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Abstract—This paper addresses the scheduling maintenance 

operations for a set of geographically dispersed production 

equipment. We consider various equipment subject to uncertain 

failures that need to be monitored and repaired by a central 

maintenance workshop (CMW). We focus on the associated 

preventive maintenance actions, which require optimal scheduling. 

A mobile maintenance workshop (MMW) aims to transport all the 

resources to systematically replace the equipment with spare parts 

provided by the CMW following the predefined schedule. We 

propose a general framework and a model to minimize the 

maintenance and routing costs while optimizing equipment 

reliability. The novelty of the proposed model is the reduction of 

computation time through the proposition of heuristic methods 

while considering capacity constraints and various types of 

equipment. We perform several instances of problems in the oil 

and gas field. The studied approach optimizes the location of the 

CMW and the capacity of the MMW, solving the NP-Hard 

Problem. 

I. INTRODUCTION 

Manufacturing systems reliability and availability depend 
mainly on the quality of maintenance management [1]. In 
general, the aim is to monitor production assets, schedule 
maintenance actions and conduct various preventive or 
corrective tasks. Fortunately, industry 4.0 technologies allow 
anticipating the failures of production equipment. Therefore, 
operations are becoming more and more smart and remote [2]. 
But it is well known that the major constraint faced by managers 
remains the limited budget dedicated to the maintenance [3]. One 
of the solutions to reduce costs consists of sharing the same 
resources (spare parts, operators and tools) for different facilities. 
However, an allocation problem arises since the schedule of 
several maintenance tasks depends strongly on the availability of 
resources [4]. It is even more accentuated when the facilities are 
geographically distributed [5]. 

In this paper, we study the implementation of Distributed 
Maintenance [6]. The concept consists of gathering all the 
resources in a central maintenance workshop (CMW), also 
known as repair shop [7]. A mobile maintenance workshop 
(MMW) is in charge of the routing between the CMW and 
geographically spread production sites (PS), where pieces of 
manufacturing equipment are subject to failures. The objective 
is to schedule preventive actions for each PS, optimize the 
MMW preventive visits’ and restore defective equipment in the 
CMW as soon as possible.  

Industrial applications of Distributed Maintenance are emerging 
in industries where the distance between geographically 
dispersed equipment is not too great [7]. Centralization could 

reduce maintenance costs while increasing equipment 
availability [8]. For example, several locomotives share the same 
maintenance workshop for preventive actions in the railway 
sector [9]. In the oil and gas industry, the location of oil platforms 
(onshore or offshore) sharing the same central control depends 
on the sources of raw materials. The centralized entity manages 
and carries out maintenance operations on geographically 
dispersed equipment. As well as in the aviation industry, 
defective aircraft parts are replaced directly without transporting 
the aircraft. A centralized workshop is needed to diagnose the 
origin of faults and repair them [10]. In other applications, a third 
party maintains distributed installations of different companies.  

This paper aims to optimize maintenance costs while reducing 
downtime of geographically dispersed equipment throughout 
Distributed Maintenance. The literature provides several studies 
dealing with this objective. But, one of the main difficulties faced 
by the authors is the combination of maintenance scheduling of 
PS and routing optimization of MMW. Indeed, López-Santana et 
al. (2016) proposed one of the first modular models called CMR 
(Combined Maintenance and Routing) [11]. It is a two-step 
iterative process that makes a balance between maintenance and 
routing costs. But this model does not consider the capacity 
constraint of transportation between the PS with equipment to be 
maintained. Hence, Vega-Figueroa et al. (2022) proposed a 
hybrid algorithm [16] and Allaham et al. (2022) defined a MILP 
(Mixed Integer Linear Programming) [17] to allocate teams and 
tasks for each maintenance operation considering the capacity 
constraint of spare parts. Djeunang Mezafack et al. (2022) 
propose a MILP and a general framework called CMCR 
(Combined Maintenance and Capacitated Routing) [18] to 
choose the capacity of the MMW and the location of the CMW. 
However, all these approaches require exponential computation 
time since they tackle an NP-Hard problem. Thus, the existing 
models only allow solving small instances of the problem. From 
this gap, this paper provides an improved model called OMCR 
(Optimized Maintenance and Capacitated Routing). The novelty 
of the approach is to reduce the complexity of the optimization 
algorithm while considering the capacity constraints of the 
MMW and various types of equipment under Distributed 
Maintenance. Thus, we state two research questions as follow: 

• How to implement Distributed Maintenance with diverse 
types of equipment? 

• How to optimize the capacitated routing of the MMW with 
a low computation time? 

The paper is structured into five sections. Following an 
introduction about the context of this work in section 1, section 
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2 is dedicated to the problem definition. The optimization of 
Distributed Maintenance is presented in section 3. Section 4 
conducts experiments to highlight the relevance of the proposed 
approach. The last section contains our conclusion and future 
research perspectives. 

II. PROBLEM DEFINITION 

We consider a system with a set of N Production Sites (PS) 

geographically distributed over an area. Each PS has one piece 

of equipment subject to uncertain failures. With a schedule, a 

Mobile Maintenance Workshop (MMW) is responsible for 

transporting preventive maintenance resources (spare parts and 

tools) to visit the set of PS within a horizon of time, as presented 

in Figure 1. A Centralized Maintenance Workshops (CMW) 

monitors the state of each piece of equipment and stores the 

spare parts. The MMW starts in the CMW with a limited 

capacity of spare parts and visits all the PS following the optimal 

scheduling. When the MMW reaches a PS, the piece of 

equipment is replaced systematically by a spare part.  

 

 

Figure 1.  Distributed Maintenance context [18]. 

The objective is to find the optimal routing of the MMW 

through the PS while reducing maintenance and routing costs. 

The main assumptions of the problem are summarized as 

follows: 

1. The MMW is a fleet of m homogeneous vehicles, each with 

a limited capacity 𝑄. 

2. A vehicle transports only one operator in charge of 

replacing a piece of equipment with a brand-new spare part. 

3. The travel times are deterministic and do not change over 

the scheduling horizon . 

4. The CMW is a depot with an unlimited capacity. 

5. The PS are N geographically-spread customers, each with a 

single piece of equipment. 

6. A piece of equipment starts in "As Good As New" 

condition and, after the replacement, it returns to " As Good 

As New " condition. 

7. All the pieces of equipment are mutually independent 

according to their failures’ behaviour. It means that the state 

of one piece of equipment does not disrupt those of another. 

Thus, we consider it is possible to optimize the frequency 

of preventive maintenance (PM) operations for each 

customer separately. 

8. Each customer is subject to a hard time window constraint 

out of which a PM operation cannot be conducted.  

9. In the case of a failure, the customer waits and the following 

PM operation replaces the defective equipment. 

In the next section, we will present, first, the general 

framework used to optimize Distributed Maintenance and, 

second, the OMCR model in detail. 

III. OPTIMIZATION OF DISTRIBUTED MAINTENANCE 

A. General framework 

A Distributed Maintenance works with three main entities: 

MMW/vehicles, a CMW/depot and PS/customers. Figure 2 

illustrates the framework, which gives an overview of the 

optimization process. It allows choosing the capacity of the 

vehicles, the position of the depot and the scheduling of the 

operations. Indeed, generally, two loops allow to compare the 

optimal scheduling, first for different depot locations and 

second for various vehicles capacity [18]. The goal is to choose 

the best parameters satisfying the optimal maintenance and 

routing costs.  

 

Figure 2.  General framework with the part to be removed after integrating 

the OMCR model. 

The position first loop considers the routing cost is low when 

the depot 𝐶𝑀𝑊 is close to a customer 𝑃𝑆𝑖 , 𝑖 = 1, … , 𝑁 [12]. The 

second loop of capacity tests different values 

of Q from Qmin to Qmax. But, this general process requires 

excessive computation time due to these two loops. However, 

after integrating the new OMCR model into the framework, the 

loop concerning the position of the depot is no more necessary. 



  

It could therefore reduce the computation time. Hence, the core 

model, OMCR, is an extended version of the CMCR [18]. The 

main contribution of our model is the integration of the depot 

position choice in the optimization model reducing computation 

time. Indeed, as in the CMCR, the proposed model considers as 

input the capacity of vehicles and data of customers. It concerns 

their geographical locations and historical statistics on their 

equipment failures. As an innovation, OMCR enables a suitable 

position for the depot to be found automatically without going 

through the loop of different locations. 

B. Optimized Maintenance and Capacitated Routing 

The OMCR model consists in solving two different sub-models 

iteratively as presented in Figure 3: 

 

(1)  Maintenance Model (MM): The objective is to minimize 

the Expected Maintenance Costs (E[MC]). This sub-model 

does not change from the CMR to OMCR and allows to 

find the optimal period of PM for each piece of equipment 

separately. The output is the time windows for each 

customer at which the PM must be carried-out within the 

scheduling horizon.  

(2)  Heuristic Routing Model (HRM): The objective is to 

minimize the Expected Routing Costs (E[RC]); this model 

is the first main change from CMR to OMCR. It solves the 

well-known CVRPTW (Capacitated Vehicle Routing 

Problem with Time Windows) in Operational Research. In 

the CVRPTW, a fleet of homogeneous vehicles must 

service customers with known demands subject to opening 

hours [13]. Based on the mathematical model used to solve 

this problem, the HRM proposed the optimal schedule of 

PM operations. 

The MM and HRM sub-models are linked first by the position 

of the depot, which is the second and last main change in the 

model. Indeed, we consider that the depot is located at the 

barycentre of the customers weighted by each number of PM 

operations i obtained from the MM sub-model. In addition, the 

two sub-models are linked by the expected waiting time wi
1 

which is the period elapsing between an expected failure and the 

beginning of the next PM operation.  

These two models loop and the sum of 𝐸[𝑀𝐶] and 

𝐸[𝑅𝐶] converge2 to an optimal solution. The Expected 

Distributed Maintenance Cost is represented by:   

𝐸[𝐷𝑀𝐶] =  𝐸[𝑀𝐶] +  𝐸[𝑅𝐶] 
We focus now on the HRM sub-model. We consider a complete 

directed graph G=(V,A), where V={0,1,2,…,N}  is a set of nodes 

with the depot 0, and Vc=V\{0} a subset of customers. 

A={(i,j):i,jV} represents the set of links between all pairs of 

nodes. The vehicles set is defined by K={1,2,…,m}, each with a 

 
1 wi is obtained exactly as in the CMR. 

capacity Q. Each customer iVc is associated with a certain 

positive demand di < Q and an on-site service time TPMi. Non-

negative travel time tij and distance dij are associated to each arc 

(i,j)A. 

 

Figure 3.  Principle of construction of Optimized Maintenance and 

Capacitated Routing Model (OMCR) 

Each customer iVc has i times a PM operation over the 

scheduling horizon . The MM sub-model allows to obtain time 

windows for each operation [ej,lj]i ; j=1,2,…, i. We thus 

consider an auxiliary grouped set of nodes V’={0,1,2,…,n} 

where 0 is the depot and n=i represents the cardinal of the set 

of all the PM operations over the horizon . Then, we define an 

auxiliary directed graph G’=(V’,A’), where A’={(i’,j’):i’,j’V’} 

represents the set of arcs. For each node i’V’ we can find the 

equivalent iV such as di’=di. And, for each arc (i’,j’)A’ we 

can find the equivalent arc (i,j)A such as ti’j’=tij and di’j’=dij. 

The problem therefore consists in solving a classical CVRPTW 

considering the graph G’ such that: 

 

•  Each PM operation i’V’\{0} is performed exactly once. 

• A vehicle cannot transport spare parts over its capacity Q. 

• Each time windows [ej,lj]i ; iV\{0} is equivalent to a 

time window [ei’,li’] ; i’V’\{0}. 

For the rest of the paper, we use the index i instead of i’ to denote 

each PM operation. CVRPTW is an NP-hard problem whose 

only small instances can be solved. The most recent and relevant 

model is proposed by [14]. Based on this classical model, we 

can define the Mixed-Integer Linear Programming model 

(MILP) of the HRM. However, for large instances of the 

problem, it is necessary to combine the MILP with a heuristic. 

We choose to adapt and implement a divide to conquer 

algorithm [15] as illustrated in Figure 4. Firstly, the large list of 

2 It is necessary to define a tolerance interval for convergence. The 

optimization stops if E[DMC] doesn’t exceed the bound after several iterations. 



  

PM operations is sorted from earliest to latest and divided into 

small sub-lists. Secondly, each sub-list is solved through the 

MILP and afterwards the results are combined to obtain PM 

operation scheduling We can now focus on the MILP 

formulation. A binary decision variable xij is defined to indicate 

if a vehicle crosses an arc (i,j) in the optimal solution. A vehicle 

arrives for a service i at a time denoted by si and with a load yi. 

 

Figure 4.  Divide to Conquer algorithm, adapted to the HRM sub-model  

The MILP of the HRM sub-model can be stated as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   

∑ ∑ (𝐶𝑜𝑒𝑓. 𝐶𝐾. 𝑑𝑖𝑗 + 𝐶𝐻. 𝑡𝑖𝑗). 𝑥𝑖𝑗 + 𝐶𝑜𝑒𝑓. 𝐶𝑈. 𝑚𝑛
𝑗=0

𝑛
𝑖=0  (1)  

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  
− 𝑄. 𝑚 ≤ − ∑ 𝑑𝑖

𝑛
𝑖=1 ;                                                                (2)  

∑ 𝑥0𝑗
𝑛
𝑗=1 − 𝑚 = 0 ;                                                                  (3)  

∑ 𝑥𝑖𝑖
𝑛
𝑖=0 = 0 ;                                                                             (4) 

∑ 𝑥𝑖𝑗
𝑛
𝑖=0,𝑖≠𝑗 = 1, ∀𝑗 ∈ 𝑉′ − {0} ;                                          (5)  

∑ 𝑥𝑖𝑗
𝑛
𝑗=1,𝑖≠𝑗 ≤ 1, ∀𝑖 ∈ 𝑉′ − {0} ;                                          (6)  

𝑦𝑖 − 𝑦𝑗 + (𝑑𝑗 + 𝑄)𝑥𝑖𝑗 ≤ 𝑄, ∀𝑖, 𝑗 ∈ 𝑉′ − {0}, 𝑖 ≠ 𝑗;        (7) 

𝑠𝑖 − 𝑠𝑗 + (𝑇𝑃𝑀𝑖
+ 𝑡𝑖𝑗 + 𝜏). 𝑥𝑖𝑗 ≤ 𝜏 , ∀𝑖, 𝑗 ∈ 𝑉′ − {0}, 𝑖 ≠ 𝑗 ;  

                                                                                                      (8) 

𝑑𝑖 ≤ 𝑦𝑖 ≤ 𝑄, ∀𝑖 ∈ 𝑉′ − {0} ;                                                (9) 

𝑒𝑖 ≤ 𝑠𝑖 ≤ 𝑙𝑖 , 𝑖 ∈ 𝑉′ − {0} ;                                                     (10) 

𝑥𝑖𝑗 ∈ {0,1},   ∀𝑖, 𝑗 ∈ 𝑉′, 𝑖 ≠ 𝑗 ;                                               (11) 

 

In this MILP formulation, the objective function 

(1) minimizes the Expected Routing Cost (𝐸[𝑅𝐶])  with:  

 

{

𝐶𝑜𝑒𝑓: 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑛𝑎𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠
𝐶𝐷: 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

𝐶𝑇: 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒
𝐶𝑃: 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑎 𝑣𝑒ℎ𝑖𝑐𝑙𝑒

 

The constraint (2) represents the minimum number of vehicles 

needed to serve all the operations. The constraint (3) imposes 

that exactly m vehicles leave the depot. The classical flow 

constraints (4), (5) and (6) guarantee that each vehicle can leave 

the depot exactly once, and each PM operation is performed 

only once. In the constraint (7), the capacity of vehicles is stated 

such that the difference of a vehicle’s load between two 

successive services i and j do not exceed the demand of j. The 

constraint (8) ensures that the time between two successive 

services i and j do not exceed TPMi +Tij. The constraints (9), (10) 

and (11) restrict the upper and lower bounds of decision 

variables. In the next paragraph, we will implement the 

proposed model in an academic case study. 

IV. NUMERICAL STUDY 

A. Test instances 

In this section, we run the OMCR in the oil and gas field to 

highlight the relevance of the proposed model. We apply the 

general framework proposed in Section 3.1.  

(1)  Equipment: we study the case of onshore pumps. 

(2)  Customers: we consider ten distributed pumping stations 

in a radius of 300 km. We assume that each customer has 

exactly one pump subject to uncertain failures. A pump is 

systematically replaced within a PM operation and 

transported to the depot. 

The objective is to find the optimal location of the depot, the 

capacity of the vehicles and the scheduling of PM operations. 

We first get data on pump failures and operational costs [11], as 

presented in Table 1. Secondly, we generate nine instances of 

the problem by randomly locating the ten pumping stations in a 

Cartesian plane (0, x, y) (Appendix 1 for details). Then, we 

consider the distance between each pair of pumping stations 

Euclidian. 

TABLE I.  DATA ON PUMP’S FAILURES 

i CPMi
a($) TPMi

a(hour) Cwi
a($/hour) fi(t)

 b 

1 183 9 15 N(45,4) 

2 121 5 14 N(54,4.5) 

3 193 6 19 W(66,3.5) 

4 156 8 14 W(100,3.5) 

5 138 8 13 W(63,3.5) 

6 194 10 17 N(44,4.4) 

7 163 9 15 W(84,3.5) 

8 100 9 12 N(78,7) 

9 193 6 13 N(96,8.728) 

10 105 10 18 N(75,6.819) 

a. CPMi: service cost of replacing a pump; TPMi: time necessary to replace a pump; Cwi: 

downtime cost per time unit 

b. N(, ) denotes the Normal probability density function with mean  and standard 

deviation ; and W(, k) denotes the Weibull probability density function with scale 

parameter  and shape parameter k. [hours] 

The MMW has a fleet of homogeneous vehicles whose capacity 

needs to be optimized. The unit costs related to each vehicle are: 



  

CD=0.476$/km, CT=30$/h and CP=5000$. We consider three 

types of vehicles, each with a nominal speed of 80 km/h: 

(1)  Medium: Q = 4 pumps, Coef = 1;  

(2)  Heavy: Q = 6 pumps, Coef = 1.5; 

(3)  Extra-heavy: Q = 8 pumps, Coef = 2; 

We choose the software Scilab 5.5.2 to implement the case 

study. All the tests have been run using the library “FOSSEE 

Optimization Toolbox” adapted for MILP. We perform the 

experiments on Windows 8, 64 bits machine, with an Intel(R) 

Core (TM) i7-10850H, CPU 2.70 GHz and 32 Go of RAM. 

B. Results 

The OMCR allows optimizing the PM operations of 

geographically dispersed equipment considering the capacity 

constraint of vehicles while reducing computation time. With 

the case study, we have conducted experiments to highlight the 

relevance of the proposed model. We run the iterative process 

until reaching 10 successive iterations where the value of 

E[DMC] do not change to more than 1%. We run all nine 

instances using the general framework, first without removing 

the loop of depot position and second after removing it. Figure 

5 presents the results obtained for the first instance with the 

loop.  

 

Figure 5.  General framework without removing the loop of position: instance 

1 

It can be seen that going through the old optimization 

framework with the OMCR model takes 125 minutes. The best 

choice for vehicles is the medium size and, position 1 is the best 

for the depot. The optimal E[DMC] is $92.5/h. Then the optimal 

number of PM operations to perform within a month is 77, as 

presented in figure 6. 

Table 2 and Figure 7 allow comparing the results obtained with 

and without the loop of depot position. First, the proposed 

framework allows dividing the computation time by more than 

ten, as presented in Table 3. And, even though it does not 

produce an optimal E[DMC], the result remains in an acceptable 

interval for all nine instances. Indeed, to better interpret the 

results, we have defined an interval as presented in Figure 7. 

The lower bound is the optimal results obtained by situating the 

depot in the customers’ locations. The upper bound is the results 

obtained if the depot’s position is chosen randomly and once 

among customers. 

 

Figure 6.  Number of PM operations within a month: instance 1 

TABLE II.  COMPARISON OF THE PROPOSED FRAMEWORK 

Instances 

E[DMC] ($/h) Computation Time (min) 

With 

Loop 

Without 

Loop 
Gap 

With 

Loop 

Without 

Loop 
Gap 

1 92.5 93.1 1% 125.4 9.2 -1263% 

2 87.5 90.0 3% 128.5 11.4 -1032% 

3 86.1 93.6 8% 118.6 10.7 -1005% 

4 93.8 99.3 6% 129.2 11.0 -1080% 

5 93.7 95.2 2% 124.6 12.3 -911% 

6 92.9 94.7 2% 122.3 12.2 -901% 

7 89.3 92.2 3% 148.2 12.4 -1098% 

8 92.3 96.3 4% 156.9 9.5 -1546% 

9 88.1 95.9 8% 163.9 14.2 -1052% 

 

Figure 7.  Interval of the results using the proposed model 

Finally, by implementing the proposed framework in the nine 

instances, the computation time is deeply reduced, the gap 

between the results are less than 8%. Furthermore, in a real-

world application, the number of customers is higher than ten. 

Managers may decide to locate the depot randomly among the 

clients' locations to tackle the increase in computing time. In this 

case, even if the computation time becomes small, the difference 

between the result obtained may be more than 21%, as 

illustrated in instance 2 of Figure 7. With the proposed 

framework, the results could be less. 

Furthermore, Table 3 presents the selection of CMW location 



  

and vehicles capacity for the 9 instances. It can be observed that 

from one instance to another, the location differs much more 

with the loop process than without it. The Average distance 

between each depot is 116km with a standard deviation of 68km 

with the loop rather than 43km and 29km without it. It could be 

interesting in the case where the company decides to add or 

change the position of a PS after constructing the CMW. 

TABLE III.  OPTIMAL PARAMETERS 

Instances 

Optimal position of the depot 
Optimal capacity of 

vehicles 

With Loop Without Loop With 

Loop 

Without 

Loop x y x y 

1 103 20 157 142 Medium Medium 

2 185 51 174 81 Heavy Medium 

3 93 158 164 124 Medium Medium 

4 150 51 181 158 Heavy Medium 

5 18 184 178 145 Medium Medium 

6 72 177 141 182 Heavy Medium 

7 255 169 146 195 Heavy Heavy 

8 51 130 156 165 Heavy Medium 

9 215 130 188 186 Heavy Heavy 

V. CONCLUSION 

This paper deals with the combination of maintenance 

scheduling and routing optimization. We focus on a Distributed 

Maintenance context where a set of geographically dispersed 

production sites need to be visited frequently for preventive 

maintenance operations. We proposed an optimized framework 

and a novel model to consider the capacity constraints of the 

vehicles transporting spare parts and operator while reducing 

computation time.  

We made some assumptions to fit the problem with the known 

approach of Operational Research and Maintenance 

Management. The main contribution of this work is the 

reduction of maintenance and routing costs while optimizing the 

scheduling of preventive maintenance operations. We 

implemented the proposed model in some academic instances 

concerning the oil and gas industry. The study allows dividing 

the computation time by more than ten. And, the best costs 

obtained have a gap from the optimal to less than 8% 

Future research based on this work could extend experiments to 

a more extensive case study with a higher number of customers 

to test the scalability of the proposed model. Furthermore, it 

could be interesting to remove some assumptions in the 

modelling of the distributed maintenance system. We assumed 

that defective equipment in a production site must always wait 

for the following preventive maintenance operation for the 

replacement. However, this equipment may require an 

emergency repair. Thus, re-scheduling could be studied to 

reflect the real-world process. In addition, it is necessary to 

consider the uncertainty of the travel time between two 

production sites. 
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