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Abstract Navigation choices play an important role in modeling and fore-
casting traffic flows on road networks. We introduce a macroscopic differential
model coupling a conservation law with a Hamilton-Jacobi equation to respec-
tively model the nonlinear transportation process and the strategic choices of
users. Furthermore, the model is adapted to the multi-population case, where
every population differs in the level of traffic information about the system.
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1 Introduction

The use of on-line routing systems in vehicular motion has constantly grown in
popularity in the last years. At the same time, its effectiveness in solving mo-
bility problems in big cities is controversial [17,6,28]. In this work, we describe
a model for traffic flows on networks of roads where a nonlinear equation rep-
resenting the macroscopic density of vehicles is coupled to a Hamilton-Jacobi
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equation, modeling the strategic choices of agents. The model is a further de-
velopment of what have been introduced in [16], including the possibility of
real-time forecast of the future traffic states of the system.

Vehicle traffic models which, like ours, describe a flow of “intelligent” cars
on a road network are not largely treated in literature: in the survey [5], most
of the models describe a hierarchical control framework with the objective of
maximizing the overall network efficiency. Our approach is different: similarly
to [12], we account for “selfish” agents, which are interested in minimizing their
travel cost to destination accordingly to their knowledge of the environment.
This kind of interaction creates some non-trivial effects as a consequence of a
competitive equilibrium between the individuals.

In this article, after a detailed description of the model, we show some tests
illustrating its main features. In particular, we are able to correctly reproduce
the so-called “Braess’ paradox” [7,11], and to mitigate it with an efficient
routing through the network. The model is also used to show the interaction
between various populations of drivers, with a different level of information
about the traffic system. In this case, the proposed model, in addition to
replicate some more realistic scenarios, is able to simulate some non trivial
effects, as the beneficial impact of traffic information even on non-informed
users and the equilibrium between routing strategies among the users.

1.1 Coupling Fluxes with Strategies: Hughes’ Model for Pedestrians

The framework that we are going to present takes inspiration from a model
for pedestrian flows [20]. It consists in the following quasi-stationary system
of partial differential equations (PDEs)

∂tρ− divx

(
ρv(ρ)

∇u
|∇u|

)
= 0, x ∈ Ω, (1a)

|∇u| = 1

v(ρ)
, (1b)

where Ω is a bounded domain of Rn and ρ = ρ(x, t) is a density field repre-
senting the concentration of the pedestrian at (x, t). The flux term ρv(ρ) is
generally used to display the fundamental diagram of traffic flow (see [19], Sec-
tion 3.1.2), and it establishes a relation between the density of the crowd and
its local flux. A common choice for the speed function is v(ρ) = vmax(1 − ρ)
where the term vmax is the maximal speed at which an agent would travel in
ideal environmental conditions. We recall that to avoid meaningless behaviors,
ρ ∈ [0, 1[.

We give a brief modeling interpretation of (1): the density ρ moves in
direction −∇u (1a) which is the optimal control of the associated eikonal
equation (1b). If the cost 1/v(ρ) is bounded, i.e. if ρ[t] := ρ(·, t) < 1, the
solution of the eikonal equation at time t is the value function of a minimal
time problem and it is given by u[t](x) = inf{d[t](x, y) : y ∈ ∂Ω}, where the
distance function d[t] : Ω ×Ω → R+ is defined as follows:



Navigation system based routing strategies in traffic flows on networks 3

d[t](x, y) = inf

{∫ S

0

1

v(ρ[t](ξ(s)))
ds : S > 0, ξ ∈ ΓS

x,y

}
,

with ΓS
x,y the set of the absolute continuous curves in Ω such that ξ(0) = y,

ξ(S) = x and |ξ̇(s)| = 1 a.e. in [0, S].
The term 1/v(ρ) can be interpreted as the running cost associated to the

curve ξ(s) while the solution u of (1) selects the curves which minimize the
integral above. Hence, people are directed towards the boundary trying to
avoid crowded regions. It is important to remark as for system (1) (partial)
existence results available are in dimension one [1,3] or in presence of a non-
zero diffusion term [24].

The adaptation of the principles above to traffic flows must take into con-
sideration the differences between pedestrian and vehicle flows. First of all,
vehicles are constrained on road networks with an orientation and any possible
strategic choice may happen only at intersections. Secondly, the interactions
at such junction points lead us to several modeling choices that we are going
to discuss in the following.

2 Multi-class Traffic Flow Models on Networks

We recall the general framework describing the flow of different classes of users
on a road network. Each class density ρc, c = 1, . . . , Nc, is characterized by
specific, possibly time-dependent, route choices at junctions, depending on its
degree of information about the network, which will be detailed in Section 3.

Definition 2.1 An oriented network N = (I,J ) is a finite collection of points
J := {Jk}k∈K in R2 connected by continuous, non self-intersecting edges I :=
{Iℓ}ℓ∈L, where L := {1, . . . , N} and K := {1, . . . ,M}. Each edge Iℓ ∈ I is
parametrized by a smooth function πℓ : [0, Lℓ] → R2, Lℓ > 0, which implicitly
provides the orientation of the edge.
Given Jk ∈ J , Inc(Jk) := {i ∈ L : Jk ∈ Ii, πi(Li) = Jk} denotes the set
of edges arriving at Jk. Similarly, Out(Jk) := {j ∈ L : Jk ∈ Ij , πj(0) = Jk}
denotes the set of edges leaving Jk. We define a subset T ⊂ J of destination
vertexes. We require that T ≠ ∅, i.e. the set T contains at least one element.
For any function f : I → R, fℓ : [0, Lℓ] → R is the restriction of f to Iℓ, i.e.
f(x) = fℓ(y) for x ∈ Iℓ, y = π−1

ℓ (x).

Each class, density ρc : ]0, Lℓ[×[0, T ] → [0, 1] evolves on each road Iℓ ac-
cording to the mass conservation equation

∂tρ
c
ℓ + ∂x (ρ

c
ℓvℓ(ρℓ)) = 0, t ≥ 0, x ∈ ]0, Lℓ[, (2)

where ρℓ(x, t) :=
∑Nc

c=1 ρ
c
ℓ(x, t) is the total traffic density on the road Iℓ. We

notice that, summing up the equations (2) for c = 1, . . . , Nc, we obtain the
classical LWR model

∂tρℓ + ∂x (ρℓvℓ(ρℓ)) = 0, t ≥ 0, x ∈ ]0, Lℓ[, (3)
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ensuring that the total number of vehicles is also conserved.
In (2) and (3), the speed function vℓ : [0, 1] → [0, Vℓ] is a non-increasing

function such that vℓ(0) = Vℓ and vℓ(1) = 0, where, without loss of generality,
we have normalized to 1 the maximal traffic density on each road. Moreover, we
assume that there exists a unique point ρ̂ℓ ∈ ]0, 1[ such that the flux function
ρ 7→ ρvℓ(ρ) is increasing for ρ ∈ [0, ρ̂ℓ[ and decreasing for ρ ∈ ]ρ̂ℓ, 1]. We set
γmax
ℓ := ρ̂ℓvℓ(ρ̂ℓ) = maxρ∈Iℓ ρvℓ(ρ) the maximal flux allowed on the road Iℓ.
Solutions of (2) are intended in the following weak sense:

Definition 2.2 A function ρℓ = (ρ1ℓ , . . . , ρ
Nc

ℓ ) ∈ C
(
[0,+∞[;L1

loc

(
]0, Lℓ[; [0, 1]

Nc
))

is an entropy-admissible solution to (2) if for every φ ∈ C1
c

(
]0,+∞[× ]0, Lℓ[;RNc

)
it holds ∫ +∞

0

∫ Lℓ

0

(ρℓ∂tφ+ ρℓvℓ(ρℓ)∂xφ) dxdt = 0,

and for every κ ∈ R end every ψ ∈ C1
c (]0,+∞[× ]0, Lℓ[;R+) it holds∫ +∞

0

∫ Lℓ

0

(|ρℓ − κ|∂tψ + sgn(ρℓ − κ) (ρℓvℓ(ρℓ)− κvℓ(κ)) ∂xψ) dxdt ≥ 0.

Moreover, given any junction Jk ∈ J , we have the following

Definition 2.3 A collection of functions ρℓ ∈ C
(
[0,+∞[;L1

loc

(
]0, Lℓ[; [0, 1]

Nc
))
,

ℓ ∈ Inc(Jk) ∪Out(Jk), is a weak solution at Jk if

1. for every ℓ ∈ Inc(Jk)∪Out(Jk), ρℓ is an entropy admissible solution to (2);
2. for every ℓ ∈ Inc(Jk) ∪ Out(Jk) and a.e. t > 0, the function ρℓ(t, ·) has

bounded total variation;
3. for a.e. t > 0 it holds∑

ℓ∈Inc(Jk)

ρcℓ(t, 0
−)vℓ(ρℓ(t, 0

−)) =
∑

ℓ∈Out(Jk)

ρcℓ(t, 0
+)vℓ(ρℓ(t, 0

+)),

for c = 1, . . . , Nc, where the existence of the traces at Jk is guaranteed by
2.

2.1 Junction Conditions

Let us now focus on the dynamics at junctions. In this section, we describe
what happens at a generic junction Jk: let us denote by Ii, i = 1, . . . , n,
the incoming roads and by Ij , j = n + 1, . . . , n +m, the outgoing ones. The
Riemann problem the junction J is a Cauchy problem with constant initial
data on each incoming and outgoing road:{

∂tρℓ + ∂x (ρℓvℓ(ρℓ)) = 0,

ρℓ(0, ·) = ρ0,ℓ ∈ [0, 1],
ℓ ∈ {1, . . . , n+m} .
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Given any distribution matrix belonging to the set

A :=

A = {aji} i=1,...,n
j=n+1,...,n+m

: 0 ≤ aji ≤ 1 ∀i, j,
n+m∑
j=n+1

aji = 1 ∀i

 ,

(4)
we define a generic Riemann solver at J as follows.

Definition 2.4 A Riemann solver RSA is a function

RSA : [0, 1]n+m −→
n+m∏
ℓ=1

[0, γmax
ℓ ]

(ρ1, . . . , ρn+m) 7−→ (γ̄1, . . . , γ̄n+m)

where (γ̄1, . . . , γ̄n+m) := (ρ̄1v1(ρ̄1), . . . , ρ̄n+mvn+m(ρ̄n+m)) and such that

1. (γ̄n+1, . . . , γ̄n+m)
T
= A · (γ̄1, . . . , γ̄n)T ;

2. for every i = 1, . . . , n, the classical Riemann problem
∂tρ+ ∂x (ρvi(ρ)) = 0, t > 0, x ∈ R,

ρ(0, ·) =
{
ρ0,i x < 0,

ρ̄i x > 0,

is solved with waves with negative speed;
3. for every j = n+ 1, . . . , n+m, the classical Riemann problem

∂tρ+ ∂x (ρvj(ρ)) = 0, t > 0, x ∈ R,

ρ(0, ·) =
{
ρ̄j x < 0,

ρ0,j x > 0,

is solved with waves with positive speed.

Moreover, we require that RSA satisfy the consistency condition

RSA(ρ̄1, . . . , ρ̄n+m) = (γ̄1, . . . , γ̄n+m).

Remark 2.1 Condition 1 together with the properties (4) of the distribution
matrix A ensure the mass conservation through the junction

n∑
i=1

γ̄i =

n+m∑
j=n+1

γ̄j .

We refer to the monograph [18] for further details on Riemann solvers at
junctions. In the present work, we will use the Priority Riemann Solver intro-
duced in [13], which can handle an arbitrary number of incoming and outgoing
roads, accounting for priorities among the incoming roads and maximizing the
flux through the junction (a brief but detailed description of this solver is
included in the Appendix A). Anyhow, the framework presented here can be
applied to any generic Riemann solver with different aims like e.g., minimiz-
ing the waiting time of the vehicles queuing, modeling intersection devices as
traffic lights or roundabout, etc.
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Junction conditions in the multi-class cases. To extend the above approach to
a multi-class framework, we generalize the multi-commodity junction solver
discussed in [26] to any underlying Riemann solver RSA satisfying Defini-
tion 2.4. In particular, this allows to consider junctions with any number of
incoming and outgoing roads.

We follow the procedure below:

1. Compose the total distribution matrix. Let the distribution matrices Ac ={
acji

}
i,j

∈ A at J be given for each class ρc, c = 1, . . . , Nc (these coefficients

will be derived in Section 3). We set

A := {aji}, where aji :=

Nc∑
c=1

acji
ρci
ρi

(5)

defines a weighted distribution coefficients for the total density of the pop-
ulations at the junction.

2. Compute the fluxes. Using the selected Riemann solver RSA corresponding
to (5), we obtain the total outgoing fluxes (γ̄1, . . . , γ̄n+m).

3. Distribute the fluxes among the various classes. The incoming and outgoing
fluxes for each class c = 1, . . . , Nc are given by

γ̄ci =
ρci
ρi
γ̄i, i = 1, . . . , n, γ̄cj =

n∑
i=1

acjiγ̄
c
i , j = n+ 1, . . . , n+m.

In the rest of the article, the operators A, A and aj,i, will be noted as Ak,
Ak and akj,i since referred to the junction Jk.

3 Strategy Modeling on the Network

To model the route choice strategy of the vehicles belonging to a specific class,
we use a potential (given by the solution of a Hamilton-Jacobi (HJ) equation),
which is the value function of an optimal control problem defined on the net-
work. We distinguish between the static case (only the current configuration
of the system concurs to the choice) and dynamic (the future evolution of the
system shapes the strategic choice). The theory of viscosity solutions for HJ
equations on networks have been introduced in recent years, imposing appro-
priate transition conditions at the vertices (we refer to [8,27,10] for details).
The case of the directed graph – where the arcs can be traveled only in one
direction – can be considered a sub-case of the general one.

Static case. In the static case, at any t̃ ∈ [0, T ] we compute the potential func-
tion u knowing the current traffic state ρ(·, t̃), that is, for each c = 1, . . . , Nc,
the viscosity solution ucℓ[t̃](x) of the problem

∂xu
c
ℓ(x) +

1
gc(ρℓ(x,t̃))

= 0 x ∈ Iℓ, ℓ ∈ L,
min

ℓ∈Out(Jk)
ucℓ(0) = ucl (Ll) Jk ∈ J \ T , l ∈ Inc(Jk),

ucℓ(x) = 0 , πℓ(Lℓ) = x ∈ T ,
(6)
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which represents the weighted distance from the position x to the target set
T , minimizing the running cost gc : [0, 1] → R+, which we assume to be a
Lipschitz continuous function. The function gc models the influence of the
traffic density (at a fixed time t̃) for the class of vehicles c in the choice of the
“shortest” path.

To compute the solutions of (6), we denote by Γx,z the set of absolute
continuous curves connecting x to z identified by a finite sequence ℓn ∈ L, n =
0, ..., NΓ , such that there exists a ξ ∈ [0, Lℓ0 ] such that πℓ0(ξ) = x, πℓi(0) =
πℓi−1

(Lℓi−1
), i = 1, ..., NΓ , πℓNΓ

(LℓNΓ
) = z. Then the solution of (6) is given

by

ucℓ(x) = inf{dc(πℓ(ξ), z) : z ∈ T },

where the (scaled) distance function dc : I × I → R+ is

dc(x, z) := inf
(ℓ0,...,ℓNΓ

)∈Γx,z

{∫ Lℓ0

ξ

1

gc(ρℓ(πℓ(s), t̃))
ds

+

NΓ∑
i=1

∫ Lℓi

0

1

gc(ρℓi(πℓi(s), t̃))
ds

}
.

We observe that, in general, equation (6) could be not defined on some
arcs, since a minimal path (i.e., an itinerary to reach a destination vertex
in an optimal way) could be not defined in some areas of the network. To
overcome this problem, we make the following hypothesis:

H1) For every x ∈ I there exists at least one z ∈ T such that the set Γz,x ̸= ∅,
i.e. there exists a sequence of indexes ℓ0, ..., ℓNΓ

such that x ∈ Iℓ0 , and
πℓi−1

(Lℓi−1
) = πℓi(0) for i = 1, ..., NΓ with πℓNΓ

(LℓNΓ
) = z ∈ T .

Dynamic case. In the dynamic case we assume to know the traffic configura-
tion at any (t, x) ∈ [0, T ] × J . The potential function is computed backward
in time starting from the solution of (6) at time t = T as viscosity solution of

−∂tucℓ(t, x) + ∂xu
c
ℓ(t, x) +

1
gc(ρℓ(t,x))

= 0, x ∈ Iℓ, ℓ ∈ L,
min

ℓ∈Out(Jk)
ucℓ(t, 0) = ucl (t, Ll), Jk ∈ J \ T , l ∈ Inc(Jk),

ucℓ(T, x) = ucℓ(x), x ∈ Iℓ, ℓ ∈ L,
(7)

for each c = 1, . . . , Nc.

We can characterise the solution of the equation above as minimum path
in a time dependent framework as value function of a backward-in-time finite
horizon optimal control problem [22]. The solution of (7) is given by

ucℓ(t, x) = inf{dc(πℓ(ξ), z, t) : z ∈ T },
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where to define the distance function dc : I × I × [t, T ] → R+, we consider all
the paths Γx,z connecting z to x in the time interval [t, T ]. We can parameterise
such curves as (ℓ(s), ζ(s), s) with s ∈ [t, T ] getting that

dc(x, z, t) = inf
ℓ∈Γx,z

{∫ T

t

1

gc(ρℓ(s)(πℓ(s), s))
ds+ ucℓ(T )(ζ(T ))

}
.

We underline that at time T , if the agent does not reach a destination point
belonging to T , he pays the scaled distance from T as computed in the static
case.

Remark 3.1 There are two natural choices for the function g: in the case
we fix g(x, ρ) ≡ 1, the drivers will look for the shortest path to destination
regardless of the traffic conditions. This is equivalent to follow a fixed path
(highlighted by road sign indications or off-line navigation systems), without
any information about the traffic state. If g(x, ρ) = v(ρ), agents aim to mini-
mize the travel time to destination over its current speed selecting the fastest
path to destination (e.g. using an on-line navigation system). The difference
between the static and the dynamic model is that while in the static case drivers
use only the information on the current traffic conditions, in the dynamic one
they can forecast the traffic evolution and select the real fastest path to desti-
nation.

3.1 Strategy Coupling at Junctions and Equilibria

The solution of (6), respectively (7), contains information about the optimal
strategy to reach the target set T , depending on the perceived cost gc. Since
the arcs are oriented, route choices are possible only at junctions. In particular,
this allows to define the matrix distribution coefficients in (5), coupling the
density to the potential equation.

The choice of how to assign the route choices is, by any meaning, non
trivial. The most basic choice is, in a Wardrop equilibrium fashion, to equally
distribute the population on the roads with equal minimal potential functions.
More precisely, for each junction Jk, calling ū(t) = minj∈Out(Jk) u

c
j(t, 0), we

define the distribution matrix Ak of the population c at Jk as

acji =
ψ(ucj(t, 0)− ū(t))∑

z∈Out(Jk)

ψ(ucz(t, 0)− ū(t))
.

A natural choice for the activation function ψ is ψ̄(x) := 1 for x ≤ 0 and
ψ̄(x) := 0 otherwise. In other words, we dynamically distribute the density
along the optimal options at any junction. In particular, this was the choice
made in [16].

Unfortunately, this choice is numerically non-convenient: in particular, it
produces some unrealistic chattering phenomena between two (or more) equiv-
alent paths which may make difficult finding the equilibrium states of the sys-
tem. This effect may be reduced using a smooth activation function, at the
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price of not computing the real equilibrium states, but an approximation of
them. In particular, one option is taking ψ̂(x) = 1/(1 + e−ϵ(S−2x)), where
S =

∑
j∈Out(Jk)

ucj(t, 0) and ϵ > 0, i.e. the logistic or soft step function cen-

tered in S/2. This option has the advantage of computing
∑

j∈Out(Jk)
acji = 1

(which is mandatory to have conservation of mass through the junction) but
also ψ(S/2) = 1/2, i.e. if two roads are equally favourable the distribution
matrix splits between the two. The logistic function has been used in many
different application, in particular as standard activation function in computer
science [2].

Finally, we can describe the whole model for one population, here reported
in the dynamic case:



∂tρℓ(t, x) + ∂x (ρℓ(t, x)vℓ(ρℓ(t, x))) = 0, t > 0, x ∈ Iℓ, ℓ ∈ L,

−∂tuℓ(t, x) + ∂xuℓ(x, t) +
1

g(ρℓ(t, x))
= 0 , x ∈ Iℓ, ℓ ∈ L,

min
ℓ∈Out(Jk)

uℓ(0) = ul(Ll) , Jk ∈ J \ T , l ∈ Inc(Jk),

Ak = {aji} , ū(t) = minj∈Out(Jk) uj(t, 0),

aji =
ψ(uj(0)− ū)∑

z∈Out(Jk)

ψ(uz(0)− ū)
, x ∈ Jk,

(γ̄1, ..., γ̄n+m) = RSAk
(ρ1, ..., ρn+m), x ∈ Jk,

ρℓ(x, 0) = ρ0,ℓ(x) , x ∈ Iℓ , ℓ ∈ L,
ρℓ(x, t) = 0 , x ∈ T ∩ Iℓ , ℓ ∈ L,
uℓ(T, x) = uℓ(x) , x ∈ Iℓ , ℓ ∈ L,
ρℓ(πℓ(0), t) = ϕℓ(t) , ℓ ∈ L ∩ S,

(8)

where ρ0,ℓ and uℓ(x) are the initial/final conditions and the functions ϕℓ(t)
are the inflow conditions at the ‘source’ vertexes S of the network.

3.2 Evaluating the Efficiency

For a deeper understanding of the model, we need to recall some basic concepts
about the general efficiency evaluation of a macroscopic traffic system. To this
end, we establish a link between the macroscopic model and its microscopic
counterpart. The main concepts of this section have been borrowed from [11]
and adapted to our case.

Definition 3.1 (Travel time) We define the travel time between two points
y1, y2 ∈ Iℓ where y1 ∈ J (i.e. y1, y2 are on a same edge, with y1 which is the
node at the beginning of the edge) as the function τy1,y2

(aℓ) defined implicitly
by ξ(τ(aℓ)) = y2 where
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ξ solves

{
ξ̇ = vℓ(ρ(t, ξ(t))),
ξ(0) = y1,

and ρ solves

{
ρt + ∂x(ρvℓ(ρ)) = 0,
ρ(t, y1)vℓ(ρ(t, y1)) = aℓ γ,

where γ is the total flux on the junction Jk ∈ J and aℓ ∈ [0, 1] is the percentage
(i.e. the coefficient of the distribution matrix aℓ ∈ Ak) entering in Iℓ.
If y1 is an internal point of Iℓ, the definition still holds with the trivial value
aℓ = 1 (all the flux remains on the same road), while in the case of two points
belonging to different edges connected by a route Γy1,y2 composed by a finite
sequence of edges ℓn, with n = 0, . . . , NΓ , we proceed setting â = (a1, . . . , aNΓ

)
corresponding to the distribution matrices coefficients related to this specific
path. We underline that a sequence â identify a unique path. Therefore, the
travel time in this case is

τy1,y2(â) := τy1,πℓn (Lℓ0
)(1) +

NΓ−1∑
n=1

τπℓn (0),πℓn (Lℓn )(an) + τπℓNΓ
(0),y2

(aNΓ
).

Finally, we call relevant travel time the function τy1,y2
(â) for â such that

ai ̸= 0 for i = 1, ..., NΓ , i.e., excluding the paths which are not taken by any
of the agents.

Definition 3.2 (Equilibrium State) We call state of the system a choice
of all the distribution matrices Ā = {Āk}k∈K ∈ Am at the network junctions.

A state Ā is an equilibrium state for a destination T iff for every x ∈ I
and y ∈ T , all the relevant travel times for every path choice Γx,y coincide,

i.e. for two paths Γ̄x,y, Γ̂x,y, the relative sequences of non null coefficients
(ā1, ..., āNΓ̄

) ̸= (â1, ..., âNΓ̂
) sampled from the same state Ā give

τx,y((ā1, ..., āNΓ̄
)) = τx,y((â1, ..., âNΓ̂

)).

4 A multi-Class, Multi-Informed Traffic Flow Model and
Numerical Tests

In this section, we present the full model and we perform some tests to show
the main features of it. The details about the numerical implementation are
deferred to the Appendix B.

One aim of our study is the capability of accounting for different levels
of information in an heterogeneous population of agents. Indeed, the previous
setting can be generalized to several classes of agents moving on the network
following the same LWR-based dynamics. Moreover, with a straightforward
generalization, each class may also have a different target set T c. Since for
simplicity and to avoid computational burden we do not explore this possibil-
ity, we assume that the classes have the same target T , but different strategic
approaches.

Let c = 1, ..., Nc, and t ∈ [0, T ]. The multi-class version of (8) reads:



Navigation system based routing strategies in traffic flows on networks 11



∂tρ
c
ℓ(t, x) + ∂x (ρ

c
ℓ(t, x)v

c
ℓ(
∑

c ρ
c
ℓ(t, x))) = 0, t > 0, x ∈ Iℓ, ℓ ∈ L,

−∂tucℓ(t, x) + ∂xu
c
ℓ(x, t) +

1

gc(
∑

c ρ
c
ℓ(t, x))

= 0 , x ∈ Iℓ, ℓ ∈ L,

min
ℓ∈Out(Jk)

ucℓ(0) = ucl (Ll), , Jk ∈ J \ T , l ∈ Inc(Jk),

Ak = {aji} , ūc(t) = minj∈Out(Jk) u
c
j(t, 0),

aji =
ψ(ucj(0)− ūc)∑

z∈Out(Jk)

ψ(ucz(0)− ūc)
, x ∈ Jk,

(γ̄c1, ..., γ̄
c
n+m) = RSAk

(ρc1, ..., ρ
c
n+m), x ∈ Jk,

ρcℓ(x, 0) = ρc0,ℓ(x) , x ∈ Iℓ , ℓ ∈ L,
ρcℓ(x, t) = 0 , x ∈ T ∩ Iℓ , ℓ ∈ L,
ucℓ(T, x) = ucℓ(x) , x ∈ Iℓ , ℓ ∈ L,
ρcℓ(πℓ(0), t) = ϕcℓ(t) , ℓ ∈ L ∩ S,

(9)

where ρc0,ℓ and ucℓ(x) are the initial/final conditions, the functions ϕcℓ(t) are
the inflow conditions at the ‘source’ vertexes S of the network and the destina-
tion vertexes act as absorbing conditions imposed at the boundary (cf. [15]),
motivating the choice of setting ρc and ucℓ to zero at these points.

Remark 4.1 (A 2−population case) We describe in detail the special case
of two populations ρ1 and ρ2 with the same destination set (T ), but different
level of information, as considered in the simulation Section 4. We fix v1ℓ (ρ) =
v2ℓ (ρ) = 1 − ρ and g1(x, ρ) = 1 and g2(x, ρ) = 1 − ρ = v2ℓ (ρ). In this way,
the two populations’ route choices – despite the two groups have the same
destination – may be different at network junctions. In particular, the above
choices of g1 and g2 model the case where the first population does not use
any on-line routing device. The knowledge of the network – or the use of maps
or off-line routing devices – brings the density ρ1 to follow the shortest path
to the destination. On the contrary, ρ2 uses information on the state of the
system to avoid congested regions, thus minimizing the time to destination. It
is important to keep in mind that, depending on if we compute the function
uc in the static or the dynamic case, we respectively do not include or include
forecasting of the future states of the system.

4.1 Test 1 - A Simplified Network with One Population

The first test we propose is a toy model involving a simple network consisting
of 5 roads and allowing two possible paths connecting the source (node 1) to
destination (node 5), see Fig. 1. The two paths are the one passing by the
nodes 1-2-4-5 (which has length 3) and the longer one 1-2-3-4-5 (whose length
is 3.4).
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Fig. 1: Simple network with 5 roads and two possible paths to reach destina-
tion; origin (green) and destination (red) junctions are differently colored; id
(above) and the length (below) of the roads are reported.

We assume that the network is empty at t = 0, we consider a single pop-
ulation with constant inflow ϕ(t) = 0.5 at node 1 for t ∈ [0, 6] and we set
ϕ(x) = 0 for t ∈ ]6, 12]. The space and time meshes are set to ∆x = 0.05 and
∆t = 0.01, respectively.

If the agents are simply-informed, i.e. g(x, ρ) ≡ 1, the whole population
follows the path 1-2-4-5, since it is the shortest path to destination.

Despite its simplicity, this test is useful to identify the chattering phenom-
ena between two options to destination mentioned in the previous section.
We can compare, in Figure 2, the effect of a step activation function ψ = ψ̄
(Figures (a) and (b)) with respect to the smooth activation function ψ = ψ̂
with ϵ = 1 (Figures (c) and (d)). As predictable, a smooth activation function
prevents any chattering effect and the agents distribute smoothly on the two
paths. In the following, where not stately differently, we assume ψ = ψ̂ with
ϵ = 1.

In Figure 3, we observe the difference between the simply-informed and
the informed case (g(x, ρ) = 1− ρ).
In Fig. 3a (simply informed), the agents choose the shortest path 1-2-4-5 re-
gardless its current occupation. The path 1-2-3-4-5 is taken by a minimal part
of the population since we used a smoothed activation function ψ = ψ̂ with
ϵ = 1.
In Fig. 3b (informed), the agents know the current state of the system. There-
fore, they initially take the more favourable path 1-2-4-5, but later they start
using also 1-2-3-4-5.

In particular, as highlighted before in Fig. 2, in absence of a smooth acti-
vation function ψ ,the population starts to fluctuate between the two options
when the value functions u2(t, 0), u4(t, 0) relative to the two different paths at
junction 2 coincide. Using a smoothing activation function, this phenomenon
disappears. The distance |u2(t, 0) − u4(t, 0)| decreases till an optimal value
corresponding to a certain part of the flux opting for the longer path which
balances such a difference, see Fig. 5.
In Fig. 3c (highly informed), we solve the potential equation in the dynamic
case (7). In this scenario, the agents can forecast the future states of the system
to fully optimize their choices. In practice, in this test, the population splits
between the two possible paths in a proportion which is globally optimal. The
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Fig. 2: Different choices of the activation function ψ on a simple informed
population for a network with 5 roads (Fig. 1): time evolution of the density
ρ2(t, 0) and ρ4(t, 0) at the beginning of streets 2 and 4 in the case of the step
function ψ̄ (Figures (a) and (b)) the agents choosing road 2 (whose incoming
density is ρ2) and road 4 (represented by ρ4) switch continuously between the
two option of identical value function u2, u4, with some oscillatory effects on
the densities. In Fig. (c) and (d), the use of the smooth activation function ψ̂
with ϵ = 1.

time to reach destination is equal and minimal for each agent starting from
the same point regardless to its routing choices.

Further comparisons between the three situations are reported in Figures 4
and 5. In particular, in Fig. 5, it is possible to see how in the simply informed
case the potential functions u2(t, 0) u4(t, 0) relative to the two possible paths
to destination are constant in time, while in the informed one, their difference
decreases till an optimal value (equal to zero in the case of no smoothing
activation function, see Fig. 2b) which is then constant until the incoming
flux starts decreasing. In the highly informed case, the relationship is more
complex as we highlight in the next test.
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Fig. 3: Simple network with 5 roads; ρ at t = 6 sec is depicted; maxx∈Iℓ ρℓ(x, 6)
is reported below the streets.
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Fig. 4: Simple network with 5 roads (Fig. 1): time evolution of the density
ρ2(t, 0) and ρ4(t, 0) at the beginning of streets 2 and 4.
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Fig. 5: Simple network with 5 roads (Fig. 1): time evolution of the costs u2(t, 0)
and u4(t, 0) at the beginning of streets 2 and 4.
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4.2 Test 2 - Dealing with Braess’ Paradox

We reproduce here the well known Braess’ paradox, described for the first
time in [7] and later reprised and studied by several authors, see e.g. in [25,
11]. The paradox highlights how a selfish (and uninformed) behaviour may
worsen the overall traffic flow, so that the opening of a new, more favourable
path increases the time to destination for all users. Such phenomenon has
indeed been observed in real life situations [4,21].
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(b) 5 streets

Fig. 6: Braess’ paradox network: origin (green) and destination (red) junctions
are differently colored; id (above) and the length (below) of the streets are
reported; constant speed streets (dashed) are marked.

To reproduce such situation, we consider a 4-street network (composed by
6 nodes and 6 edges) and a 5-street one, where an additional road (edge 7)
is open (see Fig. 6). We underline that in these networks, some edges can be
travelled with constant speed v(ρ) := 1 (edges 1,3,4 and 6), while the others
follow the usual density dependent speed law v(ρ) := 1−ρ. From the modelling
point of view, the former can be seen as high capacity highways (where the
speed is only limited by the current law regulations), and the latter are some
low capacity roads, where the traffic density strongly impacts the speed of
vehicles. Comparing the two networks, we can observe as, in Fig. 6(a), the
two paths to destination passing through nodes 1-2-3-5-6 and 1-2-4-5-6 have
the same length. In Fig. 6(b) a new road (edge 7) is available, providing a
new, more favourable path to destination 1-2-3-4-5-6, which is very sensitive
to traffic congestion, since involving all the edges with non constant speed
function.

To evaluate the performances of a single agent on the network, we use the
notion of travel time (TT) given in Definition 3.1, adapted to the discrete case,
i.e. called γ(xi, xj , t) = (x1 = xi, ..., xm = xj) ∈ Γxi,xj

(t) a non trivial path
chosen by a population to navigate from xi to xj , starting from xi at time
t, where xk, k = 1, . . . ,m, are the discretization mesh points along the path
related to a sequence of non null coefficients (a1, ..., am) corresponding to the
agent’s choices at every junction (if there is no junction at xi trivially ai = 1)
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we have

TT (xi, xj , t) =
∑

γ(xi,xj ,t)∈Γxi,xj
(t)

m∑
k=1

(
Πk

z=1az
) ∆x

v(ρ(xk, tk))
. (10)

We stress on the fact that here, every point along a specific path γ(xi, xj , t)
connecting xi to xj starting at time t is weighted by Πk

z=1az which estimates
the percentage of agents that are using that specific segment of the path.

As before, we take a constant inflow ϕ(t) = 0.5 at the junction 1 for
t ∈ [0, 6], we set ϕ(t) = 0 for t ∈ ]6, 15] and the space and time meshes are set
to ∆x = 0.05 and ∆t = 0.01. In Fig. 7, we compare the performances of the
two networks in the terms of travel time TT (1, 6, t) for t ∈ [0, 12], i.e. the time
needed by a single vehicle starting node 1 at time t to reach the destination
node 6. For all strategic choices, we observe the appearance of the typical
Braess’ paradox (Fig. 7(a)). The time to destination of an agent starting from
node 1 is always higher in the 5 street case (continuous red line) compared to
the 4 street case (blue dotted line). Even in all the discharge phase (t > 6),
the 4 street situation remains more favourable.

The ‘paradox’ is anyway mitigated if information on the state of the net-
work is available. In the case of an informed population (knowing only the
current traffic situation), Fig. 7(b) shows that the travel times in the two sce-
narios are closer. Anyway, since the agents are not able to forecast the future
congestion on the most favourable path chosen in the 5 street network, they
still create a consistent congestion in the charging phase, which deteriorates
the network performances.

We highlight that the travel time on the 5 road network for the informed
users is always lower than the simply informed case, i.e. having some traffic
data improves the traffic fluidity. The Braess’ paradox is still present in the
highly-informed case depicted in Fig. 7(c), even if in a moderate measure
with respect to the previous cases. This is due to the presence of the smooth
activation function ψ̂: as we can observe again in Fig. 7(c), the ’paradox’ tends
to disappear with a reduced smoothing (ϵ ≥ 3). We can not analyze the limit
case of a discontinuous ψ = ψ̄, since our algorithm to compute equilibria (based
on fixed point iterations) does not reach convergence (due to the oscillations
reported also in Fig. 2). Further research on the most favourable choice of the
activation function could be interesting in this case.

4.3 Test 2 - Two Populations

In real life situations, the presence on the same network of various populations
with a different level of information about the route and the traffic state is
very common.

Model (9) may efficiently simulate the complex interactions between the
different populations to help understanding which is the optimal level of infor-
mation for better performances on a specific network and how the distribution
rate of the different populations affects such performances.
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Fig. 7: Braess’ network (Fig. 6): travel time TT (1, 6, t), t ∈ [0, 15] for different
level of information. Here, the parameterϵ of the smooth activation function
ψ̂ is set with ϵ = {1, 2, 3} and called, respectively, ψ1, ψ2, ψ3.

We consider once again the simple 4-roads and 5-roads networks used to
illustrate the Braess’ paradox, see Fig 6. We compare the behaviour of two
populations with a different information level. To get rid of the time depen-
dency for the travel time (10), we compare their mean travel times (MTT) on
the interval [0, T ] defined as

MTT (xi, xj) =
1

T

[T/∆t]∑
k=1

TT (xi, xj , k∆t).

To make easier understanding the outcome of the tests, we restrict ourselves
to the comparison of simply-informed/informed mixed population and simply-



18 Adriano Festa et al.

0 0.2 0.4 0.6 0.8 1

5.36

5.37

5.38

5.39

P (%)

Simply-Informed Informed

(a) 4 streets; Simply-informed vs In-
formed

0 0.2 0.4 0.6 0.8 1

5.36

5.37

5.38

5.39

P (%)

Simply-Informed Highly-Informed

(b) 4 streets; Simply-informed vs Highly-
informed

0 0.2 0.4 0.6 0.8 1

5.7

5.8

5.9

6

P (%)

Simply-Informed Informed

(c) 5 streets; Simply-informed vs In-
formed

0 0.2 0.4 0.6 0.8 1

5.7

5.8

5.9

6

P (%)

Simply-Informed Highly-Informed

(d) 5 streets; Simply-informed vs Highly-
informed

Fig. 8: Mean Travel Time comparison in the Braess’ network (as in Fig. 6):
MTT (1,6) depending on the populations ratio P .

informed/highly-informed. Once again, we simulate the incoming of a constant
flux of vehicles ϕ(t) = 0.5 for t = [0, 6] and ϕ(t) = 0 for t = ]6, 15]. This
incoming flux is split between the two populations following the parameter
P ∈ [0, 1], where for P = 0 all the population is simply informed and for
P = 1 all the population is informed. We highlight that, in these tests, in
the case of P = 0 or P = 1 one of the two populations is not present on the
network. This does not prevent us to compute the MTT since it depends on
the sum of the two populations.

In Fig. 8, we show the comparison on the two networks. Looking at the
4-road network (Figures 8(a) and (b)) we observe that, in this case, both
populations have almost the same mean travel times (the difference is less than
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0.2%). In the simulations, we may observe the insurgence of some oscillations
between the two paths in the case of informed agents, which are not present
in the highly-informed case.
In the 5-road network case, the behaviour is different: in this case, the mean
travel time of informed and highly-informed agents is always lower, and the
situation improves for both populations as the percentage of informed or highly
informed agents increases, showing that they act as ‘regulators’ of the system.
Moreover, mean travel times are lower when an highly informed population is
present, with respect to the merely informed case. We remark also that the
5-road network performances are always worse than corresponding the 4-road
network case. This tendency has been already observed in the previous test
and it can been mitigated, in the highly-informed case, by the use of a less
smooth activation function ψ.

4.4 Test 3 - A Real Network

In this last test, we present, with only an illustrative purpose, a more real-
istic scenario, which shows the potential of the model proposed. We consider
the road network of the Royal Docks area around the London City Airport,
including the Borough of Newham and the east part of the Canary Wharf
business area. The network, due to the intensity of the displacements, and
the presence of various bottlenecks created by the Thames river meander, is
particularly exposed to traffic congestion. The road data has been provided
by OpenStreetMap, licensed under the Open Data Commons Open Database
License (Fig.9(a)). In this scenario, we compare the network performances in
presence of a different level of information of the drivers. For better clarity,
we focus on three particular spots (cf. Fig. 9(b)): in Area 1 the road network
crosses the Lea River concentrating the traffic flow on two main bridges; in
Area 2 the Gallions Roundabout (right/bottom) has even more intense con-
gestion effects; Area 3 is an average sample of the network.

We perform a simulation of the traffic during a peak hour for reaching
the Airport (marked with a red dot on Fig. 9), starting from a low traffic
initial condition (the density is set to 0.2 on the whole network) and giving a
constant null inflow of vehicles γ(t) = 0 at several nodes (marked in light blue).
All the vehicles have as unique target point the parking area of the Airport.
The space and time meshes are set to ∆x = 2.0 and ∆t = 0.06, respectively.
In Figures 10, 11 and 12, we show the traffic distribution on the three areas
of interest at t = 100, 200, 300.

The results of the simulation highlight some known and less-known features
of the influence of real-time information in the routing process. Surprisingly,
we can observe that the traffic congestion, in the more informed models, spread
on a larger area, with the effect of a faster release of the jam (cf. Fig. 10 and 12
on the access roads to the bridges (Area 1) and on the Gallions Roundabout
(Area 2)). We also notice that traffic information brings traffic congestion also
in some roads that are not normally affected by traffic jams in the simply-
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(a) The whole domain with initial conditions

(b) Junctions detail positions

Fig. 9: The road Network around the London City Airport, London, UK. (left)
Three areas of interest (right).

informed case (see e.g. the traffic evolution in Area 3). This has been observed
in real life situations and it has been at the center of discussions after the
complaints of local residents in several urban areas [17,6].

Concerning the overall efficiency effects on the network, as already specu-
lated by others authors [25], selfish information does not globally reduce traffic
jams on a complex network. At the same time, information reduces the time
to reach destination for a single informed driver and even (in presence of a
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(a) Area 1, Simply-informed (b) Area 1, Informed (c) Area 1, Highly-informed

(d) Area 2, Simply-informed (e) Area 2, Informed (f) Area 2, Highly-informed

(g) Area 3, Simply-informed (h) Area 3, Informed (i) Area 3, Highly-informed

Fig. 10: London Network, details at t = 100 sec

mixed population) for non-informed ones. The price paid for this reduction is
a higher occupation of the network on peak hours.

5 Conclusions

We proposed a macroscopic model accounting for different routing strategies
in traffic flows, aiming to reproduce some emerging behaviour in a population
of drivers with different levels of knowledge about the current (and possibly
future) state of the network system. We performed various tests with the
purpose of showing the main features of the model and its possible use as
an instrument of identification and prediction of the weaker areas of a road
network. As future research, we identify one main point that is not addressed
in the present work: we approximated the equilibrium points of the system
using a smoothed activation function, but the existence, the nature and the
convergence to the limit problem is an interesting question that deserves a
deeper study.
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(a) Area 1, Simply-informed (b) Area 1, Informed (c) Area 1, Highly-informed

(d) Area 2, Simply-informed (e) Area 2, Informed (f) Area 2, Highly-informed

(g) Area 3, Simply-informed (h) Area 3, Informed (i) Area 3, Highly-informed

Fig. 11: London Network, details at time 200 sec
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A The Priority Riemann Solver

In this section we recall the definition of Priority Riemann Solver given in [13, Section 3].
Given a matrix A belonging to the set of matrices (4) and a priority vector P = (p1, . . . , pn) ∈
Rn, with pi > 0,

∑
i pi = 1, indicating priorities among incoming roads, we consider the

closed, convex and non-empty set

Ω =

(γ1, · · · , γn) ∈
n∏

i=1

[0, γmax
i ] : A · (γ1, · · · , γn)T ∈

n+m∏
j=n+1

[0, γmax
j ]

 ,

and define:

h̄ = sup{h ∈ R+ : hP ∈ Ω}.
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(g) Area 3, Simply-informed (h) Area 3, Informed (i) Area 3, Highly-informed

Fig. 12: London Network, details at time 300 sec

Given Riemann data (ρ1, . . . , ρm+n), we define a vector Q = (γ̄1, . . . , γ̄n) of incoming
fluxes by the following recursive procedure (see Algorithm 1 below).

– STEP 1. For every i ∈ {1, . . . , n} define

hi = max{h : h pi ≤ γmax
i } =

γmax
i

pi
,

and for every j ∈ {n+ 1 . . . , n+m} define

hj = max

{
h : (A · (hP ))j = h

(∑
i

ajipi

)
≤ γmax

j

}
=

γmax
j∑
i ajipi

.

In other words, hi is the maximal t so that hP verifies the flux constraint for the i-th
road, similarly for hj .
Set ℏ = minij{hi, hj}. We distinguish two cases:
– CASE 1. If there exists j such that hj = ℏ, then we set Q = ℏP and we are done.
– CASE 2. Otherwise, let I1 = {i ∈ {1, . . . , n} : hi = ℏ} (by assumption I1 ̸= ∅). We

set Qi = ℏ pi for i ∈ I1 and we go to next step.
– STEP S. In step S − 1 we defined a set IS−1 and, by induction, all components of Q

are fixed for i ∈ JS = I1 ∪ · · · ∪ IS−1. We let |JS | < n denote the cardinality of JS and
denote by Jc

S the complement of JS in {1, . . . , n}. We now define hi for i ∈ Jc
S by:

hi = max{h : h pi ≤ γmax
i } =

γmax
i

pi
,

and for every j ∈ {n+ 1 . . . , n+m} define

hj = max

h :
∑
i∈JS

ajiQi + h

∑
i∈Jc

S

ajipi

 ≤ γmax
j

 .
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We then proceed similarly to STEP 1, setting ℏ = minij{hi, hj} and distinguishing two
cases:

– CASE 1. If there exists j such that hj = ℏ, then we set Qi = ℏPi for i ∈ Jc
S and we

are done.
– CASE 2. Otherwise, let IS = {i ∈ Jc

S : hi = ℏ} (by assumption IS ̸= ∅). We set
Qi = ℏ pi for i ∈ IS . If JS ∪ IS = {1, . . . , n} then we stop, otherwise we go to next
step.

Algorithm 1 Recursive definition of PRS
Set J = ∅ and Jc = {1, . . . , n} \ J .
while |J | < n do

∀i ∈ Jc → hi = max{h : h pi ≤ γmax
i } =

γmax
i
pi

,

∀j ∈ {n+ 1 . . . , n+m} → hj = sup{h :
∑

i∈J ajiQi + h(
∑

i∈Jc ajipi) ≤ γmax
j }.

Set ℏ = minij{hi, hj}.
if ∃ j s.t. hj = ℏ then

Set Q = ℏP and J = {1, . . . , n}.
else

Set I = {i ∈ Jc : hi = ℏ} and Qi = ℏ pi for i ∈ I.
Set J = J ∪ I.

end if
end while

B Numerical techniques

We present the discrete version of the model, introduced in Sections 2 and 3, which uses
Godunov discretization for the conservation laws [23] and an upwind method for the eikonal
equation [14].

Let us consider a standard discretization of the network N , where a generic edge Iℓ
is approximated by Nℓ points. Setting δℓ = Lℓ/(Nℓ − 1), we define the space grid points
xℓ,h = πj((h−1)δℓ) for h = 1, . . . , Nℓ, and ∆xℓ,h := |xℓ,h+1−xℓ,h|. For each junction point
Jk ∈ J , we denote by Inc(Jk) = {ℓ1, . . . , ℓnk} and Out(Jk) = {ℓnk+1, . . . , ℓnk+mk} the
indexes of incoming and outgoing roads, respectively.

For any given initial distribution ρ̄c : I → [0, 1], the multi-class traffic flow dynamics
on the network N is then described by following discrete system for a ν ∈ {1, ..., ⌊N/∆t⌋},
∆t > 0, ℓ ∈ L , h = 2, . . . , Nℓ − 1 and c = 1, ..., Nc.



Navigation system based routing strategies in traffic flows on networks 25



ρc,ν+1
ℓ,1 = ρc,νℓ,1 − ∆t

∆xℓ,1

(
ρ
c,ν
ℓ,1

ρν
ℓ,1
F (ρνℓ,1, ρ

ν
ℓ,2)− γ̄c,νℓ,1

)
,

ρc,ν+1
ℓ,h = ρc,νℓ,h − ∆t

∆xℓ,h

(
ρ
c,ν
ℓ,h

ρν
ℓ,h

F (ρνℓ,h, ρ
ν
ℓ,h+1)−

ρ
c,ν
ℓ,h−1

ρν
ℓ,h−1

F (ρνℓ,h−1, ρ
ν
ℓ,h)

)
,

ρc,ν+1
ℓ,Nℓ

= ρc,νℓ,Nℓ
− ∆t

∆xℓ,Nℓ

(
γ̄c,νℓ,Nℓ

−
ρ
c,ν
ℓ,Nℓ−1

ρν
ℓ,Nℓ−1

F (ρνℓ,Nℓ−1, ρ
ν
ℓ,Nℓ

)

)
,

u
c,ν
ℓ,h+1

−u
c,ν
ℓ,h

∆xℓ,h
+ 1

gc(ρν
ℓ,h

)
= 0,

uc,νℓ,Nℓ
= min

i∈Out(Jk)
uc,νi,1 , xℓ,Nℓ

/∈ T ,

ūc,ν = minj∈Out(Jk)
uc,νj,1 , ac,νji =

ψ(uc,νj,1 − ūc,ν)∑
z∈Out(Jk)

ψ(uc,νz,1 − ūc,νℓ )
,

Aν
k =

{
Nc∑
c=1

ac,νji

ρ
c,ν
i,Ni

ρν
i,Ni

}
ji

,

(γ̄νℓ1 , ..., γ̄
ν
ℓnk+mk

) = RSAν
k
(ρνℓ1 , ..., ρ

ν
ℓnk+mk

),

γ̄c,νi,Ni
=

ρ
c,ν
i
ρνi

γ̄νi , i ∈ Inc(Jk), γ̄c,νj,1 =
ℓnk∑
i=ℓ1

ac,νji γ̄
c,ν
i , j ∈ Out(Jk),

ρc,0ℓ,h = 1
∆xℓ,h

xℓ,h+1∫
xℓ,h

ρ̄cℓ(x)dx,

uc,νℓ,Nℓ
= ρc,νℓ,Nℓ

= 0, xℓ,Nℓ
∈ T c,

ρc,νℓ,1 = ϕ(xℓ,1,∆tν),

(11)

where ρ̄cℓ is the initial traffic distribution on the network.
In (11), the numerical flux F (ρ1, ρ2) is the standard Godunov flux corresponding to (3),

which can be expressed as

F (ρ1, ρ2) := min {D1(ρ1), S2(ρ2)} ,

where Dℓ(ρ) and Sℓ(ρ) are the demand and supply functions defined by

Dℓ(ρ) =

{
ρvℓ(ρ) if ρ ∈ [0, ρ̂ℓ],

γmax
ℓ if ρ ∈ [ρ̂ℓ, 1],

Sℓ(ρ) =

{
γmax
ℓ if ρ ∈ [0, ρ̂ℓ],

ρvℓ(ρ) if ρ ∈ [ρ̂ℓ, 1],

see for example [19], Section 5.2.3.
In order to guarantee the stability of the scheme (11) we impose that

∆t ≤ min
ℓ∈L

δℓ

Vℓ
.

We assume that the vehicles exit the network once they have reached their destination.
In this way, they do not contribute further to the possible congestion effects of the latter.
Alternative choices are represented by some Neumann condition bounding the flux to a
specific exit rate, or directly imposing some non-flux condition. In such cases, congestion
could arise upstream the destination points (see [9]).

Finally, we discuss how to deal with the dynamic case. The discretization of equation (7)
gives us the following backward explicit scheme uc,nu−1

ℓ,h = uc,νℓ,h − ∆t
∆xℓ,h

(uc,νℓ,h+1 − uc,νℓ,h)−
1

gc(ρν
ℓ,h

)
,

uc,Nℓ,h = ūc,νℓ,h,
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where ū, is the solution of the static case (11). When we couple this equation with the
other terms of (11) that remain invariate, we observe that the equation for the traffic flow is
forward in time and the equation for the potential is backward. The coupling is then solved
with a fixed point approach, iterating the resolution between the two equations. Despite
not having any theoretical result assuring the convergence to the fixed point procedure, we
observe that, in most cases, it is reached after few iterations (∼ 6-8 iterations). The only case
where the algorithm does not converge is when the smoothing parameter of the activation
function ψ̂ is ϵ > 3. As explained before, this issue limits the application of the model and
it deserves further investigation.

Remark B.1 (Computational complexity) The computational complexity of the proposed
procedure depends, both in the static and the dynamic case, by the number of the classes,
the size and the connectivity of the network considered and the discretization mesh used for
numerical scheme. The resolution of the Eikonal equation is comparable to the complexity
of a Breadth-first search (often called BFS) algorithm applied on the city network. The
Riemann problem complexity is localized on each internal junction and it just requires
small matrix multiplication of the size of the incoming and outcoming junction’s roads.
Finally, the resolution of the density PDEs is performed with an explicit logic, thus no
linear system resolution is required. We remark that the implementation performance is not
in the focus of the paper, thus no particular optimization for a better quality of the code
is explored. However, despite the naive MATLAB implementation we perform, we obtain
very good results in the executions times. Indeed, we obtain the static solution in the small-
size problems in the order of the minute, and for the London network in the order of the
hour. For the dynamic cases, as an iterative convergence is required, the computational
complexity is comparable to the static case multiplied by the number of iterations required.
As this number is generally low, the execution time is still under control. Finally, we want
to remark that a parallel implementation can be exploited with low efforts for each class
on the Riemann problems and on the density PDE resolutions thanks to the localized logic
nature.
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