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Abstract
The coffee berry borer (CBB) Hypothenemus hampei (Coleoptera: Scolytidae) is the most important
insect pest affecting coffee production worldwide and generating huge economic losses. As most of
its life cycle occurs inside the coffee berry, its control is extremely difficult. To tackle this issue, we
solve an optimal control problem based on a berry age-structured dynamical model that describes
the infestation dynamics of coffee berries by CBB during a cropping season. This problem consists
in applying a bio–insecticide at discrete times in order to maximise the economic profit of healthy
coffee berries while minimising the CBB population for the next cropping season. We derive
analytically the first–order necessary optimality conditions of the control problem. Numerical
simulations are provided to illustrate the effectiveness of the optimal control strategy.

Keywords
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I INTRODUCTION

Coffee berry borer (CBB), Hypothenemus hampei (Coleoptera: Scolytidae) is the most damaging
insect pest of coffee worldwide, affecting both the yield and quality of coffee products (Le Pelley,
1968; Damon, 2000), and causing more than US$500 million in damages annually (Vega et al.,
2003). The CBB life cycle is composed of five distinct stages: egg, larva, pre–pupal, pupal
and adult (Aristizàbal et al., 2016). It starts when an adult (fertilised) female emerges from an
infested berry to seek a new host. It selects and bores a hole in a uninfested berry. It lay its
eggs in internal galleries and remains inside the coffee berry after oviposition until it dies. After
hatching, the larvae feed on the coffee seeds. Young females mate with their male siblings inside
the berry. Male CBB do not fly and remain inside the berry (Silva et al., 2012). Fertilised females
emerge from the infested berry, and the loop is closed. The choice of a new host by colonising
females depends mainly on the age of the coffee berry. CBB attack immature and mature coffee
berries from three months after flowering up to harvest period, with a preference for older berries
(Rodríguez et al., 2013).

1

mailto:


In response to CBB attacks, integrated pest management programs for coffee plantation have
been developed, which involve several control strategies. Chemical control consists in applying
synthetic insecticides designed to kill the CBB during the colonisation of young coffee berries
(Aristizàbal et al., 2016). Biological control is based on natural enemies or products derived from
living organisms and aims at maintaining CBB at an acceptable level of harmfulness. The main
enemies of CBB are parasitic hymenoptera, certain entomopathogenic fungus and nematodes
(Aristizàbal et al., 2016; Damon, 2000). Cultural practices consist of various activities, such as
sanitary harvesting, which is the elimination of residual berries present on the branches of trees
and on the ground (Damon, 2000; Aristizàbal et al., 2016). Finally, trapping methods consist
in using attractive traps to capture colonising females during their migration flights (Messing,
2012).

The purpose of this work is to optimise CBB control strategies consisting in spraying a biocontrol
agent or bio–insecticide at discrete times. It is based on a dynamical model describing the
interactions between CBB and coffee berries during a cropping season, which incorporates a
berry age structure to account for CBB preference for older berries (Fotso Fotso et al., 2022). To
achieve this goal, we formulate and solve an optimal impulsive control problem whose objective
is to maximise the profit, while minimising the CBB population for the next cropping season.
We previously studied a similar problem in Fotso Fotso et al. (2021), but the model did not
include the berry age structure and the control was continuous instead of impulsive. The present
paper hence proposes two notable improvements compared to our previous work. Impulsive
bio–insecticide spraying, in particular, is more relevant for field implementation.

The remainder of the paper has the following structure. In Section II, we formulate the control
problem. In Section III, the first order necessary conditions for optimality are established. Finally,
results are illustrated by numerical simulations in Section IV.

II THE MODEL AND CONTROL PROBLEM STATEMENT

2.1 Coffee berry – CBB interaction model

In this study, we consider the epidemiological model proposed in Fotso Fotso et al. (2022)
describing the infestation dynamics of coffee berries by CBB. Coffee berries are characterised by
their age and their epidemic status: s(t, a) and i(t, a) are respectively the age–specific density
of healthy and infested coffee berries at the time t and age a ∈ [0, a†], where a† is the maximal
berry age. The CBB population is divided in two groups, the colonising females denoted by y(t),
which correspond to the flying fertilised females looking for their host, and infesting females
that are laying eggs inside the berries. Although the sex ratio is largely female-biased (Damon,
2000), we assume that there are enough males in each generation to fertilise young females. The
infestation dynamics of coffee berries by CBB are described by the following age-structured
model:

∂ts(t, a) + ∂as(t, a) = −β(a)f(B, y)s(t, a)− µ(a)s(t, a),

∂ti(t, a) + ∂ai(t, a) = β(a)f(B, y)i(t, a)− ν(a)i(t, a),

ẏ(t) = −εf(B, y)‖βs(t, .)‖ − µyy(t) + φz(t),

ż(t) = εf(B, y)‖βs(t, .)‖ − µzz(t),

(1)

completed by the following boundary and initial conditions:

s(t, 0) = g(t), i(t, 0) = 0, s(0, a) = s0(a), i(0, a) = i0(a). (2)
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In this model, new healthy berries are produced at time-dependent rate g(t). The colonising CBB
females infest the healthy berries at rate β(a)f(B, y), where β(.) is the berry age-dependent
infestation rate and f(., .) is an interaction function which depends on the total healthy berries
B(t) =

∫ a†
0
s(t, a)da and colonising females y. This creates a berry transfer from healthy s(t, a)

to infested berries i(t, a) and simultaneously, from colonising y(t) to infesting females z(t)
(with ‖βs(t, .)‖ =

∫ a†
0
β(a)s(t, a)da). The scaling parameter ε corresponds to the number of

colonising females per infested berry; usually, ε = 1 CBB/berry, since superparasitism is rarely
observed in the plantation (Rodríguez et al., 2013). Infesting females lay eggs inside the coffee
berries, which go through their development cycle until fertilised adult females emerge at rate φ.
Colonising and infesting CBB females undergo mortality at rate µy and µz; healthy and infested
berries at the rate µ(a) and ν(a). This model relies on the following assumptions.

Assumptions: Positivity and smoothness of the functions and parameters of system (1)
1. Parameters φ, ε, µy, µz and initial conditions y0, z0 are nonnegative.
2. g(.) ∈ L∞+ (0,∞), β(.) ∈ L∞+ (0, a†); boundary conditions s0(.), i0(.) ∈ L1

+(0, a†) and are
bounded.

3. Mortality rates µ(.), ν(.) ∈ L∞+ (0, a†), ν(a) ≥ µ(a); moreover, there exists a real number
µ̃ > 0 satisfying µ(a) ≥ µ̃ for almost every a ∈ [0, a†].

4. Contact function f(., .) is bounded and C1–Lipschitz continuous for both arguments;
moreover, f(B, y) decreases with B and increases with y, with f(B, 0) = 0 and for all
y > 0, lim

B→+∞
f(B, y)B is finite.

(L1
+(I), ‖.‖) is the space of nonnegative measurable functions L1(I) equiped by the product

norm and (L∞+ (I), ‖.‖∞) the space of nonnegative functions L∞(I) over the set I ⊂ R.

We then include in this model the possibility to apply a bio–insecticide at discrete times in the
coffee plantation. The bio–insecticide can for instance be based on the entomopathogenic fungus
Beauveria bassiana (Greco et Wright, 2018). It prevents berry infestation: when a colonising
CBB bores its hole in a healthy berry and comes into contact with the bio–insecticide, it gets
killed by the biocontrol agent. To implement this control in the model, we introduce a new state
variable v(t), which corresponds to the bio–insecticide load in the plantation at time t. Note
that variable i(t, a), representing infested berries, does not appear in the remaining equations
of system (1) and is not affected by our control. Therefore, one can drop the i(t, a)–equation to
control the system dynamics. We then obtain the following controlled system:

∂ts(t, a) + ∂as(t, a) = −β(a)q(v(t))f(B, y)s(t, a) + µ(a)s(t, a),

ẏ(t) = −εf(B, y)‖βs(t, .)‖ − µyy(t) + φz(t),

ż(t) = εq(v(t))f(B, y)‖βs(t, .)‖ − µzz(t),

v̇(t) = −γv(t), for t 6= tn,

∆v(tn) = v(t+n )− v(tn) = hn for t = tn,

s(t, 0) = g(t), s(0, a) = s0(a), y(0) = y0, z(0) = z0, v(0+) = v0.

(3)

The control hn ≥ 0 is applied periodically in the plantation at discrete times tn = nτ , where
n ∈ {0, 1, 2, . . . , Nf} and τ is the application period, i.e. the time elapsed between two successive
applications. The t+n notation depicts the instant just after tn, so v(t+n ) = limj→0+ v(tn + j) is the
bio–insecticide load instantly after the control application. The bio–insecticide load persists in
the plantation and decays with rate γ. Its initial condition v(0+) is nonnegative. As in Fotso Fotso
et al. (2021), function q(.) : R+ −→ R+ represents the modulation of the CBB infestation
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rate by the bio–insecticide as follows: q(v) = 1− ξv
v+k

, where ξ ∈ (0, 1) denotes the maximal
effectiveness of the bio–insecticide load and the positive constant k the load half saturation.

2.2 Optimal control problem

We now formulate the optimal control problem. The main goal of coffee growers is to produce
good quality coffee berries, that can be sold at a high price, with low control costs, so as to
maximise their profit. They also aim at reducing the CBB population at the end of the cropping
season, to limit the risk for the next season. We assume that the harvest takes place at the end of
the cropping season, denoted by tf . We also assume that (almost) all berries, and hence (almost)
all infesting females that are inside berries, are picked at tf , so that only colonising females
(y) remain in the plantation after harvest. Lastly, we assume that infested coffee berries have a
negligible monetary value, so that the yield consists only of healthy berries.

We define the class of admissible controls as:

M := {h = (hn) ∈ RNf+1 : 0 ≤ hn ≤ hmax,∀n ∈ {0, 1, 2, . . . Nf}},

where hmax represents the upper bound of control. The objective functional is defined for control
h = (hn)n∈{0,1,2,...Nf} ∈M as follows:

J (h) =

∫ a†

0

Θ(a)s(tf , a)da−
Nf∑
n=0

C(hn)− Cyy(tf ), (4)

subject to the impulsive evolution System (3). The first term is the coffee berry yield, where
function Θ(.) denotes the price of healthy berries, a bounded, continuous and increasing function
of the berry age. The second term represents the control cost, where C(.) is a continuous function
of the control hn. The last term is a penalty on the CBB population that remains in the plantation
after harvest, weighted by constant Cy.

Our purpose is to maximise the objective functional over the admissible class of controls, i.e.
seek h? = (h?n)n∈{0,1,2,...Nf} that belongs toM so that:

J (h?) = max
h∈M
J (h). (5)

III OPTIMALITY CONDITIONS

We first establish the existence of an optimal solution to problem (5) in Theorem 1 (see proof in
Appendix 1.1) and then characterise the solution using the maximum principle method.

Theorem 1:
There exists an optimal control application h? = (h?n)n∈{0,1,2,...Nf} that belongs toM, which
maximises the objective functional J (.) subject to system (3).

Using the framework of Zabczyk (1995) and Yong et Zhang (1992), we derive the optimal
control from a combination of the state and the adjoint variables. We determine the adjoint
equations by first introducing the sensitivity functions. Let us denote p = (s, y, z, v) and define
the solution map: h −→ p(h). The sensitivity functions are defined by the Gâteaux derivatives
(λs, λy, λz, λv) = limε→0+ ε−1

[
p(h+ εh̄)− p(h)

]
, for h̄ ∈ RNf+1. Consequently, the sensitivity
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functions λs(t, a), λy(t), λz(t) and λv(t), corresponding to the state variables s(t, a), y(t), z(t)
and v(t), satisfy the following equations:

∂tλs + ∂aλs = −q(v)[β(a)f(B, y)λs + βsfB(B, y)‖λs‖+ βsfy(B, y)λy]

+ qv(v)f(B, y)βsλv − µλs,
λ̇y = φλz − εf(B, y)‖βλs‖ − ε‖βs‖fy(B, y)λy − ε‖βs‖fB(B, y)‖λs‖ − µyλy,
λ̇z = q(v)[εf(B, y)‖βλs‖+ ε‖βs‖fy(B, y)λy + ε‖βs‖fB(B, y)‖λs‖]

− qv(v)εf(B, y)‖βs‖λv − µzλz,

(6)

and: {
λ̇v = −γλv for t 6= tn,

λv(t
+
n ) = λv(tn) + h̄n for t = tn, n = 0, 1, 2, . . . Nf .

(7)

Functions fy(., .), fB(., .) and qv(.) represent the partial derivatives of functions f(., .) and q(.)
with respect to their arguments y, B and v. The sensitivity functions respect the following initial
and boundary conditions:

λs(t, 0) = 0, λs(0, a) = 0, λy(0) = λz(0) = λv(0) = 0. (8)

Next, we introduce Φs(t, a), Φy(t), Φz(t) and Φv(t), the adjoint variables corresponding to the
state variables s(t, a), y(t), z(t) and v(t) respectively. The adjoint equations are derived by using
the adjoint operator associated with the sensitivity equations (6,7), together with appropriate
tranversality and boundary conditions. The adjoint equations are given by:

∂tΦs + ∂aΦs = q(v)[βf(B, y)(Φs − εΦz) + fB(B, y)(‖βsΦs‖ − ε‖βs‖Φz)]

+ [εβf(B, y) + ε‖βs‖fB(B, y)] Φy + µΦs,

Φ̇y = q(v)fy(B, y) [−ε‖βs‖Φz + ‖βsΦs‖] + ε‖βs‖fy(B, y)Φy + µyΦy,

Φ̇z = −φΦy + µzΦz,

Φ̇v = qv(v)f(B, y) [−‖βsΦs‖+ ε‖βs‖Φz] + γΦv,

(9)

and:

Φv(t
+
n ) = Φv(tn) for n = 0, 1, 2, . . . Nf , (10)

with the following tranversality conditions:

Φs(tf , a) = Θ(a), Φs(t, a†) = 0, Φy(tf ) = −Cy, Φy(tf ) = Φv(tf ) = 0. (11)

We obtain the following result about the characterisation of the optimal control strategy.

Theorem 2:
For any optimal control application h = (hn)n∈{0,1,2,...Nf} ∈ M, then the Gâteaux derivative
of J (.) is Dh̄J (h) =

∑Nf
n=0 [Φv(t

+
n )− C ′(hn)] h̄n, where C ′(.) represents the derivation of

function C(.) with respect to its argument h̄n and h̄ ∈ Vh, with the set Vh := {h̄ ∈ RNf+1 : ∃ε ∈
[0, 1]; h+ εh̄ ∈M}.
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The method used to prove Theorem 2 is the impulsive maximum principle (see proof in Ap-
pendix 1.2), which gives the first order necessary optimality conditions (Yong et Zhang, 1992;
Zabczyk, 1995), but does not provide an efficient way to compute the optimal control.

We now suppose that the control cost is C(hn) = ηh2
n, so that the objective functional (4) is

quadratic in control. For this particular cost function, Theorem 3 provides a means for computing
the optimal control strategy (see proof in Appendix 1.3).

Theorem 3:
There exists an optimal control h? = (h?n)n∈{0,1,2,...Nf} ∈M, with corresponding optimal states
s?(t, a), y?(t), z?(t) and v?(t), maximising the objective functionalJ (.) defined in (4). Moreover,
the characterisation of the optimal control h? is given by:

h?n = max

{
0,min

{
Φv?(t

+
n )

2η
, hmax

}}
, ∀n ∈ {0, 1, 2, . . . Nf}. (12)

IV NUMERICAL SIMULATIONS

We present numerical simulations illustrating the effect of the optimal control strategy on the
infestation process of coffee berries by CBB in the plantation. Our numerical approach is based on
an extension of the forward-backward sweep method (Leander et al., 2015), originally proposed
to solve the optimal control of continuous ordinary differential equations with impulsive controls.
The procedure consists of the following steps: first, the state equations in (3) are solved using the
forward semi–implicit finite difference in time and backward difference in age, with an initial
guess for the control variable. Second, the adjoint equations in (9) are solved by backward
semi-implicit finite difference in time and forward difference in age, using the solutions of the
state equations. Next, the control is updated with the new values of the state and adjoint solutions
given by Theorem 3. The algorithm is repeated until the states and control converge.

In the simulations, a constant berry production rate g(t) ≡ g and an age-independent berry
mortality rate µ(a) ≡ µ are chosen. Furthermore, the infestation rate is defined by the following
function:

β(a) =

{
βmin 0 ≤ a < aβ,

βmin + βa(1− e−kβ(a−aβ)) aβ ≤ a ≤ a†,
(13)

its average value being β̄ = 1
a†

∫ a†
0
β(a)da. The CBB–berry interaction function f is modelled

by f(B, y) = y
y+αB+1

. More details on these functions are given in Fotso Fotso et al. (2022). To
apply Theorem 3, we use a quadratic control cost C(hn) = ηh2

n. Moreover, we choose a sigmoid
function to model the price of healthy coffee berries according to berry age:

Θ(a) =
Θam

am + amΘ
, (14)

where Θ is the asymptotic price of healthy coffee berries, aΘ is the age at which berries are at
half asymptotic price andm ∈ N? is the Hill constant. Note that with a finite age bounded by a†,
the maximum price that mature berries can reach is Θam†

am† +amΘ
.

Moreover, we use the following initial conditions. At the beginning of the cropping season,
flowering has not started yet. We also assume that there are only colonising females, as infesting
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females were eliminated from the plantation when berries were picked during the preceding
harvest. So there are initially neither coffee berries nor infesting females, i.e. s0(a) = 0 for all
a ∈ [0, a†] and z(0) = 0. The number of initial colonising females is set at y(0) = 104 females.
We also assume that the control is absent in the plantation so the initial load is v(0) = 0.

We consider two periods for the bio–insecticide application in the plantation during the cropping
season: τ = 7 days (1 week, red curves) in and τ = 14 days (2 weeks, magenta curves) in
Figure 1. Panels (a–d) show the dynamics of the state variables, panel (e) the optimal bio–
insecticide application; panel (f) represents the effect of bio–insecticide load on the infestation
rate, that is σ(v) = 1− q(v) = ξv

k+v
.

Figure 1: Simulation of system (3) without control (dashed blue curves) and with weekly (plain red curves)
and every 2 weeks (plain magenta curves) optimal bio– insecticide applications. The healthy berry growth
without pest is also represented in (a) (dash-dotted black curve).

In Figure 1, trajectories of colonising and infesting females increase, both in the uncontrolled
(dashed blue curves) and controlled (red and magenta curves) case. Due to the CBB preference
for older coffee berries, this growth starts slowly. In all cases, the bio–insecticide (panel (e)) is
applied at its maximal value at the beginning of the cropping season and decreases progressively.
Its effect (panel (f)) rapidly increases but remains below its maximum value (ξ = 0.8), which
denotes a trade-off between the control effectiveness and its cost. The colonising (panel (b)) and
infesting (panel (c)) female trajectories are much lower when the optimal control is applied (red
and magenta plain curves) than in the case without control (dashed blue curve). Consequently,
the healthy coffee berries (panel (a)) are notably higher with control at the end of cropping season.
The control is more effective when applied weekly than every two weeks (Figure 1), both in
terms of healthy berries and colonising females at the end of the cropping season. However, this
result could change if the control cost function C in the objective functional (4) was modified,
for instance if the bio–insecticide cost η was higher or if C included fixed labour costs for each
application.
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Figure 2: Age distribution of the healthy coffee berries and their price (yield) at the end of the simulation
(t = tf ) with optimal bio–insecticide application every week (plain red curves) or every 2 weeks (plain
magenta curves), without control (dashed blue curves), and without pest (dash-dotted black curves). Cases
without control and with various constant age-independent infestation rates β are also represented (blue
shaded area delimited by βmin and βmax = βmin + βa, plain blue curve for average value β̄).

Figure 2 illustrates the evolution of the final berry density and price of coffee berries as functions
of the berry age at harvest for bio–insecticide applications every week (red curves) and every 2
weeks (magenta curves). We observe a strong decrease of the mature coffee berries (≥ 90 days)
without and with control (left panel) due to the berry age preference of CBB. However, the price
distribution of berries increases with berry age but remains considerably lower than in the case
without CBB (right panel). Without control (blue curves), one can observe the strong impact of
the infestation rate (blue shaded area), as well as the effect of CBB preference for older berries:
with the same average value for the infestation rate, the final berry density is higher with (dashed
curve) than without (plain curve) age preference. Indeed, in the former case, young berries have
a better chance to remain healthy.

V CONCLUSION

In view of the extent of damages caused by CBB in coffee plantations, we aimed in this work
at controlling the infestation dynamics of coffee berries by CBB. The control is based on the
application of a bio–insecticide at discrete and periodic times, to prevent CBB from infesting
healthy berries. The controlled model we used is a semi-discrete system with a continuous berry
age structure to represent the CBB preference for older berries. An optimisation problem was
formulated in order to maximise the yield of healthy coffee berries, while minimising the cost
of control, as well as the remaining CBB population for the next cropping season. We showed
the existence of an optimal control and gave its characterisation using the maximum principle.
Numerical simulations confirmed that the application of the bio–insecticide effectively controls
the CBB and considerably increases the yield and profit at the end of cropping season. Weekly
applications were found to be more efficient than applications every two weeks, both in terms of
CBB population reduction and profit maximisation.
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A APPENDIX

1.1 Proof of Theorem 1

Let hm = max{hn,∀n = 0, 1, 2, . . . Nf}, we have the inequality v(t+n ) ≤ v(tn) + hm. Let w(t) be the solution of
the impulsive system{

ẇ(t) = −γw(t) for t 6= tn,

∆w(tn) = w(t+n )− w(tn) = hm, for t = tn, n = 0, 1, 2 . . .

Then, for t ∈ (t+n , tn+1), we have from the first equation of system above w(t) = w(t+n )e−γ(t−tn). Therefore we
get w(t+n+1) = w(t+n )e−γτ + hm. As e−γτ < 1 , we deduce that the sequence (w(t+n ))n converges to a fixed point,
that is w(t+n ) → hm

1−e−γτ . Finally, we obtain the following periodic solution of w(t) = hme
−γ(t−tn)

1−e−γτ ≤ hm
1−e−γτ .

Therefore, from the comparison principle (Lakshmikantham et al., 1989), we get v(t) ≤ w(t) ≤ hm
1−e−γτ . Hence the

state v is bounded. Since function q verifies 1− ξ ≤ q(v) ≤ 1, then by the comparison principle and using the same
approach as in Fotso Fotso et al. (2022), the subsystem defined by the s(t, a), y(t) and z(t) variables has a unique
nonnegative and bounded solution.

Since the state variables of system (3) are bounded, the objective functional J (.) is finite. So it is possible to
define d = suph∈M J (h) and thus, there is a maximising sequence (hj)j∈N so that the sequence (J (hj))j∈N
converges to d. Since the setM is compact, then there exists a subsequence still denoted by (hj)j∈N that converges
to h? = (h?n)n∈{0,1,2,...Nf} so that h? belongs toM. As the objective functional J (.) is continuous, then it follows
that J (h?) = d. This achieves the proof. �

1.2 Proof of Theorem 2

Let Q := [0, tf ]× [0, a†]. For any given h̄ ∈ Vh, there is ε > 0 small enough, such that hε := h+ εh̄ ∈ M. Let
sε(t, a), yε(t), zε(t), and vε(t) be the solution of system (3) corresponding to the control strategy hε. Then, the
directional derivative of objective functional J (.) is given by

Dh̄J (h) = lim
ε→0+

ε−1[J (h+ εh̄)− J (h)] =

∫ a†

0

Θ(a)λs(tf , a)da−
Nf∑
n=0

C ′(hn)h̄n − Cyλy(tf ). (15)

Multiplying the equations of the sensitivity system (6) by the adjoint state variables Φs(t, a), Φy(t), Φz(t) and Φv(t)
respectively, and also the equations (9) by the sensitivities λv(t, a), λy(t), λz(t) and λv(t) respectively. We derive
the following relation:∫

Q

λs [∂tΦs + ∂aΦs] dadt +

∫ tf

0

λyΦ̇ydt+

∫ tf

0

λzΦ̇zdt+

∫ tf

0

λvΦ̇vdt

+

∫
Q

Φs [∂tλs + ∂aλs] dadt+

∫ tf

0

Φyλ̇ydt+

∫ tf

0

Φzλ̇zdt

+

∫ tf

0

Φvλ̇vdt = 0. (16)
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We have the following relation:

∫ tf

0

Φvλ̇vdt =

Nf−1∑
n=0

∫ tn+1

tn

Φvλ̇vdt+

∫ tf

tNf

Φvλ̇vdt

=

Nf−1∑
n=0

[Φvλv]
tn+1

t+n
−
Nf−1∑
n=0

∫ tn+1

tn

Φ̇vλvdt+ [Φvλv]
tf

t+Nf

−
∫ tf

tNf

Φ̇vλvdt

=

Nf−1∑
n=0

Φv(tn+1)λv(tn+1)−
Nf∑
n=0

Φv(t
+
n )λv(t

+
n )−

∫ tf

0

Φ̇vλvdt (since Φv(tf ) = 0)

=

Nf−1∑
n=0

Φv(tn+1)λv(tn+1)−
Nf∑
n=0

Φv(t
+
n )[λv(tn) + h̄n]−

∫ tf

0

Φ̇vλvdt

= −
Nf∑
n=0

Φv(t
+
n )h̄n −

∫ tf

0

Φ̇vλvdt (since Φv(tn) = Φv(t
+
n ) and Φv(t0) = 0). (17)

Integrating the equation (16) and taking into account the initial and boundary conditions of equations (6)–(9) and
also the relation (17), we get the relation:

∫ a†

0

Θ(a)λs(tf , a)da− Cyλy(tf )−
Nf∑
n=0

Φv(t
+
n )h̄n = 0. (18)

Therfore,∫ a†

0

Θ(a)λs(tf , a)da−
Nf∑
n=0

C ′(hn)h̄n − Cyλy(tf ) = −
Nf∑
n=0

C ′(hn)h̄n +

Nf∑
n=0

Φv(t
+
n )h̄n. (19)

Hence Dh̄J (h) =
∑Nf
n=0 [Φv(t

+
n )− C ′(hn)] h̄n for all h̄ ∈ Vh. This achieves the proof. �

1.3 Proof of Theorem 3
Let h? = (h?n)n∈{0,1,2,...,Nf} ∈ M be the optimal impulsive control which maximises the objective functional
J (.) and let s?(t, a), y?(t), z?(t) and v?(t) be the corresponding state variables. Then, for an arbitrary but fixed
h̄ ∈ Vh? and there is ε > 0 small enough such that J (h? + εh̄) ≤ J (h?). It is derived from Theorem 2 that
Dh̄J (h?) =

∑Nf
n=0 [Φv?(t+n )− 2ηh?n] h̄n ≤ 0. Since h̄n is arbitrary for n ∈ {0, 1, 2, . . . , Nf}, which implies that

h?n =
Φv? (t+n )

2η . By taking the lower and upper bounds into account, we obtain the optimal impulsive control (12).
This achieves the proof. �

All parameter values are given in Table 1.
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Table 1: Model and control parameter values. Most parameter values are based on biological data collected
in the literature; more information is available in (Fotso Fotso et al., 2021; Fotso et al., 2018; Fotso Fotso
et al., 2022).

Symbol Description Value
tf Duration of a cropping season 250 days
a† maximum age of coffee berry 250 days
g Production rate of new coffee berries 1200 berries.day−1

µ Natural mortality rate of healthy coffee berries 0.002 day−1

ε Colonising CBB per berry (scaling factor) 1 female.berry−1

β(a) Infestation function (13): day−1

βmin minimum infestation rate 0.004 day−1

βa age-dependent extra infestation rate 0.036 day−1

kβ infestation coefficient 0.035 day−1

aβ infestation threshold age 90 days
α CBB–berry interaction constant 0.7 female.berry−1

φ Emergence rate of new colonising females 2 day−1

µy Natural mortality rate of colonising females 1/20 day−1

µz Natural mortality rate of infesting females 1/27 day−1

ξ Bio-insecticide load maximal effectiveness 0.8
k Bio-insecticide load half saturation constant 200 g.day−1

γ Bio-insecticide decay rate 1/50 day−1

η Bio-insecticide cost 0.002 $.g−2

τ Bio-insecticide application period 7 or 14 days
hmax Maximal bio–insecticide application 180 g
Θ(a) Coffee berry price function (14): $.berry−1

Θ coffee berry asymptotic price 0.025 $.berry−1

aΘ berry age at half asymptotic price 120 days
m Hill constant 7 –
Cy Cost of remaining colonising females 10−4 $.female−1
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