
HAL Id: hal-03713292
https://hal.science/hal-03713292v1

Submitted on 4 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ecological resilience: what to measure and how
Vasilis Dakos, Sonia Kéfi

To cite this version:
Vasilis Dakos, Sonia Kéfi. Ecological resilience: what to measure and how. Environmental Research
Letters, 2022, 17 (4), pp.043003. �10.1088/1748-9326/ac5767�. �hal-03713292�

https://hal.science/hal-03713292v1
https://hal.archives-ouvertes.fr


TOPICAL REVIEW • OPEN ACCESS

Ecological resilience: what to measure and how
To cite this article: Vasilis Dakos and Sonia Kéfi 2022 Environ. Res. Lett. 17 043003

 

View the article online for updates and enhancements.

You may also like
A complex network framework for the
efficiency and resilience trade-off in global
food trade
Deniz Berfin Karakoc and Megan Konar

-

Twenty priorities for future social-
ecological research on climate resilience
Emilie Beauchamp, Mark Hirons, Katrina
Brown et al.

-

How do we know about resilience? An
analysis of empirical research on
resilience, and implications for
interdisciplinary praxis
Barbara J Downes, Fiona Miller, Jon
Barnett et al.

-

This content was downloaded from IP address 82.124.78.231 on 04/07/2022 at 14:28

https://doi.org/10.1088/1748-9326/ac5767
/article/10.1088/1748-9326/ac1a9b
/article/10.1088/1748-9326/ac1a9b
/article/10.1088/1748-9326/ac1a9b
/article/10.1088/1748-9326/abb157
/article/10.1088/1748-9326/abb157
/article/10.1088/1748-9326/8/1/014041
/article/10.1088/1748-9326/8/1/014041
/article/10.1088/1748-9326/8/1/014041
/article/10.1088/1748-9326/8/1/014041


Environ. Res. Lett. 17 (2022) 043003 https://doi.org/10.1088/1748-9326/ac5767

OPEN ACCESS

RECEIVED

11 October 2021

REVISED

7 February 2022

ACCEPTED FOR PUBLICATION

22 February 2022

PUBLISHED

15 March 2022

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

TOPICAL REVIEW

Ecological resilience: what to measure and how
Vasilis Dakos∗ and Sonia Kéfi
ISEM, CNRS, Univ. Montpellier, IRD, EPHE, Montpellier, France
∗ Author to whom any correspondence should be addressed.

E-mail: vasilis.dakos@umontpellier.fr

Keywords: ecological stability, engineering resilience, tipping point, global stability, resilience metrics, alternative states,
potential landscape

Abstract
The question of what and how to measure ecological resilience has been troubling ecologists since
Holling 1973s seminal paper in which he defined resilience as the ability of a system to withstand
perturbations without shifting to a different state. This definition moved the focus from studying
the local stability of a single attractor to which a system always converges, to the idea that a system
may converge to different states when perturbed. These two concepts have later on led to the
definitions of engineering (local stability) vs ecological (non-local stability) resilience metrics.
While engineering resilience is associated to clear metrics, measuring ecological resilience has
remained elusive. As a result, the two notions have been studied largely independently from one
another and although several attempts have been devoted to mapping them together in some kind
of a coherent framework, the extent to which they overlap or complement each other in quantifying
the resilience of a system is not yet fully understood. In this perspective, we focus on metrics that
quantify resilience following Holling’s definition based on the concept of the stability landscape. We
explore the relationships between different engineering and ecological resilience metrics derived
from bistable systems and show that, for low dimensional ecological models, the correlation
between engineering and ecological resilience can be high. We also review current approaches for
measuring resilience from models and data, and we outline challenges which, if answered, could
help us make progress toward a more reliable quantification of resilience in practice.

1. Introduction

Intuitively, resilience is the ability of a system to
cope with disturbances, bounce back, and main-
tain its state and functionality. In the ongoing con-
text of global change, understanding resilience is of
utmost importance to achieve sustainable interac-
tions between humans and ecosystems (Cañizares
et al 2021). However, moving from intuition to prac-
tically measuring resilience has been a real challenge
in ecology (Carpenter et al 2001, Kéfi et al 2019, Pimm
et al 2019, Capdevila et al 2021).

Measuring resilience in practice has been chal-
lenged by the fact that the definition of resilience
has lost clarity through time. Resilience has been
used acrossmultiple scientific disciplines (Baggio et al
2015), each with a different understanding of what
resilience means (Angeler and Allen 2016, Walker
2020). Within the ecological literature, resilience has

been defined in multiple ways (Grimm et al 1997),
and sometimes the same definition has even been
applied in different ways across different ecosystems
(Yi and Jackson 2021). Now—at least in ecology—
two definitions of resilience dominate in the literat-
ure: engineering resilience, that is the rate with which
a system returns to a reference state after a disturb-
ance (Pimm 1984), and ecological resilience, that is
the magnitude of disturbance that can be absorbed
before a system flips to another state (Holling 1973).

There have been numerous efforts aiming at
bridging the gap between the clear intuitive concept of
resilience and an operational and measurable quant-
ity. These efforts can be summarized in identifying
properties that guarantee resilience (e.g. Folke et al
2004, Thrush et al 2009, Biggs et al 2012), suggest-
ing surrogates that could indirectly reflect resilience
(Carpenter et al 2005, Cumming et al 2005), or devel-
oping qualitative and quantitative approaches for
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evaluating specific aspects of resilience (Sundstrom
et al 2014, Quinlan et al 2016) in ecological and socio-
ecological systems. For instance, loss of redundancy
and response diversity (Folke et al 2004) or function-
ality of keystone species (Thrush et al 2009) in an
ecosystem are seen as properties that could jeopardise
resilience. Identifying and assessing the potential of a
socio-ecological system to change under the impact of
specific drivers and perturbations can be used to pro-
duce surrogates of the system’s resilience (Cumming
et al 2005). Discontinuities in the distribution of
ecosystem functions across spatial scales (Sundstrom
et al 2014), ormapping system boundaries, dynamics,
cross-scale interactions to other systems, and the sys-
tem’s adaptive capacity are used for assessing the resi-
lience of a system (Quinlan et al 2016). These efforts
highlight that there are different approaches in assess-
ing resilience that depend on the system in question
and the type of stress or disturbance a system exper-
iences (Carpenter et al 2001). Yet, it is one thing to
assess resilience based on system properties that pro-
mote resilience and another to measure actual resili-
ence based on system responses. As a result, quantify-
ing resilience in practice remains for some a struggle
and for others an abstract metaphor.

Here, we revisit the concept of resilience as
defined by Holling in 1973, we list metrics used to
quantify it, and explore how these metrics relate to
each other in an attempt to address the question of
how resilience can be estimated in real systems. We
are not disillusioned that there is a definite answer
to this challenge nor that we are the first to do this.
Mathematical descriptions ofHolling’s resilience have
appeared almost as early as the concept was suggested
(Grumm 1976). Also, we do not claim that there is a
single notion of resilience. In the same way as its par-
ent term ‘stability’, resilience is a multifaceted concept
that can be quantified in different ways. In particular,
we do not consider here all possible ways for assessing
resilience as they have been developed across ecolo-
gical and social sciences (Gunderson 2000, Carpenter
et al 2001, Cumming et al 2005, Thrush et al 2009,
Folke 2016). Instead, we focus on system responses—
not properties—that we can use to quantify resi-
lience following Holling’s definition based on the
concept of the stability landscape and the geomet-
rical properties of its basins of attraction. Our aim is
to synthesize what is known about resilience metrics
that are related to the existence of a system’s stabil-
ity landscape by clarifying the connections between
ecological and engineering resilience metrics and by
reviewing current approaches for measuring resili-
ence in models and data.

The paper is structured as follows. We first intro-
duce the two basic definitions of ecological and
engineering resilience. We then present, classify, and
identify the relationships between ecological and
engineering resilience metrics in simple, widely used
ecological models. We list tools and approaches for

measuring resilience in models and data and review
their use in the ecological literature. We conclude
by outlining challenges that, if addressed, could help
make progress toward more reliably quantifying resi-
lience in practice.

2. Defining resilience: the two paradigms
of local vs non-local stability

Two main definitions of resilience pervade the ecolo-
gical literature. The first definition describes the sta-
bility of a system near an equilibrium state. It is typic-
ally measured as the ability of an ecosystem to recover
to its original state after a small perturbation and the
speed at which it does so (Pimm 1984). It is a classical
measure of local stability. This has also been referred
to as ‘engineering resilience’ in the ecological liter-
ature (Holling 1996). The second definition focuses
on cases where disturbances are not small and thus
the system may not return to its current equilibrium
but it may flip to another state. Resilience can then be
evaluated as themagnitude of disturbance that can be
absorbed before the system changes state (in terms of
structure and/or functioning). This has been termed
‘ecological resilience’ (Holling 1973) and it is typically
referred to as ‘Holling’s resilience’.

The major difference between these two defini-
tions of resilience is the underlying assumption that
systems can either have a single (globally) stable state
or multiple (locally) stable states (figure 1). When
proposed by Holling in 1973, the concept of ecolo-
gical resilience was introducing a new dimension of
ecological stability contrasting with the more tradi-
tional concept of local stability, which assumes that
systems have a single attractor to which they return to
following any type of perturbation. Holling’s concept
reflected an extension of Odum’s paradigm of a
homeostatic mechanism that acts as an ecosystem
regulator at equilibrium (Odum 1969), while at the
same time formalising earlier concepts of threshold
changes and buffers of population dynamics (Erring-
ton 1945). Over time, the two definitions of resilience
became almost two different ‘world-views’ of ecolo-
gical stability (VanMeerbeek et al 2021), occasionally
leading to different, sometimes confusing (e.g. Hodg-
son et al 2015), or even conflicting (e.g. Pimm et al
2019) interpretations in the ecological literature.

3. The stability landscape for mapping
resilience

When we study ecological resilience, we typic-
ally assume the existence of a stability landscape
with valleys and hilltops (figure 2). Such ball-and-
cup stability landscapes are good approximations
for understanding resilience concepts (Beisner et al
2003). Valley bottoms correspond to stable states
(where a ball, representing the current system state,
will eventually end up). A landscape with several
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Figure 1. Local vs global stability: a locally stable equilibrium can also be globally stable when the system always converges to the
same equilibrium (illustrated with the black point) regardless from its starting point (the black line reflects an example of a
trajectory in state-space) (a). In contrast, an equilibrium can be locally stable but globally unstable if only the trajectories starting
from a subset of starting points converge to it, while other trajectories converge toward another state (b). In that case, there are
more than one possible stable equilibria (two in this example). Local stability thus concerns what happens in the close
neighborhood of the equilibrium. In contrast, global stability is concerned with what happens in the whole state-space. Here, we
use non-local stability to refer to what happens beyond the close neighborhood of the equilibrium (while not necessarily
investigating the whole state-space).

valleys reflects a system with several alternative stable
states. Hilltops mark the unstable states (or saddle
points) that set the borders between the different
valleys.

Shifts from one valley to another can take place
in two ways. First, when a disturbance pushes the
ball beyond the neighboring hilltop (figure 2). A dis-
turbance reflects changes in the state variables of
the system, such as a sudden loss of a species bio-
mass due to a mass mortality event like a fire, or an
increase of a population abundance due tomigration.
Second, when changes in conditions alter the shape
of the stability landscape itself by shrinking the cur-
rent valley to disappearance so that the alternative
valley becomes the only possible state. In that case,
changes in conditions reflect changes in the envir-
onment or interactions that affect processes between
state variables, such as an increase in competition
strength between species, or an increase in habitat
fragmentation. Shifts between valleys are referred to
as ‘regime shifts’, ‘catastrophic shifts’, or ‘tipping’
events (Scheffer et al 2001, Lenton 2013, Petraitis
2013).

The balls-and-cups representation is a useful
concept to apprehend the idea of the stability land-
scape and its link to ecological resilience (Beisner et al
2003). It is clear that the geometrical properties of
the stability landscape are defining the basic prop-
erties of resilience (figure 2): (a) the size (area or
volume), (b) the depth, and (c) the slopes of the each
basin of attraction. Altogether these properties define
the ability of the system to withstand disturbances
without shifting to a different state (i.e. its ecological
resilience).

The problem is that, for most systems, we do not
know the shape of the stability landscape. In prin-
ciple, we could derive their shapes mathematically. A

useful summary of different mathematical descrip-
tions of a stability landscape can be found in
Pawlowski (2006). The most used mathematical
description of stability landscapes is given by the
potential function. The potential function describes
the potential energy of the system for different
parameter values (Strogatz 1994), where minima
and maxima respectively correspond to stable and
unstable equilibria, while the slopes of the poten-
tial surface are proportional to the rates of change
of the system. In other words, the potential func-
tion describes a gradient surface that determines
the direction and the speed at which the system
(the ball) is moving across and within basins of
attraction.

However, deriving the potential of a given sys-
tem requires knowledge about the actual underly-
ing dynamical model that describes the study sys-
tem. Things get even more challenging, because even
if ‘a’ model is assumed, it does not necessarily mean
that a potential function exists for that model. Think
about the well-known Lotka–Volterra two species
predator–prey model that leads to a limit cycle beha-
vior. The potential function of such a model should
reflect a stability landscape where the system orbits
but at the same time converges to the valley bottom
of the stability landscape—such landscape would cor-
respond to an impossible object (Rodríguez-Sánchez
et al 2020). In general, it will be difficult to find a
potential function for systems with more than one
dimensions (Rodríguez-Sánchez et al 2020), although
there have been ways to approximate stability land-
scapes for high dimensional systems (Zhou et al 2012)
and seeNolting and Abbott (2016) for a very instruct-
ive discussion for ecologists.

In what follows, we assume that a generic
potential function exists for our system of interest,
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Figure 2. A (hypothetical) stability landscape of a two-dimensional system with hilltops and valleys, also known as a
marble-in-a-cup or balls-and-cups landscape. Black balls are found in the bottom of the valley and represent stable states (if
disturbed the ball will ‘gravitate’ toward the bottom of the valley). White balls are found on the hilltops and represent unstable
states (if disturbed they will move away from their hilltop position). See text for more details.

and we explore how the properties of the stability
landscape can be (mathematically) linked to metrics
of ecological and engineering resilience. More pre-
cise mathematical descriptions of most of the prop-
erties we present can be also found in Meyer (2016),
Krakovská et al (2021).

4. The potential function and related
resilience metrics (what to measure)

4.1. A (generic) potential function
Let’s imagine a dynamical system described by the
function f (x). The potential function U(x) of such
dynamical system is defined as (Strogatz 1994):

U(x) =−
ˆ x

x0

f(x)dx (1)

where f (x) is a set of ordinary differential equations
that describe our ecological system:

dx

dt
= f(x). (2)

For simplicity, we will use one-dimensional
systems for which a potential function normally
exists (it can be either estimated in a closed form
or integrated numerically as long it is smooth)
(figure 3(B)). In higher-dimensional systems (i.e.
withmore than one dimensions), the conditions for a
gradient potential to exist become extremely difficult
(Rodríguez-Sánchez et al 2020).

The potential functions U(x) of well-known low-
dimensional ecological models used in the ecological
literature to study resilience can be derived analytic-
ally, are smooth, and many of them can be approxim-
ated by a 4th degree polynomial function (Saade et al
in prep; appendix A.1). In fact, a 4th-degree polyno-
mial is one of the simplest function that can describe
the potential stability landscape of a one-dimensional
system with two possible wells (Strogatz 1994). With
this inmind, we write a generic 4th-order polynomial
function to describe the potential U(x) of our hypo-
thetical ecological system as:

U(x) =−
(
1

4
α3x

4 +
1

3
α2x

3 +
1

2
α1x

2 +α0x

)
(3)
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Figure 3. Resilience metrics in state-space (i.e. perturbations on variables) and resilience metrics of state-space (i.e. perturbations
on parameters) based on the geometric properties of a potential function. (A) PotentialU(x) of a 4th degree polynomial (equation
(B.1)) with the basins of attraction (shaded red and blue areas) of two alternative stable equilibria (red and blue dots) separated by
an unstable equilibrium (saddle, white dot). (B) Rate of change (the first derivative−U ′(x) (slope) of the potential) of a system
along the potential landscape represents the velocity with which a system changes across state space (variable x). (C) Probability
distribution P(x) of a bistable system. The number of modes of P(x) serves as metric of the likelihood of bimodality (bistability),
while the variance and skewness of the probability distribution around each dominant mode can serve as proxies of the shape of
the potential landscape. (D) Bifurcation diagram representing the system’s equilibria as a function of a system parameter (i.e. α0).
Green arrow marks the distance (in terms of variable perturbation) of the current equilibrium (red dot) to the basin threshold
(the same to the distance in panel (A). Yellow arrow marks the distance of the current equilibrium (red dot) to the fold bifurcation
point (gray dot) in terms of parameter perturbation. Brown arrow marks the size of hysteresis. (E) Change in the curvature and
(F) in the potential depth of the potential at equilibrium of the red basin of attraction as a function of parameter α0.

where αi (i= 0,1,2,3) are the polynomial coef-
ficients that determine the shape of the poten-
tial. By tuning these coefficients, we can describe
a stability landscape with two basins of attraction.
For example, when a0 = 0,a1 =−5,a2 = 0,a3 = 1,
the two alternative stable equilibria (attractors) are
x1 and x2 whereas the hilltop xun corresponds
to the unstable equilibrium (saddle) that marks
the border between the two basins of attraction
(figure 3(A)).

In this theoretical potential, we can explore how
the size and shape of the two basins of the poten-
tial landscape are related to commonly used resilience
metrics.

4.2. Resilience metrics
4.2.1. Resilience to perturbations on state variables
The size and shape of the potential can be related
to properties of both engineering and ecological
resilience. Engineering resilience provides informa-
tion about the response of the system around equi-
librium to small perturbations on state variables
(figure 2). Ecological resilience refers to how the sys-
tem would respond to non-small perturbations, so
that if the stability landscape has several wells one
would need to evaluate the overall risk of shifting
from one attractor to the other. Belowwe classify resi-
lience metrics based on this distinction and explain
their relationships to the properties of the potential.

5
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4.2.1.1. Metrics of engineering resilience (local
stability)
• Curvature of potential. In general, the absolute
value of the potential curvaturemeasures the speed
of convergence or divergence after a small perturb-
ation. This can be quantified at any point along
the potential. Typically, though, it is the curvature
measured at equilibrium (figure 3(B)) quantified
by the dominant eigenvalueλ of the Jacobianmatrix
of the ecological model (equation (2)) that determ-
ines the local stability of the equilibrium:

λxattr = U ′ ′(xattr) =−f ′(xattr). (4)

Different information can be derived from the
quantification of the potential curvature. First, the
sign of the eigenvalue λ qualifies whether the state
is stable (λ< 0) or not (λ> 0). Second, the mag-
nitude of the eigenvalue λ determines how fast the
system returns back to the disturbed equilibrium
after a disturbance:

τreturn =
1

λxattr

log
(xattr

x

)
. (5)

Return (or recovery) time (also measured as return
(or recovery) rate (1/τreturn) back to the desired
attractor is defined as engineering resilience (Pimm
1984). Note that for large deviations from equilib-
rium, the eigenvalue approximation fails. In that
case the response of the system back to equilibrium
is determined by the rate of change along the poten-
tial (figure 3(B)).

The above defined return time defines the
long-term (or asymptotic) resilience (Arnoldi et al
2018). It is possible that after a disturbance the sys-
tem might initially move away from the attractor
before eventually returning back to it. This prop-
erty that is also related to the curvature of the
potential is called reactivity (Neubert and Caswell
1997) but it is defined only for higher than 1-
dimensional systems:

R0 =− 1

λxattr

Csym (6)

with Csym= C+CT where C is the Jacobian mat-
rix and λxattr the dominant eigenvalue of C at equi-
librium xattr .

• Variance. Under small, random and continuous
disturbances, the system moves in a way that is
defined by the curvature of the potential around
the attractor (figure 3(B)). One way to think about
this is to imagine the ball to wiggle around the
bottom of the valley while still staying within its
basin of attraction. For small disturbances, the res-
ulting stationary distribution will be described by
its variance Var(x) that depends on the strength of
stochasticity σ and the dominant eigenvalueλ (Ives
et al 2003):

Var(xt) =− σ

2λxattr

. (7)

The flatter the bottom of the valley is, the smaller
the absolute value of λ will be and consequently
the higher the variance. Note that as this definition
considers small levels of noise, it depends on the
eigenvalue at the local equilibrium and it does not
take into account the whole curvature of the poten-
tial. In that sense it is a local measure of resilience
(figure 3(C)).

• Autocorrelation. In addition to variance, the val-
ues of the resulting stationary distribution will be
correlated in time Corr(xt,xt+1) defined by the
eigenvalue λ:

Corr(xt,xt+1) = eλxattr . (8)

A flat valley bottom (i.e. small absolute value of
λ) will lead to high values of autocorrelation. Note
that as this definition (like the above for variance)
considers small levels of noise, it does not take into
account the whole curvature of the potential so that
it is a local measure of resilience.

4.2.1.2. Metrics of ecological resilience (non-local
stability)
• Potential depth. This metric reflects the amount
of ‘effort’ needed to climb against the gradient of
the potential in order to pass over the saddle point
(hilltop). More precisely, it is the relative depth of
the bottom of a valley to the hilltop (figure 3(A)).

Pot_d= |U(xattr)−U(xsaddle)| (9)

where xattr is one of the alternative attractors
(stable equilibrium) and xsaddle is the saddle point
(unstable equilibrium).

This metric reflects how ‘easy’ it is for a system
to be pushed away from its current state and shift
to another basin of attraction. This metric has been
also described as ‘resistance’ byWalker et al (2004),
and it resembles the widely used notion of resist-
ance defined as the ability of a system to persist des-
pite a disturbance (Grimm et al 1997), although
resistance is commonly quantified as the relative
amount of system change given a specific size of
disturbance (Ingrisch and Bahn 2018).

• (Minimum)Distance to the basin threshold. This
metric describes the distance between the valley
bottom (stable equilibrium) and the limit of the
basin of attraction (saddle point). Another way to
think about this metric is the minimum amount of
a single perturbation to the system state that one
has to apply so that the systems shifts to the other
state (figure 3(A)).

Dist_thr= |xattr − xsaddle|. (10)
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If the system is not at the bottom of the valley (at
equilibrium) then the distance between the cur-
rent state of the system and the saddle xun has been
called by Walker (2004) precariousness.

• Size of the basin of attraction.The size of the basin
of attraction reflects the likelihood of the system to
be in a given state after any random—non-small—
perturbation (figure 3(A)). Mathematically, it can
be defined as the set of initial conditions in state
space that lead to a particular state. For example,
for a one-dimensional system, the setW would be
defined within a range of x values from xA to xB as:

W : x ∈ [xA,xsaddle), ifxattr < xsaddle

W : x ∈ (xsaddle,xB], ifxattr > xsaddle.
(11)

This set can be described by different geometries
depending on the dimensionality of the system. For
one-dimensional stability landscapes, it is simply
the width of the basin of attraction (e.g. from
equation (6) |xA − xsaddle|). For two-dimensional
stability landscapes, the size is described as an area,
while for higher dimensions it is quantified as a
(hyper-)volume (Menck et al 2013).

Although the size of the basin of attraction is a
completemeasure of the stability domain of a given
attractor, sometimes it might be more relevant to
use other metrics than size. For example, in a one-
dimensional stability landscape the width of the
basin of attraction is not a useful metric when there
are only two basins of attraction, as each basin has
a threshold only on one side (figure 3(A)). In that
case, it is more relevant to compare basins based
on the minimum distance to the basin threshold.
Similarly, in a two-dimensional stability landscape
itmight be that it is theminimumdistance between
the two basin thresholds (also referred as latitude
(Walker andMeyers 2004)) (figure 2) that describes
better the likelihood of the system to stay within a
basin of attraction after a perturbation.

• Likelihood of bi-(multi)-modality. The existence
of bi-(multi)-modality is a proxy of bistability and
potential flipping between alternative states. Bi-
(multi-)modality can be derived from the peaks of
the probability distribution of the system state. The
probability distribution describes the probability to
be at any point along the stability landscape in the
presence of (environmental or demographic) noise
(figure 3(C)). The probability distribution depends
on the potential function and the strength of noise.
The simplest way to imagine this is to consider the
ball (system state) being ‘pushed’ around within
the basin of attraction due to small and continuous
perturbations. Where the system will spend more
time will depend on the shape of potential land-
scape and how noise is acting on the system. The
values of system state where the likelihood is the
maximum are the modes of the distribution and

correspond to the alternative attractors of the sys-
tem. The probability P(x) of the system state being
at a point x is given by:

P(x) =
1

N
e−

2U(x)

σ2 (12)

where N is a normalization factor, σ is the level of
noise. This expression is the solution to the Fokker–
Planck stochastic version of equation (1) (Gardiner
2003).

If noise has an additive structure (e.g. Gaussian
distribution added on the system state), the prob-
ability distribution is of the form (equation (12)).
For more complex structures of noise (i.e. multi-
plicative), the probability distribution becomes a
function of noise as well (see for instance Guttal
and Jayaprakash 2008).

• (Mean)Exit time to thealternativebasinof attrac-
tion. The (mean) exit time τ is the average amount
of time that it will take for small and continuous
disturbances to ‘push’ the ball out of its current
basin of attraction. This time depends on potential
properties (potential depth and curvature poten-
tial) as well as on the strength of noise (Nolting and
Abbott 2016):

τ xunx =
2π√

(|λx|λun)
e

2
σ2 (|U(xun)−U(x)|) (13)

where λx quantifies the curvature of the poten-
tial at point x (see also below under ‘Curvature’).
Obviously, if stochasticity is low (σ → 0) exit time
becomes infinite, in other words it is impossible to
escape from the current basin of attraction.

• Skewness. In the presence of continuous, ran-
dom disturbances that ‘push’ the system around
the basin of attraction (but not outside of it),
the resulting stationary distribution of the sys-
tem state will reflect the shape of the basin of
attraction. If the basin of attraction is asymmetric,
the stationary distribution will also be asymmet-
ric (figure 3(C)). Asymmetry suggests the existence
of another attractor but it is not a proof of it. The
simplest way tomeasure the basin’s asymmetry is to
quantify the skewness γ of the resulting stationary
distribution (Guttal and Jayaprakash 2008):

γ =

´
(x−µ)3P(x)dx

σ3
(14)

where µ is the mean value of the probability distri-
bution P(x). Negative skewness would imply left-
side asymmetry, whereas positive skewness would
imply asymmetry to the right.

4.2.2. Resilience to perturbations on parameters
The above metrics reflect properties of a non-
changing (static) stability landscape. However, the
stability landscape can also change due to changes
in external (e.g. environmental) conditions (Suding
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et al 2004). Such changes are related to changes in sys-
tem parameters. For instance, this would mean that
the coefficients of the polynomial potential function
(equation (3)) are changing. In such context of per-
turbations in parameter space, other metrics of resi-
lience become relevant. One of them is the amount
of change in an external parameter that is needed for
the current attractor to disappear and be replaced by
its alternative attractor (figure 3(D)).Mathematically,
the appearance anddisappearance of attractors aswell
as changes in their stability correspond to bifurcation
points (Kuznetsov 1995). It is straightforward to ima-
gine that such bifurcations can be caused by more
than one external parameters. In that case, there is
actually a parameter space (analogous to the state-
space that defines the ‘Size of Basin of Attraction’)
that defines the size of parameter changes that can
be tolerated without leading to shifts in the number
or in the stability of attractors. This parameter space
defines the ‘structural stability’ of a system (Smale
1967, Thom 1989).

There are different ways for quantifying resilience
to perturbations in parameter space.

• Distance to bifurcation. Analogous to the ‘Dis-
tance to basin threshold’ metric, we can find the
minimum amount of change needed along one
parameter p to incur the disappearance of the cur-
rent valley bottom (figure 3(D)).

Dist_bif= |pattr − pbif| (15)

where pattr is the current value of the parameter and
pbif is the value of the parameter at which one of the
bifurcations occurs.

• Size of hysteresis. Hysteresis defines the range of
parameter space for which bistability exists along a
single parameter p (figure 3(D)).

Hysteresis= |pbifA − pbifB| (16)

where pbifA and pbifB are the values of the parameter
at which the bifurcations occurs.

5. Relationships between engineering
(local) and ecological (non-local)
resilience metrics derived from generic
one-dimensional potentials

From the previous section, it is clear that metrics
of ecological and engineering resilience are strongly
linked as some are functions of the others. For
example, mean exit time depends on the potential
depth, whereas return time, variance and autocorrel-
ation are all functions of the potential’s curvature. At
the same time, some relationships commonly thought
as given are not necessarily true. For instance, the
probability of escaping from a given valley to the
alternative one (which is approximated by the mean
exit time) depends on the potential depth and not on

the distance to the basin threshold as it is commonly
thought.

To confirm these expected relationships (and
explore unexpected ones), we estimated correlations
between ecological and engineering resiliencemetrics
in the generic one-dimensional potentials described
by the fourth degree polynomial (equation (3)).
In addition, we estimated correlations for a poten-
tial described by a more versatile exponential func-
tion (equation (B.2)), as well as the potentials of
three classical ecological models exhibiting bistabil-
ity (appendix A.1). A detailed description of the func-
tions and how we performed the correlations can be
found in appendices A.2 and B.

We found strong correlations between all metrics
for the polynomial function (figure 4(A)). All engin-
eering resilience metrics (i.e. curvature, variance,
autocorrelation) were perfectly correlated with each
other (=1) as they are all functions of the curvature
(equations (7) and (8)). A strong correlation was also
found between the ecological resilience metrics of
potential depth and distance to threshold. Similarly,
the potential depth was perfectly correlated to the
mean exit time. The most interesting result was the
strong correlation between the potential depth and
the engineering resilience metrics. Although these
relationships might be a consequence of the smooth-
ness and symmetry of the polynomial function, we
found similarly positive (albeit weaker) correlations
for the exponential function especially in the correl-
ations between potential depth and engineering met-
rics (figure 4(B)), while the correlations between dis-
tance to threshold and engineering resilience metrics
break down in that case.

When we estimated these correlations in three
classical bistable ecological models, we found that
correlations between engineering and ecological resi-
liencemetrics were positive especially between poten-
tial depth and engineering resilience, except for the
desertification model in which these correlations dis-
appear (figures 4(C)–(E)). Investigating this more in
detail revealed that the correlations were different in
strength depending on which of the two alternative
equilibria was considered. When we looked only at
the high equilibrium (the usually desired state), cor-
relations were mostly positive between engineering
and ecological resilience metrics, also in the deserti-
fication model (figure A.3). Interestingly, in all three
models, we found opposite results to the polynomial
and exponential functions for correlations between
mean exit time and engineering resilience metrics,
which seems to be mainly due to what happens in the
low equilibrium (figure A.3). Altogether, these res-
ults suggest that engineering resilience (local stability)
metrics can be used to approximate ecological resili-
ence in some specific simple settings, yet, future work
should explore in more details when and why these
correlations break down. For example, Nolting and
Abbott (2016) have shown that, in a two-dimensional
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Figure 4. Spearman ρ correlations between engineering and ecological resilience metrics for a bistable potential landscape
described by (A) a polynomial, (B) an exponential function, as well as three classical ecological models with bistability: (C)
herbivory model (Noy-Meir 1975), (D) desertification model (Klausmeier 1999), (E) eutrophication model (Carpenter et al
1999). Correlations are based on metrics estimated for both basins of attraction (18 074 cases for the polynomial function, 88 201
cases for the exponential function, 90 257 cases for the herbivory model, 76 515 cases for the desertification model and 16 145
cases for the eutrophication model). For the three last metrics a sign correction was done so that the metric increases as stability
increases. Red colors represent positive correlations, and blue colors negative correlations. Values in the circles are the correlations
measured. All correlations are significant (p< 0.05).

potential described by a double exponential func-
tion, resilience metrics such as potential depth and
curvature can be decoupled.

6. How tomeasure resilience in practice

We revisited a bibliographic analysis of stability met-
rics in the ecological literature between 1950 and 2018
(Kéfi et al 2019) to check which metrics were used
to quantify either engineering or ecological resilience.
We classified metrics such as dominant eigenvalue,
whether the system recovers or not, return time,
coefficient of variation, variance, standard deviation,
and reactivity as metrics of engineering resilience
(local stability) (figure 5(C)). Metrics such as type of
attractor, distance to bifurcation, skewness, detection
of a regime shift or the quasi-potential of the system
were categorized as measures of ecological resilience

(non-local stability) (figure 5(D)). For more details
about the bibliographic analysis refer to Kéfi et al
(2019).

We found that, out of the 459 papers studied, 223
estimated only engineering resilience metrics (49%),
51 estimated only ecological resiliencemetrics (11%),
and only 18 evaluated both (4%) (figure 5(A)). More
strikingly, out of the 805 measures of resilience met-
rics across the 459 papers of the database, engineering
resilience was measured over four times more often
than ecological resilience (366 vs 80, figure 5(B)). This
difference is even higher if we only consider metrics
measured in the field: engineering resilience metrics
have been measured empirically 14 times more than
ecological resilience metrics. This literature analysis
highlights that there is a well-defined set of metrics
that allows evaluating engineering resilience, whereas
ecological resilience seems to be much more difficult
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Figure 5. Number of times papers have quantified an engineering or ecological resilience metric in (Kéfi et al 2019) (a literature
review between the 1950s and 2018 on stability and resilience metrics used in a number of ecological journals). Bars are stacked
by the type of study (theoretical studies, empirical studies or studies combining theory and empirical data, referred to as ‘mixed’).
(A) Among the 459 papers studied, numbers which evaluated only engineering, only ecological or both types of resilience metrics
(‘both’). (B) Total number of times engineering or ecological resilience metrics have been used across the data base (because some
papers quantify several metrics, these are not the same numbers as in (A). (C), (D) Same as (B) but split by individual metrics for
engineering (C) and ecological (D) resilience metrics. (Metrics used: curvpot: curvature of potential (return time, dominant
eigenvalue, whether the system recovers or not after a pulse perturbation), cv: coefficient of variation, var: variance, acorr:
autocorrelation, sdev: standard deviation, react: reactivity, attract: type of attractor, dist bif: distance to bifurcation, skew:
skewness, shift: detection of a regime shift, qpot: quasi-potential).

to estimate, especially in real systems (Schroder et al
2005).

Below, we focus on examples of a number of
methods that have been used theoretically and prac-
tically to estimate resilience metrics based on the
properties of the stability landscape (table 1).

Most of thesemethods follow two approaches: (a)
neglect the complexity and approximate an ecological
system with a (low-dimensional) model, parameter-
ized in away that quantitativelymatches the empirical
system asmuch as possible, and then use themodel to
estimate ecological resilience; (b) Estimate resilience
metrics that can be directly estimated from empirical
data.

6.1. Based on amodel
Being able to derive (analytically or numerically) the
potential function of the ecological model enables
us to estimate all resilience metrics. Recall that
this is usually possible for one-dimensional systems.

Similarly, numerical tools of bifurcation analysis
enable us to explore the presence of thresholds, the
likelihood of bistability and the range of hysteresis.
For higher-dimensional systems, it can be possible
to approximate the potential by the quasipotential
(Nolting and Abbott 2016) (with varying degree of
error depending on the model (Rodríguez-Sánchez
et al 2020)). Recent works provide useful numerical
techniques and brilliantly illustrate how the derived
quasipotential can be used to quantify ecological
resilience in ecological models (Nolting and Abbott
2016).

However, even after having defined amodel, find-
ing the potential function or performing a bifurca-
tion analysis to explore the range of hysteresis might
still be difficult. In that case, numerical methods can
indirectly quantify some of the resilience metrics. A
classical approach is to randomly sample initial con-
ditions and record the number of alternative endpoint
attractors (Beddington et al 1976). For instance, the
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probability of reaching a given state relative to the
total amount of trials is a proxy of the size of the basin
of attraction of that state (Lundström 2017). Oth-
ers suggest measuring the state space within which
system trajectories remain using viability kernel ana-
lysis (Martin et al 2011). For high-dimensional sys-
tems, efficient ways that are computationally feasible
to sample the state space for approximating the size
of the basin of attraction have been proposed (Menck
et al 2013), as well as algorithms for identifying the
minimum disturbance required to push the system
outside its current state (Lundström 2017,Meyer et al
2018, Halekotte and Feudel 2020). Other approaches
intend to integrate multiple measures of the stabil-
ity landscape. Integral stability, for example, suggest
a composite measure derived from both taking into
account the size and the curvature of the basin of
attraction of a given state (Mitra et al 2015). Still, such
numerical approaches are computationally expensive
(computational time grows exponentially with sys-
tem dimensionality (Mitra et al 2015)), and have not
been widely adopted by ecologists especially in high-
dimensional systems, like multispecies communities.

6.2. Based on data
If we have no model at hand but lots of obser-
vations of the study system, we can reconstruct a
‘probabilistic’ stability landscape by assuming that
the system has ‘visited’ most parts of the ‘true’ sta-
bility landscape. Using the probability distribution
of system states could be achieved by simple his-
tograms or by fitting uni- or multivariate density
(e.g. Gaussian) functions to the data (Hirota et al
2011, Berdugo et al 2017). In this way, the domin-
ant modes are seen as the potential attractors and
resilience can be evaluated based on their number
and distance. We could even go a step further and
fit a generic function (like for instance a polyno-
mial or exponential function appendix B) as approx-
imation of the potential function. This approach is
followed in potential analysis (Livina et al 2010)
that can be used not only to describe bi-(multi)-
modality, but also describe potential properties. For
example, based on standard model selection tools,
the best-fitted polynomial function could be used to
identify the number (polynomial degree), position
and distance between alternative basins. Although
these approaches appear promising, they still are lim-
ited to low dimensional application and require a lot
of observations; that is why the best examples of the
application of these approaches come from remote
sensing data describing vegetation cover in forests,
savannas and drylands (Hirota et al 2011, Scheffer
et al 2012, Berdugo et al 2017, van Belzen et al 2017).
Yet, in multi-dimensional cases (e.g. multispecies
communities), aggregate measures of community/
compositional state can be used through ordination
techniques (such as PCA) for identifying alternative
states and attraction basins through clustering based

on densities (Génin et al 2020), or through build-
ing weighted networks of states calculated by pair-
wise maximum entropy models (Suzuki et al 2021).
Other methods attempt to reconstruct the parameter
space where bistability exists by fitting the simplest
(‘normal’) form function (similar to equation (3))
that produce cusp surfaces (Jones 1975, Grasman et al
2009) in three dimensional space made of the data
itself sampled at different environmental conditions
(Sguotti et al 2018).

Regime shift detection has beenperhaps themost-
used approach for inferring the likelihood of bimod-
ality (i.e. the existence of alternative states). In that
sense regime shift detection can been seen as a proxy
of ecological resilience. However, the existence of a
regime shift is not necessary proof of bi-(multi)-
stability (Petraitis 2013). Regime shifts can be caused
by ways that are not related to loss of ecological resi-
lience or the presence of alternative states (Dakos
et al 2015, Ratajczak et al 2018). Thus, the detec-
tion of shifts in a dataset (in a timeseries or along
a gradient) is only an indication that there could be
underlying bistability. Regime shift detection is typ-
ically done using breakpoint analysis (Andersen et al
2009). There is a wealth of methods and statistical
software for conducting breakpoint analysis based
either on statistical tests (Beaulieu et al 2012), fit-
ting threshold-general additivemodels (Ciannelli et al
2004) or threshold auto-regressive models to the data
(Gröger et al 2011, Ives and Dakos 2012, Laitinen et al
2021).

A recent approach is based on estimating changes
in the pattern of system dynamics that can be used
as proxies of distance to bifurcation (ecological resili-
ence). In that sense, it is not the magnitude per se but
the relative change in time, space, or along a gradient
that is used as a proxy of loss (or gain) of resilience.
These indicators (also referred to as ‘early-warning
signals’ (Scheffer 2009) correspond to trends in vari-
ance, autocorrelation and skewness. Although they
are often interpreted as measures of ecological resili-
ence, they are primarily based onmetrics of engineer-
ing resilience. As shown in figures 3(E) and (F), this
interpretation is driven by the fact that changes in the
overall (non-local) properties of the potential (due to
the decreasing distance to bifurcation) are strongly
correlated to changes in the local stability properties
of the potential (figure 4). Indeed, these changes are
not specific to bistable potential landscapes, but sig-
nal proximity to any bifurcation at which the (local)
resilience of the present state changes (Kéfi et al 2013).

7. Discussion

Engineering and ecological resilience have largely
been seen as alternative ‘worldviews’ or ‘paradigms’
in ecology since the 1970s. While engineering resi-
lience refers to local stability properties, ecolo-
gical resilience relates more to non-local stability.
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Engineering resilience is generally easier to measure
since it requires information around the present equi-
librium state. Instead, ecological resilience is much
more difficult to quantify since it requires non-local
information way beyond the present equilibrium
state. For this reason, these two types of resilience
have been mostly studied separately from each other,
and only few studies have combined them (figure 5).
Still, in the present context of increasing pressures
and multiplicity of disturbances on natural systems,
the need to operationalize ecological resilience for
assessing and managing ecological systems is greater
than ever. However, operationalizing ecological resi-
lience has been a difficult, if not chimeric, task. In our
view, asking whether such operationalization is pos-
sible requires going back to the basic definitions of
these two types of resilience and looking at the cur-
rent state of the theory in order to find out if and how
we can go further.

7.1. Ecological and engineering resilience metrics
can be strongly correlated, at least in
one-dimensional systems
Using two generic functions to define the poten-
tial that mathematically describes a system’s stability
landscape, we estimated engineering and ecological
resilience metrics and explored their correlations.
We find that engineering and ecological resilience
metrics can be positively correlated with each other
(figures 4(A) and (B)). This result also seems to hold
to some extent in classical one-dimensional ecological
models (figures 4(C)–(E)). At first sight, this might
be expected given that most of the resilience metrics
we explored (but not all) are functions of each other.
It also suggests that perhaps we can use at least some
metrics of engineering resilience as proxies for some
metrics of ecological resilience and the other way
around in these simple models. However, this obser-
vation remains somewhat surprising because there is
no theoretical reason that local stability should be
related to non-local stability. Actually, we can eas-
ily imagine ways where the properties of the stability
landscape can change independently, so that a steep
basin of attraction (high curvature, high engineer-
ing resilience) should also be shallow (small potential
depth, low ecological resilience) or narrow (small dis-
tance to threshold, low ecological resilience).

One question raised by these results is the
extent to which our understanding of the relation
between engineering and ecological resilience might
be strongly biased by the type of models used in eco-
logy to study ecological resilience. The low dimen-
sional models (even of only a single dimension like
the ones we presented here) are missing realism when
approximating amuchmore complex reality, but they
still provide some insight to otherwise intractable
problems. For example, strong correlations between
diverse stability metrics have been shown to exist in

multispecies ecological communities as well (up to
a 100 dimensions) (Dominguez-Garcia et al 2019),
although the authors did not focus on all engineer-
ing and ecological resilience metrics studied here.
When assuming that a linear andmonotonic relation-
ship exists between the amplitude of disturbances and
their effects on the system state, engineering and eco-
logical resilience become not only correlated but even
equivalent (Zampieri 2021). Therefore, more gener-
ally, the question is whether and under which con-
ditions we should expect strong correlations between
ecological and engineering resilience metrics. For
instance, we can construct peculiar one-dimensional
models where the potential does not change smoothly
but discretely (Menck et al 2013), or where the
potential becomes steeper rather than shallower when
approaching a bifurcation (Titus and Watson 2020).
Even experimentally, it has been shown that in yeast
populations ecological resilience (quantified as dis-
tance to the basin threshold) can be negatively related
to engineering resilience (quantified as recovery rate),
under multiple types of pressures that act simultan-
eously in different directions (Dai et al 2015). We
can also construct two-dimensional potentials whose
shape properties can change independently (Nolting
and Abbott 2016). However we still do not know to
what extent this independence affects the correlations
between the resilience metrics that we find for one-
dimensional potentials. In higher dimensions (more
than 2), possibly this effect becomes stronger but the
problem is that we cannot easily explore this ques-
tion since, in high-dimensional models, the poten-
tial often cannot be derived (or no potential exists)
(Hastings and Wysham 2010). New approaches to
construct a quasipotential (Nolting and Abbott 2016,
Rodríguez-Sánchez et al 2020) in more than one-
dimensional systems might help us to systematically
test to what extent the strong relationships between
ecological and engineering resilience still hold.

7.2. Stability landscapes are not just metaphors
Interestingly, studies have suggested that empirical
potentials can be reconstructed if the right type of
data is available, such as replicates of ecosystem data
in space (e.g. Hirota et al 2011, Scheffer et al 2012,
Berdugo et al 2017). In those cases, the reconstructed
potentials resemble the ones derived from the simple
one-dimensional models. The reconstructed poten-
tials are described by high-order polynomial func-
tions that, as shown in appendix B, translate into
strongly correlated resilience metrics. More research
is needed to address whether there is a priori a good
reason to fit a polynomial potential to empirical data.
Simulated data from high-dimensional models can
serve as test ground of potential reconstruction before
applying these approaches on the increasingly avail-
able empirical data.
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7.3. Measuring ecological resilience will always be
context dependent
Themathematical definitions of resilience we presen-
ted are theoretical approximations. In practice, we
would need to make assumptions and simplifications
to fit our empirical examples into these definitions.
We need to put boundaries and assume a closed sys-
tem in order to define the dimensionality of the sta-
bility landscape. We need to distinguish perturba-
tions on state variables (resilience in state-space) from
perturbation on state parameters (resilience of state-
space). We need to identify and isolate the effect of
multiple perturbations. These are all challenging to
solve empirically and will affect our estimates of eco-
logical resilience. Our knowledge of the structure of
perturbations will affect the choice of resilience met-
rics (Grumm 1976). Which variable to use for char-
acterizing a property of resilience will depend on
data availability. A state variable can be considered
as a state parameter and vice versa (for instance slow
changes in soil water make it an external parameter,
but if soil water dynamics are fast it can be seen as
state variable). These are hard choices to make and
there is no single-best answer.We could, however, use
the mathematical definitions to adjust the resilience
metrics specifically for different ecosystem types (Yi
and Jackson 2021). Or we can be flexible and com-
bine different metrics to produce approximations of
ecological resilience.

7.4. Measuring ecological resilience in relative
termsmay be easier thanmeasuring it in absolute
terms
At the moment, widely-used proxies of ecological
resilience, are directional changes in statistical pat-
terns of the dynamics of a system around equilib-
rium (Scheffer 2009). They are proxies, because they
are not absolute measures of resilience, but they
reflect changes in resilience compared to a control or
a baseline (Dakos et al 2015). They predominantly
measure changes in variability, correlations, or gen-
eral changes in spatio-temporal patterns (Fath et al
2003,Mayer et al 2006, Kéfi et al 2014, Sundstrom et al
2017). Some are direct metrics of engineering resi-
lience (e.g. variance, recovery rate, autocorrelation),
and thus are related to local rather than non-local
stability properties. Although it is well-understood
that these changes are not specific to multistable sys-
tems but characterize changes in local stability when
a bifurcation is approached (Boettiger et al 2013, Kéfi
et al 2013), they still capture slow responses caused
by the more shallow potential surface in the vicin-
ity of saddles and tipping points especially when we
consider strong perturbations far from equilibrium
(figure 3(B)). Together with their advantage of being
straightforward to quantify in empirical data, these
proxies have been used to flag approaching shifts in
natural systems between alternative states (e.g. Dai
et al 2012, Rindi et al 2017). In that sense, they appear

to stand somewhere between ecological and engineer-
ing resilience but do not fully bridge the gap.

7.5. Conclusion
No doubt, the fact that it is easy to conceptualize eco-
logical resilience but difficult to operationalize it has
contributed to itsmisuse (or even abuse) as a concept.
Most would agree that resilience cannot be captured
by a single number (Carpenter et al 2001), but mul-
tiple metrics should be used to provide a composite
assessment (Grafton et al 2019). However, the ques-
tion remains of which metrics these are. We are not
the first who ask these questions aiming to bridge
the gap between theory and practice (Grumm 1976,
Meyer 2016), nor do we claim that we succeed in
answering them. However, we believe that it is fruit-
ful to identify what we can do (even if approximately)
contrary to what is impossible to do. For instance, we
need to test to which extend the correlations between
metrics of ecological and engineering resilience hold
in the ecological models we use. At the same time,
it is time to use big data to probabilistically identify
alternative states and potential thresholds (e.g. Ber-
dugo et al 2020). In this way, wemay finally bridge the
gap between the metaphors of potential landscapes
and basins of attractions and the quantification of
ecological resilience in practice.
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Appendix A. Analyses of classical
ecological models

A.1. Potentials of the models
We here present the potentials of classical ecological
models exhibiting bistability (Van Nes and Scheffer
2005, Guttal and Jayaprakash 2008).

A.1.1. Herbivory model
Noy-Meir’s model (Noy-Meir 1975) describes the
dynamics of grazed vegetation:

dx

dt
= G(x)− c(x)B

= rx
(
1− x

K

)
− Bx

a+ x
(A.1)

with x the vegetation density, G(x) the vegeta-
tion growth (which is logistic), c(x) the vegetation
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consumption by herbivores and B the herbivore pop-
ulation density.K is the carrying capacity, r the veget-
ation growth rate, and a the half saturation density
(May 1977).

The potential of this model, obtained by integra-
tion, is:

U(x) =
r

3K
x3 − r

2
x2 +Bx−Ba ln(a+ x)+Ba ln(a).

(A.2)

Note that the equation can be rewritten as follows
(see also Saade et al in prep):

dx

dt
= rx

(
1− x

K

)
− Bx

a+ x

=
1

a+ x

(
− rx3

K
+ r

(
1− A

K

)
x2 +(Ar−B)x

)
=

p(x)

g(x)
. (A.3)

The numerator can be rewritten as a third degree
polynomial:

p(x) =−α3x
3 +α2x

2 +α1x (A.4)

with α3 > 0. An illustration of the potential can be
seen in figure A.1 panel A.

A.1.2. Desertification model
The nonspatial version of Klausmeier’smodel (Klaus-
meier 1999) describes the dynamics of vegetation and
water in a dryland ecosystem as follows:

dW

dt
= A− LW−RWx2

dx

dt
= RJWx2 −Mx

(A.5)

with W the water, x the plant biomass, A the water
supply rate, L the water evaporation rate, R the plant
uptake rate of water, J the yield of plant biomass per
unit of water consumed, M the vegetation mortality
rate.

Because of time scale separation (assuming water
dynamics is much faster than vegetation dynamics),
we can solve dW

dt = 0 and get an expression for W :
W= A

L+RN2 . We thereby get a single equation:

dx

dt
= RJ

(
A

L+Rx2

)
x2 −Mx. (A.6)

The potential function of this model is:

U(x) =−JA

x−
tan−1

(√
R
L x
)

√
R
L

+
M

2
x2. (A.7)

Note that, in the same vein as for Noy-Meir’s
model, the equations of this model can be rewritten
as:

dx

dt
= RJ

(
A

L+Rx2

)
x2 −Mx

=
−MRx3 +RJAx2 −MxL

Rx2 + L

=
p(x)

g(x)
(A.8)

where the numerator is a third degree polynomial:

p(x) =−α3x
3 +α2x

2 −α1x (A.9)

with αi > 0. An illustration of the potential can be
seen in figure A.1 panel B.

A.1.3. Lake eutrophication model
Carpenter’s model (Carpenter et al 1999) is a lake
eutrophication model:

dx

dt
= a− bx+ r

xk

xk + hk
(A.10)

with x the amount of phosphorus (P) in the water
column, a the rate of P input from the watershed, b
the rate of P loss, r the maximum rate of recycling of
P. The overall recycling rate is assumed to be a sig-
moid function of P for which the exponent k controls
the steepness of the curve at the inflexion point and h
is the recycling half-saturation rate.

The potential function of this model is
(Pawlowski 2006) (for k= 2):

U(x) =
b

2
x2 + hr tan−1

( x
h

)
− (a+ r)x. (A.11)

An illustration of the potential can be seen in
figure A.1 panel C.

A.2. Correlations between resilience metrics in the
three ecological models
We looked at the correlations between the six
resilience metrics in the three ecological models
(figures 4(C)–(E)). We did this by systematic com-
binations of each model parameter. Specifically, for
the Herbivory model we usedα= [0.1,5] at 0.1 inter-
vals, r= [0.1,3] at 0.05 intervals, B= [0.05,1.5] at 0.1
intervals, K= [0.5,10] at 0.5 intervals. For the Deser-
tification model we used R= [0.1,2] at 0.1 inter-
vals, J= [0.5,10] at 0.5 intervals, A= [0.1,2] at 0.1
intervals, L= [0.1,2] at 0.1 intervals,M= [0.05,1] at
0.05 intervals. For the Eutrophication model we used
α= [0.05,1.5] at 0.05 intervals, b= [0.05,2] at 0.05
intervals, r= [0.5,8] at 0.5 intervals, h= [0.05,2] at
0.05 intervals.

The three engineering metrics are very strongly
correlated to each other in the three models. In the
same vein, distance to threshold and potential depth
(two ecological resilience metrics) are strongly cor-
related to each other in the three models. They are
also both positively (but not as strongly) correl-
ated to the engineering metrics in the herbivory and
in the eutrophication model but very weakly, even
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Figure A.1. Example potential landscapes of the three ecological models. (A) Herbivory model (equation (A.2) with r = 0.8,
α= 0.2, K = 3, B= 0.6). (B) Desertification model (equation (A.7) with R= 0.2, J = 1, A= 1.8,M = 0.5, L= 0.6).
(C) Eutrophication model (equation (A.11) with α= 0.1, b= 0.65, r = 2.5, h= 1.95).

Figure A.2. Relative difference between resilience metrics calculated for the high and low equilibria for each of the three ecological
models. Each boxplot displays (xh − xl)/xh where xh (resp. xl) is the value of a given metrics in the high (resp. low) equilibrium.
The bold line is the median of the distribution. Positive values indicate that the metric associated to the high equilibrium is higher
than the one of the low equilibrium, and negative values indicate the opposite. For each metric, there was 90 257 replicates
for the herbivory model, 76 515 for the desertification model and 16 145 for the eutrophication model. Po= Potential depth;
Di= Distance to threshold; Ex= Exit time; Var= variance; Corr= autocorrelation; Cu= Curvature.

negatively correlated to them in the desertification
model. One metrics behaves differently, exit time,
which is negatively correlated to the engineeringmet-
rics in the three models and positively correlated to
distance to threshold and potential depth. In sum, in
this model, the engineering metrics are positively and
strongly correlated to each other; the ecological resili-
ence metrics as well. Correlations between engineer-
ing and ecological resilience metrics vary in strength
and sign depending on the model.

We also looked at the resilience metrics obtained
in these three ecological models for the low and high
equilibria (figure A.2). For the three models, the res-
ults found for the different metrics are not always
consistent. Some of the metrics indicate that one of
the equilibrium is more stable than the other and
other metrics suggesting the opposite. For other met-
rics, there is a high variability (e.g. for curvature in
the herbivory model; figure A.2(A)) and comparative
values can be positive but also strongly negative,
suggesting that the high equilibrium is sometimes

more stable and sometimes less stable than the low
one. Moreover, the differences among metrics for the
two equilibria are not always similar across models.
For this reason,we displayed correlations amongmet-
rics by looking separately at the high and low equilib-
ria (figure A.2).

We found that the three engineering resilience
metrics (i.e. variance, autocorrelation and curvature)
are always strongly positively correlated to each other.
This is also true for potential depth and distance
to threshold, and this, independent of the equilib-
rium considered (figure A.3(E)). These two groups
of metrics are moreover positively correlated with
each other for all models and for both equilibria,
except for the high equilibrium of the desertifica-
tion model (figure A.3(E)). In that latter case, the
engineering resilience metrics are only weakly correl-
ated with the ecological resilience metrics. As already
noticed earlier, one metric behaves differently than
the others for the low equilibrium: the exit time
(figures A.3(A)–(C)).
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Figure A.3. Correlations between the six resilience metrics for each of the three ecological models. The top row corresponds to
correlations of the low equilibrium and the second row of the high equilibrium. The number of replicates is 90 257 for the
herbivory model, 76 515 for the desertification model and 16 145 for the eutrophication model. For the three last metrics a sign
correction was done so that the metric increases as stability increases. All correlations are significant (p< 0.05).

Figure B.1. Potential landscapes for the (A) polynomial (equation (3) with s= 1, α3 = 1, α2 = 0.5, α1 =−3, α0 = 0) and (B)
exponential function (equation (B.2) with α= 1.5, β = 1, γ = 1, δ = 4).

Appendix B. Polynomial and exponential
functions to estimate resilience metrics
correlations

We estimated correlations between ecological
and engineering resilience metrics based on one-
dimensional potentials described by a fourth degree

polynomial (equation (B.1)) and an an exponential
function (equation (B.2)) (figure B.1).

polynomial : Up(x)

=−
(
1

4
α3(sx)

4 +
1

3
α2(sx)

3 +
1

2
α1(sx)

2 +α0(sx)

)
(B.1)
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Figure B.2. Correlations between the six resilience metrics for the polynomial (A) and exponential (B) functions. Left panels
correspond to correlations of the low equilibrium and right panels of the high equilibrium. For the three last metrics a sign
correction was done so that the metric increases as stability increases.

exponential : Ue(x) = 1−αexp(−βx2)

− exp(−δ(x− γ)2). (B.2)

In the polynomial function we introduced the
parameter s that shrinks and expands the potential
without changing the other properties of its shape.
As the polynomial function is not that flexible in
changing shapes (and both valleys are completely
symmetrical), we also used the exponential function
(equation (B.2)), where one can change the posi-
tion of the two valley bottoms independently with
β and delta respectively for each valley bottom. γ
changes the distance between the two valleys, and
alpha changes the relative depth between the two
valleys.

For both functions, we systematically combined
parameter values andwe estimated Spearmann ρ rank
correlations between metrics measured only when
two basins of attraction existed (otherwise some eco-
logical resilience metrics, like potential depth, are

non-existent). In particular, we estimated correla-
tions between potential depth (Pot_d), distance to
basin threshold (Dist_thres), curvature of potential
(λattr) (as the dominant eigenvalue to measure recov-
ery rate) and mean exit time (τ xunx ), variance (Var),
and autocorrelation (Corr). We did not measure the
size of the basin of attraction because as we assumed
x to be unbounded, our two valley are both ending to
infinity and are thus equal in size (i.e. infinite size).
Also we did not measure reactivity (as it is defined
only for more than one-dimensional systems). We
present results for each basin of attraction separately
(figure B.2) and combined (figure 4).

In particular, we used combinations of the five
parameters of the polynomial function (equation
(B.1)) for the following ranges: s [1,5], α0 = [−5,5],
α1 = [−5,5], α2 = [−5,5], α3 = [1,5]. Each range
was sampled at ten equal intervals. For variance
and autocorrelation we used noise of σ = 0.25. All
estimations were performed for x= [−5.5,5.5] at
1000 interval points. These combinations resulted in
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10 000 potential landscapes, out of which 18 074 cor-
responded to potential landscapes with two basins of
attraction.Weused these 18 074 potentials to estimate
the six resilience metrics described above.

We used combinations of the four parameters
of the exponential function (equation (B.1)) for
the following ranges: α = [0.01,5], β = [0.01,3],
γ = [0.1,4], δ = [0.01,3]. Each range was sampled at
20 equal intervals. For variance and autocorrelation
we used noise of σ = 0.25. All estimations were per-
formed for x= [−2,6] at 1000 interval points. These
combinations resulted in 160 000 potential land-
scapes, out of which 88 201 corresponded to poten-
tial landscapes with two basins of attraction. We used
these 88 201 potentials to estimate six resilience met-
rics described above.

All calculations were performed in R.
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