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Kernel-based quadrature applied to offshore wind turbine damage estimation

HAL is

Industrial context & Problem statement

• EDF Renewables operates ∼10 000 MW of wind turbine (WT) worldwide • New technologies (e.g., offshore floating WT), wind farms reaching end-of-life → Need probabilistic tools to optimize safety margins and asset management Chained simulation model Expensive-to-evaluate deterministic computer model [START_REF] Capaldo | Design brief of HIPERWIND offshore wind turbine cases: bottom fixed 10MW and floating 15MW[END_REF] (distributed on a cluster):

g : R p × R q → R, (x, z) → g(x, z) (1) 
Fig. 1: Numerical simulation chain for WT damage assessment (simulates 10min)

Random inputs • X ∈ D X ⊂ R p : environmental random vector with its joint distribution f X (•)

• Z ∈ D Z ⊂ R q : system random vector with its joint distribution f Z (•)

• The random vectors are considered mutually independent

Uncertainty propagation

Two nested quantities of interest to estimate (see [START_REF] Müller | Application of a Monte Carlo procedure for probabilistic fatigue design of floating offshore wind turbines[END_REF]) Damage Equivalent Load (DEL): expected value of the damage over the environmental conditions (conditionally to a sample of system variables Z = z)

E[Y|Z = z] = E[g(X, Z)|Z = z] = D X g(x, z) f X (x) dx = ϕ(z) (2) 
Probability of threshold exceedance: for a given threshold

y th ∈ R p f = P (ϕ(Z) > y th ) = D Z 1 {ϕ(z)>y th } f Z (z) dz (3) 
→ How to efficiently estimate the DEL?

Environmental measured data

SCADA data collected over a period of four years at the Teesside (UK) offshore wind farm Kernel-based probabilistic integration

1. Select integration nodes ⇒ E[g(X)] ≈ 1 n ∑ n i=1 g x (i)
Candidate set: S is a fairly dense finite subset of R d with size N ≫ n that emulates the target distribution (e.g., a large Sobol' sequence, available data as in Fig. 2) Kernel herding criterion [START_REF] Chen | Super-samples from kernel herding[END_REF][START_REF] Pronzato | Bayesian quadrature and energy minimization for space-filling design[END_REF]: at iteration n + 1, for a given design of experiments (DoE) X n = {x (1) , . . . , x (n) }, and a given kernel k

x (n+1) ∈ arg min x∈S   1 n n ∑ i=1 k(x, x (i) ) - 1 N N ∑ j=1 k(x, x ′(j) )   (4) 
2. Compute optimal weights for integration ⇒ E[g(X)] ≈ ∑ n i=1 w * i g x (i) Optimal weights for quadrature [START_REF] Briol | Probabilistic Integration: A Role in Statistical Computation?[END_REF]: for a given DoE X n and a given kernel

k w * = P(X n )K -1 n (5)
with potentials P(X n ) = k(x, x (1) ) f X (x) dx, . . . , k(x, x (n) ) f X (x) dx and variance-covariance matrix {K n } i,j = k(x (i) , x (j) ) → New Python package on pypi: otkerneldesign (using OpenTURNS [START_REF] Baudin | Title: Open TURNS: An industrial software for uncertainty quantification in simulation[END_REF])

Conclusions & Perspectives

• Combining kernel herding with optimal weights is an efficient integration method • This method is sensitive to the chosen kernel and its hyper-parameters • This method allows direct sampling from available empirical distribution • Active learning methods might be more efficient but are harder to distribute (HPC) → Determine influential system variables using advanced sensitivity analysis methods → Adapt kernel-based sampling methods to reliability analysis problems 

Numerical results: DEL estimation by kernel herding
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 2 Fig. 2: Teesside wind farm environmental data (in grey, N = 10 5 ) and a kernel herding sample (in blue, n = 520)
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 3 Fig.3: Kernel-based sampling on a bivariate random mixture (markers' sizes indexed to the optimal weights)
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 456 Fig. 4: Offshore wind turbine structure diagram