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ON THE EXPRESSIVE POWER OF QUANTIFIERS IN CONTINUOUS LOGIC

ITAÏ BEN YAACOV

ABSTRACT. In this short note we compare the expressive power of real-valued continuous logic (or just continuous logic,
in recent literature) with that of compact-valued continuous logic, proposed by Chang and Keisler. We conclude that
the two logics have the same expressive power, and moreover, that this remains true if we replace the plethora of
potential quantifiers of compact-valued logic with a single “primordial” one.

This note summarises remarks the author has made on various occasions, and to various people, regarding
the similarities and differences between two variants of “continuous logic” that exist in the literature, and how
to reconcile them: the one proposed by Chang and Keisler [CK66], which we shall call compact-valued logic, and
that proposed in [BU10], which we call here real-valued. Despite striking similarities, the latter was conceived
in ignorance of the former (at least as far as the author of the present note is concerned), essentially through
reverse-engineering the idea of compact type spaces with open continuous variable restriction maps between
them. Let us also refer to the True/False logic one learns in kindergarten as two-valued.

For most of this note we are going to consider “bare bones” versions of either logic, in a purely relational
language, without a distinguished symbol for equality or distance. The latter means that a structure may
contain two points that are formally distinct and yet indistinguishable by the logic, even with parameters. For
our purposes this will be of no importance whatsoever (see a further remark to this effect at the end). Relation
symbols applied to variable symbols (in the absence of function symbols) make atomic formulas, and these are
combined using continuous connectives and appropriate first order quantifiers to generate all the formulas of
the logic.

In compact-valued logic, the truth values of a formula ϕ belong to a fixed compact value space (this note
being written in France, compact spaces are Hausdorff). In particular, the logic associates to each relation
symbol P a compact value space X, and then the atomic formula P(x) is X-valued. If (ϕi : i < α) is a sequence
of, respectively, Xi-valued formulas, and θ : ∏ Xi → Y is continuous, then we view θ as a connective that
combines the given formulas into a Y-valued formula θ ◦ (ϕi : i < α).

In real-valued logic, formulas take values in compact intervals of the reals, and connectives are continuous
functions θ : Rα → R (necessarily bounded on each product of compact intervals). In some texts, one restricts
truth values to [0, 1], but the result is the same.

Remark. With these definitions, real-valued formulas are closed under limits of uniformly Cauchy sequences.
Indeed, for any such a sequence (ϕn) there exists a continuous θ : RN → R such that θ ◦ (ϕn) is the limit.
Moreover, θ can be chosen in a manner that depends only on the convergence rate of (ϕn), so, possibly passing
to a sub-sequence, a single such θ suffices (see the forced limit construction in [BU10]). By the Stone-Weierstraß
Theorem, closing under this special θ plus, say, constants, addition and multiplication, is equivalent to closing
under all possible continuous connectives.

Clearly, atomic real-valued formulas are also atomic compact-valued ones, and real-valued continuous con-
nectives, once restricted to an appropriate product of compact intervals, are also compact-valued ones.

In the opposite direction, consider a compact-valued language L. For each X-valued relation symbol P of L,
choose an embedding X ⊆ [0, 1]α, and let (Pi : i < α) be new [0, 1]-valued relation symbols of the same arity.
Let LR be the real-valued language consisting of all such symbols. An L-structure M will be tacitly identified
with an LR-structure MR defined so P(a) =

(

Pi(a) : i < α
)

∈ X ⊆ [0, 1]α.
Say that an X-valued L-formula ϕ(x) is coded in LR if for every continuous function θ : X → R, there exists an

LR-formula ϕθ(x) that agrees with θ ◦ ϕ on all L-structures. An equivalent condition is that the same hold for
a family Ξ of functions ξ : X → R that separates points in X. Indeed, under this assumption, the induced map
X → RΞ is continuous and injective, and therefore a topological embedding. By Tietze’s Extension theorem,
any continuous θ : X → R extends continuously to RΞ, and then ϕθ = θ ◦ (ϕξ : ξ ∈ Ξ) will do.

2020 Mathematics Subject Classification. 03C66.
Key words and phrases. Continuous logic, quantifier, Vietoris topology.
Author supported by ANR project AGRUME (ANR-17-CE40-0026).
The author wishes to thank Todor TSAKNOV for having pushed him into writing this note, as well as for some mushy chocolate.

1



2 ITAÏ BEN YAACOV

By construction, every atomic L-formula is coded in LR. By the same Tietze argument as above, any continu-
ous combination of coded formulas is again coded. It follows that every quantifier-free X-valued L-formula
is coded in LR. In other words, at the quantifier-free level, the expressive power of real-valued and compact-
valued logic is the same.

For real-valued logic we proposed sup and inf as quantifiers, which requires some justification. A first
argument is that, a priori, these may be presented as the real-valued analogues of the classical quantifiers ∀ and
∃. A second argument, a posteriori, is that these quantifiers “deliver the goods”, in the sense that real-valued
logic does behave as a generalisation of two-valued logic. In particular, when stated appropriately, Łoś’s
Theorem and the Compactness Theorem hold in real-valued logic, as do many other results. The discussion
which follows will provide, in a sense, a third argument, which may be qualified as ab initio: the choice of sup
and inf as quantifiers is correct because they have the same expressive power as the primordial quantifier, from
which any (admissible) quantifier may be constructed.

In a general compact-valued logic there are no obvious analogues for ∀ and ∃. Chang and Keisler proposed
that quantifiers should be specified at the same time as other symbols of the language. A compact-valued
quantifier Q, in this sense, is a function that takes a collection of truth values in some value space X (e.g., all
values of ϕ(a, b) in a structure M, as a varies over M) and returns a truth value in some value space Y (the
value of (Qx)ϕ(x, b) in M). Notice that Qx can only be applied to a formula ϕ(x, y) whose value space is X,
and then the value space of (Qx)ϕ(x, y) is Y. In order to be admissible as a quantifier, Q is also required to
be continuous in a sense that we shall make precise below. With such continuous quantifiers, compact-valued
logic is well-behaved (in particular, Łoś and Compactness hold).

Definition. Let X be a Hausdorff topological space, and let K(X) denote the space of all non-empty compact
subsets of X. For an open set U ⊆ X, let

O1
U =

{

K ∈ K(X) : K ⊆ U
}

, O2
U =

{

K ∈ K(X) : K ∩ U 6= ∅

}

.

We equip K(X) with the Vietoris Topology, namely the topology generated by all sets O1
U and O2

U, as U varies
over all open subsets of X.

A basic open set of the Vietoris topology is of the form O1
U ∩

⋂

i<n O2
Vi

. It is Hausdorff, and if X is compact,
then so is K(X). See also Kechris [Kec95, Chapter I.4.F], where K(X) also contains the isolated point ∅.

We can now state the continuity requirement for a compact-valued quantifier: it should be of the form
Q(A) = θQ(A), where θQ : K(X) → Y is continuous (and ∅ 6= A ⊆ X, so A ∈ K(X)).

Example. If I ⊆ R is a compact interval, then the upper bound function sup : K(I) → I is continuous in
the Vietoris topology, and similarly for inf. Therefore, the real-valued quantifiers are also compact-valued
quantifiers in the sense of Chang and Keisler.

Let us simplify things and define a variant of compact-valued logic in which the aforementioned functions
θQ : K(X) → Y are exactly all possible identity maps. Stated somewhat differently, we allow a unique quan-
tifier Q, which may be applied to any formula, with any value space. If ϕ(x, y) is an X-valued formula, then
(Qx)ϕ(x, y) is K(X)-valued. If M is a structure and b ∈ M, then, with truth values calculated in M:

(Qx)ϕ(x, b) =
{

ϕ(a, b) : a ∈ M
}

∈ K(X).

Let us call this Q the primordial quantifier. For any other continuous quantifier Q′, in the sense of Chang and
Kiesler, we may express (Q′x)ϕ(x, y) as a composition θQ′ ◦ (Qx)ϕ(x, y), now viewing θQ′ as a mere continuous
connective.

Let us compare he expressive power of quantifiers in real-valued and in compact-valued logic. We have
already observed that the real-valued quantifiers sup and inf can be expressed as a composition of continuous
functions with the primordial quantifier. For the opposite direction, let us observe first that K is a functor.
Indeed, if θ : X → Y is continuous, and K ⊆ X is compact, then θ(K) ⊆ Y is compact as well, defining a map
K(θ) : K(X) → K(Y). In addition, assuming that U ⊆ Y is open and V ⊆ X is its inverse image by θ, then
O1

V and O2
V are the inverse images by K(θ) of O1

U and O2
U, respectively, so K(θ) is continuous. In particular,

if θ : X → [0, 1] is continuous, then so is the function sup ◦K(θ) : K(X) → [0, 1], which we shall denote by
(sup θ). Assume that K, F ∈ K(X) are distinct, say x ∈ F r K. By Urysohn’s Lemma there exists a continuous
θ : X → [0, 1] that vanishes on K and equals one at x. Then (sup θ) vanishes at K and equals one at F. It follows
that the functions (sup θ) separate points in K(X).

Assume now that ϕ is an X-valued L-formula, in compact-valued logic, and that it is coded in LR. In other
word, for every continuous θ : X → [0, 1], the L-formula θ ◦ ϕ agrees with a real-valued LR-formula ϕθ. Then
(sup θ) ◦ (Qx)ϕ agrees with supx ϕθ , and since the functions (sup θ) separate points, (Qx)ϕ is also coded in
LR.
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We conclude that real-valued continuous logic, equipped with the two quantifiers sup and inf (or just with
one, from which the other can be recovered), has exactly the same expressive power as the compact-valued
logic of Chang and Keisler, even when restricting the latter to the primordial quantifier alone.

In order to make this a little more precise, define a compact-valued theory T to be (the set of consequences of)
a collection of closed conditions σ ∈ K, where σ is, say, an Xσ-valued sentence, and K ⊆ Xσ is closed. We could
define a real-valued theory in the same manner, but we usually prefer to restrict to sets of conditions of the
form σ = 0, which may then be identified with just a collection of sentences. With these definitions, the class
of LR-structures that code L-structures is elementary, defined by a (universal) base theory T0. General classes of
models of L-theories are in bijection with classes of models of LR-theories extending T0.

Remark. Two-valued logic usually assumes the presence of a distinguished relation symbol that interprets
equality. When constructing real-valued logic, one argues that the “natural” real-valued analogue of equality
is a symbol that interprets a (bounded, complete) distance function, with respect to which all other symbols
are uniformly continuous. In addition to being natural, this is extremely useful for applications, making real-
valued logic suitable for the model-theoretic treatment of metric structures. This potential was unfortunately
missed by Chang and Keisler, who followed the tradition of two-valued logic, assuming an equality symbol.

In order to designate a real-valued binary relation symbol d as a distance symbol, we need to add to our
base theory the universal axioms asserting that d interprets a pseudo-distance with respect to which every
other symbol respects a fixed uniform continuity modulus (restricting the value space of d to {0, 1} would
make it an equality symbol). If M is a model of these axioms then we may quotient out the zero-distance
relation, and complete it (as a structure), without affecting the interpretation of the formulas.

Remark. Once we have a distance (or equality) symbol, we may introduce function symbols (without one,
function symbols may misbehave). Adding a (uniformly continuous) function symbol f (x) is the same as
adding a relation symbol P(x, y) representing d

(

f (x), y
)

, together with ∀∃ axioms that assert that P is indeed
of that form.
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