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Abstract Autoencoders and generative models produce some
of the most spectacular deep learning results to date. How-
ever, understanding and controlling the latent space of these
models presents a considerable challenge. Drawing inspira-
tion from principal component analysis and autoencoders,
we propose the Principal Component Analysis Autoencoder
(PCA-AE). This is a novel autoencoder whose latent space
verifies two properties. Firstly, the dimensions are organised
in decreasing importance with respect to the data at hand.
Secondly, the components of the latent space are statistically
independent. We achieve this by progressively increasing the
latent space during training, and with a covariance loss ap-
plied to the latent codes. The resulting autoencoder produces
a latent space which separates the intrinsic attributes of the
data into different components of the latent space, in a com-
pletely unsupervised manner. We also describe an extension
of our approach to the case of powerful, pre-trained GANs.
We show results on both synthetic examples of shapes and
on a state-of-the-art GAN. For example, we are able to sepa-
rate the colour shade scale of hair, pose of faces and gender,
without accessing any labels. We compare the PCA-AE with
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other state-of-the-art approaches, in particular with respect
to the ability to disentangle attributes in the latent space. We
hope that this approach will contribute to better understand-
ing of the intrinsic latent spaces of powerful deep generative
models.
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1 Introduction

The recent impressive results of deep generative models and
autoencoder-type models rely on a core idea: uncovering
a compact, powerful latent space where the original high-
dimensional data can be better synthesised or manipulated.
Some of the most astounding recent synthesis results in deep
learning have come from generative models such as genera-
tive autoencoders [21,42,39,41,16,12] or Generative Adver-
sarial Networks (GANs) [10,37,18,40,19,6,44,32]. How-
ever, in spite of their undoubted efficiency, the latent spaces
created by these models are difficult to interpret. In particular,
a common problem is that these spaces are entangled: several
image characteristics are often combined into one dimension
of the latent space, making understanding it difficult. Certain
previous approaches have attempted to disentangle the space
in a semi-supervised manner, that requires knowledge about
the true underlying factors of the data [23,35,29,8,14,38].
However, we would like to achieve this organisation of the
latent space in a non-supervised approach, letting the data
tell us what variability exists in the database.

In this work, we propose a network which we refer to
as the “Principal Component Analysis Autoencoder” (PCA-
AE). An autoencoder is a neural network consisting of two
sub-networks : an encoder and a decoder. These networks
project data to and from the lower-dimensional latent space.
Ideally, we would like this latent space to be interpretable
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Fig. 1: Architecture of our PCA-AE. At the nth step, the PCA-AE takes all previous pre-trained encoders, while the decoders
are discarded. The parameters of these encoders are fixed. Their output are concatenated with those of the nth encoder and
trained with the new nth decoder.

and navigable. By navigable, we mean that we have a method
to move in the latent space such that some visual attributes
of the output image are modified in a controlled manner,
i.e. without changing all attributes at once or randomly. We
propose to achieve this by creating an autoencoder which
shares some of the desirable characteristics of the PCA. The
classical PCA is a linear transformation to a space with two
main properties. Firstly, the axes are organised in order of
decreasing variability. So, along the first axis lies the great-
est variability of the data, along the second orthogonal axis
lies the second-greatest variability, and so on and so forth.
Secondly, the axes are orthogonal to each other, which is
necessary for interpretation and manipulation. Ideally, we
would like to have the best of both worlds, i.e. the power
of a non-linear transformation (a neural network here) with
the aforementioned properties of PCA. This is the objective
of this work. More precisely, our goal is to propose an au-
toencoder with the following two properties: i) the latent
space components (axes) are ordered in terms of decreasing
“importance” (this is defined shortly afterwards) and ii) each
component of a code is statistically independent from the
other components.

To achieve this, we start by training an autoencoder with
a latent space of size 1. Once this is trained, we fix the values
of this first element in the latent space, and train an autoen-
coder with a latent space of size 2, where only the second

component is trained. At each step, the decoder is discarded,
and a new one is trained from scratch. This continues un-
til we reach the required latent space size (see Figure 1 for
an illustration of this approach). Therefore, “importance”
in this context refers to the `2 reconstruction error : the
first element is the one which has the most impact on this
reconstruction error.

Secondly, we add a latent space covariance loss term
to the autoencoder loss to ensure that each latent compo-
nent is statistically independent from the others. If the
intrinsic characteristics of the data are distributed indepen-
dently throughout the dataset, then this will be reflected in
the PCA-AE latent space. The final objective is to create an
autoencoder whose latent space efficiently separates (disen-
tangles) independent characteristics of the data being con-
sidered. For example, this could be properties such as size,
shape or colour, or more high-level characteristics such as
gender or hair colour in the case of images of faces. We
achieve this without any reference to labels relative to these
characteristics. Instead, we aim to discover the latter in a
completely unsupervised fashion, through the data itself.

To summarise, in this paper we propose the following
contributions:

– An algorithm to create a autoencoder with a latent space
where the components of the latent code are ordered in
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    : an initial code of the latent
space on the unit sphere
(described as the red point in the
figure on the left), from which the
generator of a pre-trained GAN
generates a "photo-realistic" image

   : a code of the random set of small perturbations 

Encoder Decoder

of the PCA autoencoder

Generator of
a pre-train GAN

Fig. 2: PCA-AE is applied for navigating in the latent space of a pre-trained GAN. Each component of the PCA-AE attempts
to control one attribute of generated images.

terms of decreasing importance to the data. This impor-
tance refers to the `2 reconstruction error

– We use a covariance loss term to encourage the compo-
nents of the latent space to be statistically independent to
decrease entanglement;

– We show how the PCA-AE can be used to organise and
disentangle the latent space of a pre-trained generative
network such as a GAN. An illustration of this can be
seen in Figure 2

In other words, we wish both to impose an order on and
disentangle the latent space. We demonstrate the efficiency
of our autoencoder on synthetic examples of images of ge-
ometric shapes as well as on the more complex data of the
CelebA dataset. In the first case, we show that the resulting
autoencoder retrieves meaningful axes that can be manipu-
lated to change different geometric characteristics (size, rota-
tion) of the shapes. In the second, we automatically discover
properties such as hair colour, gender and pose. We empha-
sise that this is done in a completely unsupervised manner,
without any access to the labels of these characteristics.
In this work, we wish to discover these underlying proper-
ties automatically, by letting the data indicate its different
variable characteristics.

2 Previous work

Broadly speaking, there are two main categories of networks
which are used for image editing and synthesis: autoencoders
[21,34,9,28] and GANs [33,1,11,4,31,43,30,7]. The goal

of autoencoders is to compress and decompress data to and
from a compact, powerful latent space. GANs, on the other
hand, fix the latent space with an a priori distribution (for
example Gaussian), and attempt to create realistic data with
the parallel action of a generator and an adversarial network.
These models have produced impressive results, and therefore
understanding and interpreting their latent spaces is now an
extremely hot topic. Ideally, we would like to understand
what kinds of hidden representations the model has learned.
More precisely, the latent space should be disentangled so
that one latent code represents one factor of the variation in
the formation of the data space.

Many previous works concerning such models have the
goal of improving the compactness and power of latent
spaces. Firstly, a commonly remarked behaviour of autoen-
coders is that they fill up all the space allowed in their latent
space, which is detrimental to interpretation and manipu-
lation. A common solution to this problem is to allow the
autoencoder more space than is likely necessary, and then try
to impose some sort of structure on the latent space. Sparse
autoencoders [34,9,28], for example, attempt to have as few
active (non-zero) components as possible in the latent space.
However, while this forces compactness, the autoencoder
can still entangle several data characteristics in a single la-
tent component. Generative autoencoders such as variational
autoencoder [21], Wasserstein autoencoder [41] create an
autoencoder whose latent space is encouraged to follow a
certain predefined distribution. While this is very useful for
the purposes of synthesis, this does not in itself improve the
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interpretability of the latent space components, which can
mix several characteristics.

Many previous works exist on the specific task of dis-
entangling latent representations. Rifai et al [36] employ
contractive autoencoders to learn locally invariant features
at multiple resolutions, which is then given to a “contrac-
tive discriminant analysis” block for the purpose of emotion
prediction. Reed et al [35] propose a Boltzmann machine
to discover underlying variation in data with two strategies.
Firstly, they include the data labels in their cost function for
the Boltzmann machine, and secondly, they “clamp” (im-
pose) a code for two data points which are known to share
some characteristics. The work of Cheung et al [5], Kumar
et al [24] and Lezama [26] are the most similar previous
works to ours, in certain aspects. In particular, these works
employ some form of covariance loss. Cheung et al use a
semi-supervised autoencoder to output an image and at the
same time predict a class. Kumar et al propose the covariance
loss for the latent space to decorrelate its dimensions, leading
to match the moments of the distributions of data and the
latent space. Lezama et al use a loss on the Jacobian of an au-
toencoder output with respect to the latent code, to encourage
the code to follow the desired class, as well as a prediction
loss using binary classes. Lample et al [25] proposed Fader
networks, which try to isolate a single image characteristic
in a single latent component, with an innovative use of a
discriminator network. This produces a network where the
characteristic can be effectively controlled with a slider. In
the case of the work of β-VAEB [13], β-VAEH [2], Factor-
VAE [20] and β-TCVAE [3], propose frameworks or regular-
isation to disentangle VAE by modelling and weighting the
Kullback-Leibler divergence term to encourage factorised
representations in the latent space.

3 Principal Component Analysis Autoencoder

Before describing the PCA-AE, we first set out some notation.
Let X be the data space, in general, we will consider images
x of size m = s× s, so X = Rm. We note with Z = Rn the
latent space, n being the dimensionality of this latent space.
We denote the encoder with E : X → Z , and the decoder
with D : Z → X . Let z ∈ Z be a latent vector (or code). We
denote with zi the ith component of z. We will refer to this
as a latent component. Let y = D ◦ E(x) be the output of
the autoencoder. The standard autoencoder loss, also called
the reconstruction loss, is given by (for each sample x):

‖x−D ◦ E(x)‖22. (1)

Now, we describe the core idea and algorithm of PCA-
AE. As we explained above, we wish to organise the latent
space according to two principles:

– Decreasing order of “importance”

– Statistical independence of the components

If we consider importance to mean variability, then in the case
where the data is drawn from a multi-dimensional Gaussian
distribution, the PCA achieves these two goals. Therefore, we
shall start by describing an algorithm to perform the PCA as
an illustrative example, which we will then translate directly
into an algorithm to train our PCA-AE.

Suppose that a random variable x is drawn from a Gaus-
sian distribution with 0 mean and a covariance matrix A.
For the sake of simplicity, we suppose that A is positive
definite with no repeated eigenvalues. We call these eigen-
values γ1 > · · · > γn, paired with (normed) eigenvectors
v1, . . . , vn. Performing the PCA is equivalent to discovering
the vectors v and the eigenvalues γ (since A =

∑
γiv

T
i vi).

A possible algorithm to find the γ’s and v’s in decreasing
order of importance is to find a unit vector v such that:

E
[
‖x− 〈x|v〉 v‖22

]
(2)

is minimal. The solution v to this optimisation problem will
be v1 (up to a sign), and the associated eigenvalue can be
evaluated as:

γ1 = E
[
〈x|v〉2

]
(3)

Once v1 is found, we can look for a unit vector v such that

E
[
‖x− 〈x|v1〉 v1 − 〈x|v〉 v‖22

]
(4)

is minimal and this will be the vector v2. This process can
be repeated as long as desired, until reaching dimension n
at most, keeping in mind that smaller eigenvalues will be
affected by noise and accumulated numerical errors.

With this in mind, translating this algorithm into a PCA-
AE training algorithm is straightforward. If we defineE1(x) =

〈x|v1〉 as an encoder and D1(t) = tv1 as a decoder, then the
first step of the PCA would correspond to finding the param-
eter v1 such that

E
[
‖x−D1 ◦ E1(x)‖22

]
(5)

is minimal. If we consider a database composed of N vectors
xi, this translates into the context of machine learning to
minimising the following loss

N∑
i=1

‖xi −D1 ◦ E1(xi)‖22 (6)

Finally, the full generalisation of importance is achieved by
letting the the encoder E1 and the decoder D1 have a more
general and powerful architecture (ie. a neural network) than
a simple projection of x onto a direction v1. If we denote
with θ1 the set of parameters of the encoder and decoder, our
loss will become

L(θ1) =
N∑
i=1

‖xi −D1 ◦ E1(xi)‖22 (7)
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Algorithm 1 PCA-AE algorithm. Note, we have described the algorithm with a simple gradient descent, but any descent-based
optimisation can be used (Adam, Adagrad etc)
Require:
Regularisation coefficient λcov > 0. Maximum latent space size n. Initialise the parameters θi of the encoders Ei and the decoders Di.

while θ1 not converged do
Sample {x1, . . . , xN} from the training set.
Update E1 and D1 by minimising:

L(θ1) =
1

mN

N∑
i=1

‖xi −D1 ◦ E1(xi)‖22

for k = 2, . . . , n do
while θk not converged do

Sample {x1, . . . , xN} from the training set.
Update Ei and Di by minimising:

L(θk) =
1

N

N∑
i=1

(
1

m
‖xi −Dk ◦ (E1(xi), . . . , Ek(xi))‖22

)
+ λcovLcov(θk)

In the case of PCA, the “encoders” 〈x|v1〉, 〈x|v2〉 , . . .
are fixed when discovering the next eigenvector vk+1. Fol-
lowing this idea, we freeze the encoders E1, . . . , Ek, each of
which providing one of the dimensions of the latent space,
before training the encoder Ek+1.

To summarise, in the case of PCA-AE, the notion of
“importance” corresponds to the `2 reconstruction error. We
impose decreasing importance in a manner similar to PCA
by training and then freezing the encoders (which represent
the vectors v of the PCA) progressively until reaching the
chosen latent space size.

Now we need to address the second requirement of our
PCA-AE: how to impose statistical independence on the la-
tent codes. This is done in the following manner: we require
that the covariance matrix of the vector z to be as close
as possible to the identity matrix. In other words, we min-
imise the correlations between the latent components.

In order to reduce the computational burden we can, with-
out loss of generality, impose a batch normalisation [17]
(BN) layer to the latent vector z, but with the training pa-
rameters α and β fixed, such that the mean of each latent
component zi of z is 0 mean and the variance is 1.

The magnitude of the off-diagonal entries of the covari-
ance matrix can then be simply expressed as

∑
i 6=j (E(zizj))

2

where i and j range through the dimensions of z. We recall
that we are adding a new dimension to our latent space while
freezing the first dimensions. Therefore, imposing the inde-
pendence between the components of the vector z boils down
to minimising:∑
i<k

(E(zizk))2 (8)

where k is the current dimension being added. This, in turn,
can be translated into a loss term, by replacing the expectation

by a mean over the whole dataset, giving our final covariance
loss:

Lcov(θk) =

k−1∑
j=1

(
N∑
i=1

Ej(xi)Ek(xi)

)2

(9)

In practice the sum over the dataset is replaced by a sum
over the mini-batch, similarly to what is done in Batch Nor-
malisation.

This gives the following loss to minimise at step k:

L(θk) =
N∑

i=1

(
‖xi −Dk ◦ (E1(xi), . . . , Ek(xi))‖22

)
+

λcovLcov(θk),

(10)

where the parameters θk are the parameters of the new 1-
dimensional encoderEk and the completely new decoderDk,
and where λcov is a weighting factor. We chose to discard
the previous decoders because we wish to give the highest
degree of freedom possible to the reconstruction part, while
we keep the first computed dimensions of our latent space,
since they were determined as being the most effective to
reconstruct the input.

The pseudo-code for our algorithm can be seen in Al-
gorithm 1. Note that we use the mean squared error (MSE),
since it is the default setting for neural network packages (we
used Pytorch), so we have added the normalisation factor
m. In this pseudo-code, we do not specify the minimisation
scheme, but any gradient-descent based algorithm can be
used (we used the Adam optimiser [22]).

4 PCA-AE for GAN

The objective of the generator of GANs is to find a mapping
from the latent distribution pz into the image data distribution
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η1 − 1 η1 − 0.75 η1 − 0.5 η1 − 0.25 η1 η1 + 0.25 η1 + 0.5 η1 + 0.75 η1 + 1

η2 − 1 η2 − 0.75 η2 − 0.5 η2 − 0.25 η2 η2 + 0.25 η2 + 0.5 η2 + 0.75 η2 + 1

η3 − 1 η3 − 0.75 η3 − 0.5 η3 − 0.25 η3 η3 + 0.25 η3 + 0.5 η3 + 0.75 η3 + 1

η4 − 1 η4 − 0.75 η4 − 0.5 η4 − 0.25 η4 η4 + 0.25 η4 + 0.5 η4 + 0.75 η4 + 1

η5 − 1 η5 − 0.75 η5 − 0.5 η5 − 0.25 η5 η5 + 0.25 η5 + 0.5 η5 + 0.75 η5 + 1

η6 − 1 η6 − 0.75 η6 − 0.5 η6 − 0.25 η6 η6 + 0.25 η6 + 0.5 η6 + 0.75 η6 + 1

... ... ... ... ... ... ... ... ...
η511 − 1 η511 − 0.75 η511 − 0.5 η511 − 0.25 η511 η511 + 0.25 η511 + 0.5 η511 + 0.75 η511 + 1

η512 − 1 η512 − 0.75 η512 − 0.5 η512 − 0.25 η512 η512 + 0.25 η512 + 0.5 η512 + 0.75 η512 + 1

Fig. 3: Interpolation in the original latent space of PGAN (with 512 components). From the initial code η =

[η1, η2, η3, ..., η512] as shown in the middle column, we adjust the nth component by adding a constant shown above
the image, other codes are not shown that are fixed. We can see that it is difficult to interpret this latent space. Several attributes
such as hair colour or head pose are varied within the same component of the latent space of PGAN.

pdata. Ideally, we would like each latent component to corre-
spond to one factor of variation in the data. In practice, the
latent representations of GANs are entangled. In Figure 3, we
show several examples of interpolation in the original latent
space of Progressive Growing of GANs (PGAN) [18], which
is a GAN-based approach for generating high quality images,
before applying our PCA-AE. We visualise images generated
by PGAN while varying one latent component at a time. We
can see that it is difficult to interpret this latent space. For
example, we can see a blond woman at both the first and the
last components of the latent space, and the woman in the
generated images changes the pose of her head when either

the second and last components are varied. It is clear that
this latent space is heavily entangled, with several charac-
teristics modified by changing one component. This makes
it difficult to understand, navigate and manipulate the latent
space. Addressing these problems is precisely the goal of the
present work. In order to organise and disentangle this latent
representation, we apply the PCA-AE to the latent space
of a pre-trained GAN. Indeed, we do not intend to create a
new GAN architecture which can compete with state-of-the-
art generators such as PGAN, rather we propose to use our
PCA-AE to better understand and organise the latent space
of a high quality, pre-trained GAN. In other words, since the
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(a) VAE

(b) β-VAE

(c) β-TCVAE

(d) PCA-AE

Fig. 4: Interpolation in latent space w.r.t image reconstruction, ellipses with rotation (three parameters) of VAE, β-VAE,
β-TCVAE and our proposed method. The PCA-AE can create a meaningful latent space where different geometric attributes
are separated (i.e. the 1st component corresponds to the area and the next two parameters are the ratios of the ellipses’ axes in
different directions).
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z1 = −8 z1 = −6 z1 = −4 z1 = −2 z1 = 0 z1 = 2 z1 = 4 z1 = 6 z1 = 8

z2 = −8 z2 = −6 z2 = −4 z2 = −2 z2 = 0 z2 = 2 z2 = 4 z2 = 6 z2 = 8

z3 = −8 z3 = −6 z3 = −4 z3 = −2 z3 = 0 z3 = 2 z3 = 4 z3 = 6 z3 = 8

z4 = −8 z4 = −6 z4 = −4 z4 = −2 z4 = 0 z4 = 2 z4 = 4 z4 = 6 z4 = 8

z5 = −8 z5 = −6 z5 = −4 z5 = −2 z5 = 0 z5 = 2 z5 = 4 z5 = 6 z5 = 8

Fig. 5: Results of navigation in the latent space of the PCA-AE for a pre-trained PGAN. We trained this PCA-AE around the
code η corresponding to the middle column. On each row, we have modified a single component (the other components are set
to 0). We see that the component z1 of the latent space z of the PCA-AE represents hair colour, while z2 corresponds head
poses, and in this case z3 seems to correspond to gender and z5 to the mouth posture.

problem of simultaneously learning and organising the latent
space is too difficult, we propose to learn first and organise
afterwards. The learning part is done during the training of
the high-quality GAN. This difficulty may arise from the
fact that more complex data, such as faces, may need larger
increments of latent space size to achieve good results. In
this case, it is easier to rely on the pre-trained GAN.

Let us highlight that the strategy we propose can be easily
adapted to analyse any GAN, and we have chosen PGAN in
the existing work due to its impressive performances. The
input sample to the PGAN lives in R512 (the PGAN latent
space), or more precisely is a random sample from the nor-
mal Gaussian distribution in dimension 512. Since the input
is normalised in the first operation of PGAN’s generator dur-
ing testing, we can assume that the latent codes are drawn
uniformly from a sphere, which is not convex. To make the
job of the autoencoder easier, and since the latent space is not
convex, we will apply our tool locally around a given point
from the latent space. More precisely, let η be a fixed point of
this sphere (see Figure 2). Let G be the generator of PGAN
and η be a small perturbation vector (drawn randomly). Our
goal is to design a low dimensional autoencoder E,D that
minimises the following loss :

L(θ) =‖G(η + η)−G(D ◦ E(η) + η)‖22
+ λcovLcov(θ)

(11)

where θ are the parameters of the PCA-AE.

In other words, the autoencoder’s goal is to produce a
vector D ◦ E(η) + η which leads to an image that is as
close as possible to G(η + η). The vector D ◦ E(η) will
have passed through the low dimensional internal represen-
tation of the autoencoder, which is well-organised, where
dim(E(η)) < dim(η). The covariance loss Lcov in Equa-
tion (11) is defined as in (9) and will encourage disentan-
glement of the latent space of the pair E,D. We apply the
same training strategy that consists in iteratively increasing
the number of latent components, while freezing the first
components. This training process is illustrated in Figure 2.

5 Results

In this section, we present the results of our PCA-AE, and
we compare with those of VAE [22], β-VAEB [13], β-VAEH
[2], FactorVAE [20] and β-TCVAE [3] 1. Note that other
approaches to disentangling the latent space use data labels,
which we wish to avoid here : our goal is to discover the
variability of the data in an unsupervised fashion.

5.1 Disentanglement evaluation

We propose to use the absolute Pearson correlation coeffi-
cient (PCC) as a disentanglement evaluation to verify the

1 https://github.com/YannDubs/disentangling-vae
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(a) Hair colour controlling

(b) Head pose controlling
Fig. 6: Application of PCA-AE for PGAN: Transferring the learning attributes from the training code (the first row) to other
testing codes (the last rows) for (a) hair colour and (b) head pose. The first row shows that we change the hair colour of the
generated image from PGAN with respect to a training initial code η by adjusting the first component of the latent space of
PCA-AE. We can see that the hair colours and the head pose of generated images from other testing initial codes are also
changed as those of the training code.

relationship between the attributes of image data and the
components of the trained latent space. Given a pair of ran-
dom variables (Attr(x), zi) where Attr(x) is the attribute
of image x and zi denotes the ith component of the latent
space z, the absolute PCC ρ(Attr(x), zi) is computed as:

ρ(Attr(x), zi) =

∣∣∣∣cov(Attr(x), zi)σAttr(x)σzi

∣∣∣∣
=

∣∣∣∣E[(Attr(x)− µAttr(x))(zi − µzi)]σAttr(x)σzi

∣∣∣∣
(12)

where σAttr(x) and σzi denote the standard deviation of
Attr(x) and zi, respectively. µAttr(x) and µzi are the mean
of Attr(x) and zi, respectively. The absolute PCC ranges
from 0 to 1.

5.2 Experimental setup and results on synthetic data

In order to find out whether our PCA-AE is able to capture
meaningful components which correspond to the parameters
of visual objects, we have first tested our algorithm on syn-
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(a) Generated images from StyleGAN.The first row displays several source images, which impose the content of the output images. This content is
then mapped to the style of the left-bottom image. The output images are all those in the second row, starting from the second column.

w1: w2:

w3: w4:

w5: w6:

w7: w8:

w9: w10:

w11: w12:

w13: w14:

w15: w16:

(b) We show an example of the interpolation in the latent spaceW towards 16 dimensions of StyleGAN. Note that we use the model of resolution
512× 512. Each row corresponds to a dimension wi where 1 ≤ i ≤ 16. The first column of a row is the original generated image from an initial
point in the latent spaceW . The other columns show the images that are generated by adding perturbations to the initial point towards the direction
wi.

Fig. 7: Results of StyleGAN.

thetic data of grayscale images of geometric shapes which are
centred in the image, with a single shape per image. We have
created images of ellipses in the case of three parameters: two
axes, and rotation. The two ellipse axes a and b are sampled
from a uniform distribution on the interval (0, m2 ) (where
m×m denotes the size of image), and the rotation angle Θ
from a uniform distribution on the interval (0, π2 ). In these
experiments, we set n (maximum autoencoder dimension) to
3 (the number of parameters used to create the dataset). A

drawback of using data with binary images of shapes is that
we have a limited number of centred parametric shapes that
we can create, even though we sample the parameters from a
continuous space. To solve this problem, we blur the binary
shapes slightly with a Gaussian filter with σ = 0.8 pixels,
allowing us to create as many images as we wish.

Figure 4 shows decoded images of interpolated points in
the latent space, in the case of ellipses. Table 1 shows the
numeric evaluation based on the absolute PCC between the
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PCA-AE with respect to
three considered attributes

A R1 R2
z1 0.99 0.15 0.16
z2 0.00 0.06 0.61
z3 0.00 0.72 0.06

Area of ellipses (A)
AE VAE β-VAEB FactorVAE β-TCVAE PCA-AE PCA-AE

(λcov = 0)
z1 0.52 0.00 0.15 0.01 0.10 0.99 0.99
z2 0.00 0.33 0.90 0.07 0.14 0.01 0.00
z3 0.64 0.83 0.06 0.89 0.86 0.55 0.00

Table 1: Evaluation of the absolute PCC between the attributes of ellipses with respect to three components (z1, z2 and z3) of
the trained latent space. We consider three attributes: the area (A), the ratio of two diameters towards vertical and horizontal
directions (R1), the ratio of two diameters towards diagonal directions (R2). In the left table, bold font denotes the largest
value among the components. In the right table, the strongest correlation (the PCA-AE’s) is in bold font. We can see that each
component of PCA-AE is strongly correlated with only one ellipse attribute.

attributes of ellipses with respect to three components of the
trained latent space. We observe that the latent space of our
PCA-AE corresponds to three principal attributes of ellipses
: area (A), the ratio of two diameters towards vertical and
horizontal directions (R1), the ratio of two diameters towards
diagonal directions (R2). The compared methods also create
a meaningful latent space whereas AE and VAE learn a latent
space where the intrinsic parameters of the ellipses are mixed
up. While these are not the parameters with which we created
the images (indeed, the autoencoder has absolutely no way
of knowing what representation to choose, and we cannot
impose one in an unsupervised setting), they are indeed in-
dependent; for a given area, the ratio between the axes is
an independent parameter, and vice versa. This gives us a
way to interpolate in the latent space in a meaningful manner.
These independent parameters are sufficient to describe the
ellipse, and each axis is hierarchically more interpretable and
navigable than in the case of other methods.

Table 1 also shows an ablation study which compares the
PCA-AE with the baselines such as a standard AE and our
PCA-AE with no covariance loss (i.e. λcov = 0). We can
see that more than one component of the latent space of AE
the PCA-AE with no covariance loss controls the area of the
ellipses. In the case of the PCA-AE with no covariance loss,
the first and the third component of its latent space correspond
to the area attribute simultaneously. This confirms the need
of the proposed covariance loss.

5.3 Experimental setup and results of the PCA-AE applied
to the latent space of PGAN

Note that in Figure 9, we also display the results of our
PCA-AE directly to the Celeba data. This gives very blurry
results (since the task is very difficult), similar to the results
of β-VAE [13] (Figure 4 of their paper), which lead us to
our approach to using the PCA-AE applied to pretrained
GANs. Therefore, to show the use of our PCA-AE on more
high-level data, we take a pre-trained model of PGAN [18] 2

2 Pytorch GAN zoo: https://github.com/
facebookresearch/pytorch_GAN_zoo

trained with the CelebA dataset [27]. Note that the pre-trained
generator is fixed during the training of our PCA-AE. The
latent space of PGAN is entangled (we show experiments
to support this in Figure 3), so that a variation along one
parameter of this initial code in the latent space can modify
several characteristics of the generated images. The latent
space size of this pre-trained network is 512. An initial code
η , from which the network generates a photo-realistic image,
is chosen. In order to create the set of random perturbations,
we sample from a multivariate Gaussian distribution :

η ∼ N (0, σ2III) (13)

where III is the identity matrix.
We now show our results of PCA-AE for organising

the latent space of the pre-trained PGAN [18]. We show an
example of the navigation of the latent space of the PGAN in
Figure 5. This is achieved by training our PCA-AE around
the code generating the image at the middle of the three grids.
We can see that for this example, the first component (z1)
corresponds to the hair colour from black to blond, the second
one (z2) controls the head pose and the third parameter (z3)
changes the gender.

In order to better visualise the results of the proposed
method, we adjust two components which correspond specifi-
cally to hair colour and head poses of generated images from
the training initial code as shown in the first row of each sub
figure of Figure 6. Then, we apply the trained model to other
initial codes of the latent space of PGAN. We can see that the
attribute of generated images from testing initial code also
change as those of the training code (described as the last
rows).

We have also compared our method to the approach of
StyleGAN[19], using an available code 3. We denoteW as
the disentangled latent space of StyleGAN. The authors of
StyleGAN propose a multi-scale architecture, which, they
posit, encourages better separation of attributes in the latent
space. They propose a style transfer algorithm that basically

3 StyleGAN Code: https://github.com/rosinality/
style-based-gan-pytorch

https://github.com/facebookresearch/pytorch_GAN_zoo
https://github.com/facebookresearch/pytorch_GAN_zoo
https://github.com/rosinality/style-based-gan-pytorch
https://github.com/rosinality/style-based-gan-pytorch
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Co. AE β-TCVAE FactorVAE VAE PCA-AE
HC HP GE HC HP GE HC HP GE HC HP GE HC HP GE

z1 0.20 0.53 0.02 0.35 0.80 0.04 0.07 0.46 0.53 0.35 0.81 0.07 0.70 0.03 0.14
z2 0.36 0.21 0.04 0.05 0.26 0.25 0.04 0.17 0.03 0.05 0.24 0.24 0.07 0.80 0.13
z3 0.28 0.36 0.23 0.13 0.04 0.04 0.09 0.66 0.37 0.13 0.02 0.02 0.16 0.15 0.56
z4 0.20 0.19 0.58 0.53 0.19 0.53 0.70 0.11 0.14 0.59 0.23 0.57 0.03 0.24 0.05
z5 0.34 0.21 0.49 0.07 0.15 0.33 0.01 0.28 0.12 0.07 0.11 0.35 0.05 0.22 0.09

Table 2: Quantitative evaluation of the correlation of latent components with high-level attributes. We have calculated the PCC
between the latent components of AE, VAE-based methods and PCA-AE, and three attributes: head pose (HP), hair colour
(HC) and gender (GE). We can see that the components of PCA-AE are correlated with one dominant attribute of the semantic
feature.

mixes two latent codes. The result of this approach can be
seen in Figure 7a. However, this does not provide a way to
navigate in the latent space. To illustrate this, we have added
a perturbation in one of the scales in the latent spaceW of
StyleGAN, starting from a generated latent point. The pertur-
bation is drawn from a normal distribution. In this manner,
we can see if the attributes are effectively disentangled. The
results of this experiment can be seen in Figure 7b. While
some scales correspond to attributes such as colours (w16),
artefacts appear quickly, and other high-level attributes do
not appear naturally. Our method, on the other hand, aims
to impose each component of the sub-latent space which
corresponds to one attribute of generated images.

In order to evaluate the disentanglement of the latent
space of other methods and ours, we use pre-trained clas-
sifiers to determine an attribute of generated images. We
choose three main attributes which the classifiers [15] can
recognise well, corresponding to the head pose (i.e. turning
left to right), hair colour (i.e. black, brunette and blond) and
gender. To demonstrate the performance of our algorithm, we
have trained the standard AE, the aforementioned VAE-based
methods and our proposed PCA-AE, using the procedure de-
scribed in Section 4. Table 2 shows the numeric evaluation
of the methods and Figure 8 shows the generated images of
the generator of PGAN from the latent spaces of the other
approaches and of our proposed PCA-AE. The other methods
construct a latent space where the attributes of the generated
images are correlated with more than one component. For
example, we can see that the latent space of AE mixes up the
attributes. In addition, it can be seen that the fourth parameter
of β-TCVAE controls the hair color and the gender of gener-
ated images simultaneously. Respectively, the first parameter
of FactorVAE changes the head pose. Then, the third one
of this model still corresponds to the head pose. Indeed, the
absolute PCC of this model for the head pose is correlated
to the first and third components of the latent space. Our
proposed PCA-AE yields a disentangled latent space which
is organised in a hierarchical fashion: the first component
corresponds to the colour hair of the generated images, the
second one represents head poses (e.g. turning left and right),
the third parameter corresponds to hair thickness and the

last one is mildly correlated to skin tone. Our PCA-AE is
able to efficiently separate the different facial attributes and
rank them according to their importance in the reconstruc-
tion. Thus, the latent space created by our method is easier
to interpret and navigate than the original GAN latent space.

We highlight that this procedure can be applied to any
pre-trained model, so that the disentangling and organisa-
tion of the latent space can be carried out after the initial,
computationally expensive, training of a GAN.

6 Discussion

In this paper, we have presented a novel autoencoder, the
PCA-AE, where the latent space is organised according to
decreasing importance, and where these components are sta-
tistically independent. The PCA-AE is trained with latent
spaces of increasing sizes to ensure that we capture the prop-
erties of the data in decreasing order of importance, in an
unsupervised manner. Furthermore, we have imposed statisti-
cal independence of the latent components by employing a
covariance loss term, which we add to the standard autoen-
coder cost, to encourage a disentangled latent space. We have
used synthetic data to illustrate that the PCA-AE learns a
latent space which is interpretable and which can be interpo-
lated in a meaningful manner with respect to the properties
inherent in the data. We have applied our autoencoder to
high quality face data, and have shown that this efficiently
disentangles the latent space of a powerful pre-trained GAN
by projecting it to another smaller, interpretable, latent space.
The resulting model can manipulate one facial attribute on
each component. Furthermore, the proposed method can be
applied to any pre-trained generative model, so that the ini-
tial time-consuming training of a powerful model and the
organisation of its latent space can be carried out separately.
We hope that this work will contribute to the interpretation
and manipulation of latent spaces of complex data.

One limitation of our algorithm is that it is reliant on the
hypothesis that the attributes which we wish to disentangle
are distributed independently in the dataset. Indeed, if we
have two attributes such as age and grey hair, and these are



PCA-AE: Principal Component Analysis Autoencoder for organising the latent space of generative networks 13

naturally correlated in the data, it will be difficult for our al-
gorithm to disentangle them, since it could decide to put both
in one latent element. A possibility to address this problem is
to take inspiration from recent multi-scale architectures [19],
which can separate coarse from fine-grained details.

Another drawback of this approach is that we increase the
latent space size by one at each step. This can be problematic
in some cases, where the autoencoder needs a certain amount
of freedom to learn a useful representation. Therefore, we
could consider increasing the latent space by small packets
of codes, to give it the freedom it needs. It is clear that the
use of the `2 norm is not optimal to define the importance of
a latent component. Indeed, in the case of the CelebA dataset
as shown in Figure 9, applying the PCA-AE directly to the
image data leads to very blurry results. Replacing the `2 norm
reconstruction loss by an alternative, perceptual, metric could
provide better results. Finally, the application of a PCA-AE
trained in one region of a GAN latent space is not necessarily
valid for another region. A future challenge will be to create a
PCA-AE which is applicable to the whole space of the GAN.
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(a) AE

(b) β-VAEB

(c) FactorVAE

(d) PCA-AE

Fig. 8: Interpolation in latent space of five components of AE, β-VAEB , FactorVAE and the PCA-AE for the pre-trained
PGAN [18]. Two components are adjusted along two axes, the others are set to zeros. We can see that VAE, β-VAEB mixes
hair colour along two components z1 and z4, z2 and z5 respectively. Head pose corresponds to the components z1 and z4 of
FactorVAE. Our method, on the contrary, shows that each component of our proposed latent space represents one attribute of
the generated images. For example, z1, z2, z3 correspond to hair colours, head poses and gender.
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z1:

z2:

z3:

z4:

z5:

z6:

z7:

z8:

z9:

z10:

Fig. 9: Interpolation in latent space of ten components of a PCA-AE, applied directly to the CelebA dataset with the size image
of 64× 64. The code shown in the left side is used to adjusted, other codes are set to zeros. The middle column corresponding
the images with the codes of all zeros. This leads to blurry results, which is why we chose to apply our PCA-AE a posteriori
to a pre-trained GAN.
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