019. Deep brain activities 
can be detected with magnetoencephalography. Nat. Commun. 10, 971. 
https://doi.org/10.1038/s41467-019-08665-5 

Polich, J., 2007. Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol. Off. J. Int. Fed. 
Clin. Neurophysiol. 118, 2128–2148. https://doi.org/10.1016/j.clinph.2007.04.019 

Pu, Y., Cheyne, D.O., Cornwell, B.R., Johnson, B.W., 2018. Non-invasive Investigation of Human 
Hippocampal Rhythms Using Magnetoencephalography: A Review. Front. Neurosci. 12, 273. 
https://doi.org/10.3389/fnins.2018.00273 

Raghavachari, S., Lisman, J.E., Tully, M., Madsen, J.R., Bromfield, E.B., Kahana, M.J., 2006. Theta 
oscillations in human cortex during a working-memory task: evidence for local generators. J. 
Neurophysiol. 95, 1630–1638. https://doi.org/10.1152/jn.00409.2005 

Rampp, S., Kaltenhäuser, M., Weigel, D., Buchfelder, M., Ingmar Blümcke, I., Dörfler, A., Stefan, H., 2010. 
MEG correlates of epileptic high gamma oscillations in invasive EEG. Epilepsia 51, 1638–1642. 
https://doi.org/10.1111/j.1528-1167.2010.02579.x 

Rugg, M.D., Curran, T., 2007. Event-related potentials and recognition memory. Trends Cogn. Sci. 11, 
251–257. https://doi.org/10.1016/j.tics.2007.04.004 

Ruzich, E., Crespo-García, M., Dalal, S.S., Schneiderman, J.F., 2019. Characterizing hippocampal dynamics 
with MEG: A systematic review and evidence-based guidelines. Hum. Brain Mapp. 40, 1353–
1375. https://doi.org/10.1002/hbm.24445 

Sahonero-Alvarez, G., Calderon, H., 2017. A Comparison of SOBI, FastICA, JADE and Infomax Algorithms. 
Proc. 8th Int. Multi-Conf. Complex. Inform. Cybern. 17–22. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2022. ; https://doi.org/10.1101/2022.02.28.482228doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.482228
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 
 

Schomburg, E.W., Fernández-Ruiz, A., Mizuseki, K., Berényi, A., Anastassiou, C.A., Koch, C., Buzsáki, G., 
2014. Theta phase segregation of input-specific gamma patterns in entorhinal-hippocampal 
networks. Neuron 84, 470–485. https://doi.org/10.1016/j.neuron.2014.08.051 

Sharma, R., Nadkarni, S., 2020. Biophysical Basis of Alpha Rhythm Disruption in Alzheimer’s Disease. 
eNeuro 7. https://doi.org/10.1523/ENEURO.0293-19.2020 

Shigeto, H., Morioka, T., Hisada, K., Nishio, S., Ishibashi, H., Kira, D., Tobimatsu, S., Kato, M., 2002. 
Feasibility and limitations of magnetoencephalographic detection of epileptic discharges: 
simultaneous recording of magnetic fields and electrocorticography. Neurol. Res. 24, 531–536. 
https://doi.org/10.1179/016164102101200492 

Stephen, J.M., Ranken, D.M., Aine, C.J., Weisend, M.P., Shih, J.J., 2005. Differentiability of simulated MEG 
hippocampal, medial temporal and neocortical temporal epileptic spike activity. J. Clin. 
Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 22, 388–401. 
https://doi.org/?10.1097/01.WNP.0000172141.26081.78 

Sutherling, W.W., Akhtari, M., Mamelak, A.N., Mosher, J., Arthur, D., Sands, S., Weiss, P., Lopez, N., 
DiMauro, M., Flynn, E., Leah, R., 2001. Dipole localization of human induced focal afterdischarge 
seizure in simultaneous magnetoencephalography and electrocorticography. Brain Topogr. 14, 
101–116. https://doi.org/10.1023/a:1012940812742 

Tabbal, J., Kabbara, A., Khalil, M., Benquet, P., Hassan, M., 2021. Dynamics of task-related 
electrophysiological networks: a benchmarking study. NeuroImage 231, 117829. 
https://doi.org/10.1016/j.neuroimage.2021.117829 

Tallon-Baudry, C., Bertrand, O., Hénaff, M.-A., Isnard, J., Fischer, C., 2005. Attention Modulates Gamma-
band Oscillations Differently in the Human Lateral Occipital Cortex and Fusiform Gyrus. Cereb. 
Cortex 15, 654–662. https://doi.org/10.1093/cercor/bhh167 

Tang, A.C., Liu, J.-Y., Sutherland, M.T., 2005. Recovery of correlated neuronal sources from EEG: the good 
and bad ways of using SOBI. NeuroImage 28, 507–519. 
https://doi.org/10.1016/j.neuroimage.2005.06.062 

Tang, A.C., Pearlmutter, B.A., Malaszenko, N.A., Phung, D.B., 2002. Independent components of 
magnetoencephalography: single-trial response onset times. NeuroImage 17, 1773–1789. 
https://doi.org/10.1006/nimg.2002.1320 

Taylor, M.J., Mills, T., Pang, E.W., 2011. The Development of Face Recognition; Hippocampal and Frontal 
Lobe Contributions Determined with MEG. Brain Topogr. 24, 261. 
https://doi.org/10.1007/s10548-011-0192-z 

Trautner, P., Dietl, T., Staedtgen, M., Mecklinger, A., Grunwald, T., Elger, C.E., Kurthen, M., 2004. 
Recognition of famous faces in the medial temporal lobe: an invasive ERP study. Neurology 63, 
1203–1208. https://doi.org/10.1212/01.wnl.0000140487.55973.d7 

van Casteren, M., Davis, M.H., 2006. Mix, a program for pseudorandomization. Behav. Res. Methods 38, 
584–589. https://doi.org/10.3758/bf03193889 

Wacongne, C., Labyt, E., Wassenhove, V. van, Bekinschtein, T., Naccache, L., Dehaene, S., 2011. Evidence 
for a hierarchy of predictions and prediction errors in human cortex. Proc. Natl. Acad. Sci. 108, 
20754–20759. https://doi.org/10.1073/pnas.1117807108 

Wang, H.E., Scholly, J., Triebkorn, P., Sip, V., Villalon, S.M., Woodman, M.M., Le Troter, A., Guye, M., 
Bartolomei, F., Jirsa, V., 2020. VEP atlas: An anatomic and functional human brain atlas dedicated 
to epilepsy patients. J. Neurosci. Methods 108983. 
https://doi.org/10.1016/j.jneumeth.2020.108983 

Xu, W., Kolozsvari, O.B., Oostenveld, R., Hämäläinen, J.A., 2020. Rapid changes in brain activity during 
learning of grapheme-phoneme associations in adults. NeuroImage 220, 117058. 
https://doi.org/10.1016/j.neuroimage.2020.117058 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2022. ; https://doi.org/10.1101/2022.02.28.482228doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.482228
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 
 

Zhang, L., Lee, J., Rozell, C., Singer, A.C., 2019. Sub-second dynamics of theta-gamma coupling in 
hippocampal CA1. eLife 8. https://doi.org/10.7554/eLife.44320 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2022. ; https://doi.org/10.1101/2022.02.28.482228doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.482228
http://creativecommons.org/licenses/by-nc-nd/4.0/

