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Abstract. Image Retrieval is commonly evaluated with Average Preci-
sion (AP) or Recall@k. Yet, those metrics, are limited to binary labels
and do not take into account errors’ severity. This paper introduces a
new hierarchical AP training method for pertinent image retrieval (HAP-
PIER). HAPPIER is based on a new H-AP metric, which leverages a
concept hierarchy to refine AP by integrating errors’ importance and
better evaluate rankings. To train deep models with H-AP, we carefully
study the problem’s structure and design a smooth lower bound surro-
gate combined with a clustering loss that ensures consistent ordering.
Extensive experiments on 6 datasets show that HAPPIER significantly
outperforms state-of-the-art methods for hierarchical retrieval, while
being on par with the latest approaches when evaluating fine-grained
ranking performances. Finally, we show that HAPPIER leads to better
organization of the embedding space, and prevents most severe failure
cases of non-hierarchical methods. Our code is publicly available at:
https://github.com/elias-ramzi/HAPPIER.

Keywords: Hierarchical Image Retrieval, Hierarchical Average Precision,
Ranking

1 Introduction

Image Retrieval (IR) consists in ranking images with respect to a query by
decreasing order of visual similarity. IR methods are commonly evaluated using
Recall@k (R@k) or Average Precision (AP). Because those metrics are non-
differentiable, a rich literature exists on finding adequate surrogate loss functions
to optimize them with deep learning, with tuple-wise losses [34,40,49,47,48], proxy
based losses [51,46,11,43] and direct AP optimization methods [6,37,30,39,2,36].

These metrics are only defined for binary (⊕/⊖) labels, which we denote
as fine-grained labels: this means that an image is negative as soon as it is not
strictly similar to the query. Those binary metrics are by design unable to take
into account the severity of the mistakes in a ranking. On Fig. 1, we observe that

https://github.com/elias-ramzi/HAPPIER
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Fig. 1: Proposed HAPPIER framework for pertinent image retrieval.
Standard ranking metrics based on binary labels, e.g. Average Precision (AP),
assign the same score to the bottom and top row rankings (0.9). We introduce
the H-AP metric based on non-binary labels, that takes into account mistakes’
severity. H-AP assigns a smaller score to the bottom row (0.68) than the top one
(0.94). HAPPIER maximizes H-AP during training and thus explicitly supports
to learn rankings similar to the top one, in contrast to binary ranking losses.

some negative instances are “less negative” than others, e.g. given the “Brown
Bear” query, “Polar bear” is more relevant than “Butterfly”. However, the AP
scores at 0.9 both the top and bottom rankings. Consequently, training on binary
ranking metrics (e.g. AP or R@k) develops no incentive to produce ranking such
as the top row, and often produces rankings similar to the bottom one.

To address this problem, we introduce the HAPPIER method dedicated to
Hierarchical Average Precision training for Pertinent ImagE Retrieval. HAPPIER
provides a smooth training objective, amenable to gradient descent optimization,
which explicitly takes into account the severity of mistakes when evaluating
rankings.

Our first contribution is to define a new Hierarchical AP metric (H-AP) that
leverages the hierarchical tree between concepts and enables a fine weighting
between errors in rankings. As shown in Fig. 1, H-AP assigns a larger score (0.94)
to the top ranking than to the bottom one (0.68). We show that H-AP provides
a consistent generalization of AP for the non-binary setting. We also introduce
our HAPPIERF variant, giving more important weights to fine-grained levels of
the hierarchy.

Since H-AP, like AP, is a non-differentiable metric, our second contribution
is to use HAPPIER to directly optimize H-AP by gradient descent. We carefully
design a smooth surrogate loss for H-AP that has strong theoretical guarantees
and is an upper bound of the true loss. We then define an additional clustering
loss to support having a consistency between partial and global rankings.

We validate HAPPIER on six IR datasets, including three standard datasets
(Stanford Online Products [29] and iNaturalist-base/full [45]), and three recent
hierarchical datasets (DyML [41]). We show that, when evaluating on hierarchical
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metrics (e.g. H-AP), HAPPIER outperforms state-of-the-art methods for fine-
grained ranking [49,51,43,36], the baselines and the latest hierarchical method
of [41], and only slightly underperforms vs. state-of-the-art IR methods at the
fine-grained level (e.g. AP, R@1). HAPPIERF performs on par on fine-grained
metrics while still outperforming fine-grained methods on hierarchical metrics.

2 Related work

2.1 Image Retrieval and ranking

The Image Retrieval community has designed several families of methods to
optimize metrics such as AP and R@k. Methods that relies on tuplet-wise losses,
like pair losses [16,35], triplet losses [49], or larger tuplets [40,25,47] learn com-
parison relations between instances. Methods using proxies have been introduced
to lower the computational complexity of tuplet based training [27,51,46,11,43]:
they learn jointly a deep model and weight matrix that represent proxies us-
ing a cross-entropy based loss. Proxies are approximations of the original data
points that should belong to their neighbourhood. Finally, there also has been
large amounts of work dedicated to the direct optimization of the AP during
training by introducing differentiable surrogates [6,37,30,39,2,36], so that models
are optimized on the same metric they are evaluated on. However, nearly all
of these methods only consider binary labels: two instances are either the same
(positive) or different (negative), leading to poor performance when multiple
levels of hierarchy are considered.

2.2 Hierarchical predictions and metrics

There has been a recent regain of interest in Hierarchical Classification [12,1,8]
with the introductions of methods based either on a hierarchical softmax function
or on multiple classifiers. It is considered that learning from hierarchical relations
between labels leads to more robust models that make “better mistakes” [1].
Yet, hierarchical classification means that labels are known in advance and are
identical in the train and test sets. This is called a closed set setting. However,
Hierarchical Image Retrieval does not fall into this framework. Standard IR
protocols consider the open set paradigm to better evaluate the generalization
abilities of learned models: the retrieval task at test time pertains to labels that
were not present in the train set, making classification poorly suited to IR.

Meanwhile, the broader Information Retrieval community has been using
datasets where documents can be more or less relevant depending on the query
and the user making the request [19,23]. Instead of the mere positive/negative
dichotomy, each instance has a continuous score quantifying its relevance to the
query. To quantify the quality of their retrieval engine, Information Retrieval
researchers have long used ranking based metrics, such as the NDCG [21,10],
that penalize mistakes differently based on whether they occur at the top or the
bottom of the ranking and whether wrong documents still have some marginal
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relevance or not. Average Precision is also used as a retrieval metric [22] and has
even been given probabilistic interpretations based on how users interact with
the system [13].

Several works have investigated how to optimize those metrics during the
training of neural networks, e.g. using pairwise losses [4] and later using smooth
surrogates of the NDCG in LambdaRank [5], SoftRank [42], ApproxNDCG [33]
and Learning-To-Rank [3]. These works however focused on NDCG, the most
popular metric for information retrieval, and are without any theoretical guaran-
tees: the surrogates are approximations of the NDCG but not lower bounds, i.e.
their maximization does not imply improved performances during inference.

An additional drawback of this literature is that NDCG does not relate
easily to average precision [14], which is the most common metric in image
retrieval. Fortunately, there have been some works done to extend AP in a graded
setting where relevance between instances is not binary [38,13]. The graded
Average Precision from [38] is the closest to our goal as it leverages SoftRank
for direct optimization on non-binary relevance judgements, although there are
significant shortcomings. There is no guarantee that the SoftRank surrogate
actually minimizes the graded AP, it requires to annotate datasets with pairwise
relevances which is unpractical for large scale settings and was only applied to
small-scale corpora of a few thousands documents, compared to the hundred
thousands of images in IR.

Recently, the authors of [41] introduced three new hierarchical benchmarks
datasets for image retrieval, in addition to a novel hierarchical loss CSL. CSL
extends proxy-based triplet losses to the hierarchical setting and tries to structure
the embedding space in a hierarchical manner. However, this method faces the
same limitation as the usual triplet losses: minimizing CSL does not explicitly
optimize a well-behaved hierarchical evaluation metric, e.g. H-AP. We show
experimentally that our method HAPPIER significantly outperforms CSL [41]
both on hierarchical metrics and AP-level evaluations.

3 HAPPIER Model

We detail HAPPIER our Hierarchical Average Precision training method for
Pertinent ImagE Retrieval. We first introduce the Hierarchical Average Precision,
H-AP in Sec. 3.1, that leverages a hierarchical tree (Fig. 2a) of labels. It is based
on the hierarchical rank, H-rank, and evaluates rankings so that more relevant
instances are ranked before less relevant ones (Fig. 2b). We then show how to
directly optimize H-AP by stochastic gradient descent (SGD) using HAPPIER
in Sec. 3.2. Our training objective combines a carefully designed smooth upper
bound surrogate loss for LH-AP = 1 − H-AP and a clustering loss Lclust. that
supports consistent rankings.
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Vehicles
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Mini PriusLada
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Query Image: Lada #2

Fig. 2: HAPPIER leverages a hierarchical tree representing the semantic simi-
larities between concepts in (a) to introduce a new hierarchical metric, H-AP
in Eq. (3), see (b). H-AP exploits the hierarchy to weight rankings’ inversion:
given the query image of a “Lada #2”, H-AP penalizes an inversion with a
“Lada #9” less than with a “Prius #4”. To directly train models with H-AP,
we carefully study the structure of the problem and introduce the Ls

H-AP loss
in Eq. (5), which provides a smooth upper bound of LH-AP, see (c). We also
train HAPPIER with the Lclust. loss in Eq. (6) to enforce the partial ordering in
stochastic optimization to mach the global ones.

Context Let us consider a retrieval set Ω = {xj}j∈J1;NK composed of N

instances. For a query3 q ∈ Ω, we aim to order all xj ∈ Ω so that more relevant
(i.e. similar) instances are ranked before less relevant instances.

In our hierarchical setting, the relevance of an instance xj is non-binary. We
assume that we have access to a hierarchical tree defining semantic similarities
between concepts as in Fig. 2a. For a query q, we leverage this knowledge to
partition the set of retrieved instances into L+ 1 disjoint subsets

{
Ω(l)

}
l∈J0;LK.

Ω(L) is the subset of the most similar instances to the query (i.e. fine-grained
level): for L = 3 and a “Lada #2” query, Ω(3) are the images of the same “Lada
#2” (green), see Fig. 2. The set Ω(l) for l < L contains instances with smaller
relevance with respect to the query: Ω(2) in Fig. 2 is the set of “Lada” that are
not “Lada #2” (blue) and Ω(1) is the set of “Cars” that are not “Lada” (orange).
We also define Ω− := Ω(0) as the set of negative instances, i.e. the set of vehicles
that are not “Cars” (in red) in Fig. 2 and Ω+ =

⋃L
l=1 Ω

(l). Each instance k of Ω(l)

is thus associated a value through the relevance function denoted as rel(k) [19].

3 For the sake of readability, our notations are given for a single query. During training,
HAPPIER optimizes our hierarchical retrieval objective by averaging several queries.
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Query Image: 

Lada #2

Fig. 3: Given a “Lada #2” query, the top inversion is less severe than the bottom
one. Indeed on the top row instance 1 is semantically closer to the query – as it is
a “Lada”– than instance 3 on the bottom row. Indeed instance 3’s closest common
ancestor with the query, “Cars”, is farther in the hierarchical tree (see Fig. 2a).
Because of that H-rank(2) is greater on the top row (5/3) than on the bottom
row (4/3), leading to a greater H-AP in Fig. 2b for the top row.

To rank the instances xj ∈ Ω with respect to the query q, we compute
cosine similarities in an embedding space. More precisely, we extract embedding
vectors using a deep neural network f parameterized by θ, vj = fθ(xj), and
compute the cosine similarity between the query and every image sj = fθ(q)

T vj .
Images are then ranked by decreasing cosine similarity score. We learn the
parameters θ of the network with HAPPIER, our framework to directly minimize
LH-AP(θ) = 1−H-AP(θ). This enforces a ranking where the instances with the
highest cosine similarity scores belong to Ω(L), then Ω(L−1) etc. and the items
with the lowest cosine similarity belong to Ω−.

3.1 Hierarchical Average Precision

Average Precision (AP) is the most common metric in Image Retrieval. AP
evaluates a ranking in a binary setting: for a given query, each instance is either
positive or negative. It is computed as the average of precision at each rank n
over the positive set AP = 1

|Ω+|
∑N

n=1 Prec(n). Previous works have written the

AP using the ranking operator [2] as in Eq. (1). The rank for an instance k is
written as a sum of Heaviside (step) function H [33]: this counts the number of
instances j ranked before k, i.e. that have a higher cosine similarity (sj > sk).
rank+ is the rank among the positive instances, i.e. restricted to Ω+.

AP =
1

|Ω+|
∑

k∈Ω+

rank+(k)

rank(k)
, with

{
rank(k) = 1 +

∑
j∈Ω H(sj − sk)

rank+(k) = 1 +
∑

j∈Ω+ H(sj − sk)
(1)

Extending AP to hierarchical image retrieval We propose an extension of
AP that leverages non-binary labels. To do so, we extend the concept of rank+

to the hierarchical case with the concept of hierarchical rank, H-rank:

H-rank(k) = rel(k) +
∑
j∈Ω+

min(rel(k), rel(j)) ·H(sj − sk) . (2)
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Intuitively, min(rel(k), rel(j)) corresponds to seeking the closest ancestor
shared by instance k and j with the query in the hierarchical tree. As illustrated
in Fig. 3, H-rank induces a smoother penalization for instances that do not share
the same fine-grained label as the query but still share some coarser semantics,
which is not the case for rank+.

From H-rank in Eq. (2) we define the Hierarchical Average Precision, H-AP:

H-AP =
1∑

k∈Ω+ rel(k)

∑
k∈Ω+

H-rank(k)

rank(k)
(3)

Eq. (3) extends the AP to non-binary labels. We replace rank+ by our hierarchical
rank H-rank and the normalization term |Ω+| is replaced by

∑
k∈Ω+ rel(k), which

both represent the “sum of positives”, see more details in supplementary A.2.
H-AP extends the desirable properties of the AP. It evaluates the quality of a

ranking by: i) penalizing inversions of instances that are not ranked in decreasing
order of relevances with respect to the query, ii) giving stronger emphasis to
inversions that occur at the top of the ranking. Finally, we can observe that,
by this definition, H-AP is equal to the AP in the binary setting (L = 1). This
makes H-AP a consistent generalization of AP (details in supplementary A.2).

Relevance function design The relevance rel(k) defines how “similar” an
instance k ∈ Ω(l) is to the query q. While rel(k) might be given as input in
Information Retrieval datasets [32,9], we need to define it based on the hierarchical
tree in our case. We want to enforce the constraint that the relevance decreases
when going up the tree, i.e. rel(k) > rel(k′) for k ∈ Ω(l), k′ ∈ Ω(l′) and l > l′. To
do so, we assign a total weight of (l/L)α to each semantic level l, where α ∈ R+

controls the decrease rate of similarity in the tree. For example for L = 3 and
α = 1, the total weights for each level are 1, 2

3 ,
1
3 and 0. The instance relevance

rel(k) is normalized by the cardinal of Ω(l):

rel(k) =
(l/L)α

|Ω(l)| if k ∈ Ω(l) (4)

Other definitions fulfilling the decreasing similarity behaviour in the tree are
possible. An interesting option for the relevance enables to recover a weighted
sum of AP, denoted as

∑
wAP :=

∑L
l=1 wl ·AP(l) (supplementary A.2), i.e. the

weighted sum of AP is a particular case of H-AP.
We set α = 1 in Eq. (4) for the H-AP metric and in our main experiments.

Setting α to larger values supports better performances on fine-grained levels as
their relevances will increase. This variant is denoted HAPPIERF and discussed
in Sec. 4.

3.2 Direct optimization of H-AP

H-AP in Eq. (3) involves the computation of H-rank and rank, which are non-
differentiable due to the summing of Heaviside step functions. We thus introduce
a smooth approximation of H-AP to obtain a surrogate loss amenable to gradient
descent, which fulfils theoretical guarantees for proper optimization.
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Re-writing H-AP In order to design our surrogate loss for LH-AP = 1−H-AP,
we decompose H-rank and rank into two quantities. Denoting H-rank>(k) (resp.
H-rank≤(k)) as the restriction of H-rank to instances of strictly higher relevances
(resp. lower or equal), we can see that H-rank(k) = H-rank>(k) +H-rank≤(k).
The rank can be decomposed in a similar fashion: rank(k) = rank≥(k)+rank<(k)
where < (resp. ≥) denotes the restriction to instances of strictly lower relevances
(resp. higher or equal). The LH-AP can be rewritten as follow:

LH-AP = 1− 1∑
k∈Ω+ rel(k)

∑
k∈Ω+

H-rank>(k) +H-rank≤(k)

rank≥(k) + rank<(k)
. (5)

We choose to optimize over H-rank> and rank< in Eq. (5). We maximize
H-rank> to enforce that the kth instance must decrease in cosine similarity score
if it is ranked before another instance of higher relevance (∇H-rank> in Fig. 2
enforces the blue instance to be ranked after the green one as it is less relevant
to the query). We minimize rank< to encourage the kth instance to increase in
cosine similarity score if it is ranked after one or more instances of lower relevance
(∇ rank< in Fig. 2 enforces that the last green instance moves before less relevant
instances). Optimizing both those terms leads to a decrease in LH-AP. On the
other hand, we purposely do not optimize the two remaining H-rank≤(k) and
rank≥(k) terms, since this could harm training performances as explained in
supplementary A.3.

Upper bound of LH-AP Based on the previous analysis, we now design our
surrogate loss Ls

H-AP by introducing a smooth approximation of rank< and
H-rank>(k). An important sought property of Ls

H-AP is that it is an upper bound
of LH-AP. To this end, we approximate H-rank>(k) with a piece-wise linear func-
tion that is a lower bound of the Heaviside function. rank< is approximated with a
smooth upper bound of the Heaviside that combines a piece-wise sigmoid function
and an affine function, which has been shown to make the training more robust
thanks to the induced implicit margins between positives and negatives [39,2,36].
More details are given in supplementary A.3 on those surrogates.

Clustering constraint in HAPPIER Positives only need to have a greater
cosine similarity with the query than negatives in order to be correctly ranked.
Yet, we cannot optimize the ranking on the entire datasets – and thus the true
LH-AP – because of the batch-wise estimation performed in stochastic gradient
descent. To mitigate this issue, we take inspiration from clustering methods [51,43]
to define the following objective in order to group closely the embeddings of
instances that share the same fine-grained label:

Lclust.(θ) = − log

 exp(
vT
y py

σ )∑
pz∈Z exp(

vT
y pz

σ )

 , (6)

where py is the normalized proxy corresponding to the fine-grained class of the
embedding vy, Z is the set of proxies, and σ is a temperature scaling parameter.
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In Fig. 2, ∇Lclust. further clusters “Lada #2” instances. Lclust. induces a reference
shared across batches and thus enforces that the partial ordering in-between
batches is consistent with the global ordering over the entire retrieval set.

Our resulting final objective is a linear combination of both our losses, with a
weight factor λ ∈ [0, 1] that balances the two terms:

LHAPPIER(θ) = (1− λ) · Ls
H-AP(θ) + λ · Lclust.(θ) .

4 Experiments

4.1 Experimental setup

Datasets We use the standard benchmark Stanford Online Products [29] (SOP)
with two levels of hierarchy (L = 2), and iNaturalist-2018 [45] with the stan-
dard splits from [2] in two settings: i) iNat-base with two levels of hierarchy
(L = 2) ii) iNat-full with the full biological taxonomy composed of 7 levels (L = 7).
We also evaluate on the recent dynamic metric learning (DyML) datasets (DyML-
V, DyML-A, DyML-P) introduced in [41] for the task of hierarchical image
retrieval, each with 3 semantic levels (L = 3).

Implementation details Our base model is a ResNet-50 pretrained on ImageNet
for SOP and iNat-base/full, and a ResNet-34 randomly initialized on DyML-
V&A and pretrained on ImageNet on DyML-P, following [41]. Unless specified
otherwise, all reported results are obtained with α = 1 in Eq. (4) and λ = 0.1 for
LHAPPIER. We study the impact of these parameters in Sec. 4.3.

Metrics For SOP and iNat, we evaluate the models based on three hierarchical
metrics: H-AP – which we introduced in Eq. (3) – the Average Set Intersection
(ASI) and the Normalized Discounted Cumulative Gain (NDCG), defined in
supplementary B.3. We also report the AP for each semantic level. For DyML,
we follow the evaluation protocols of [41] and compute AP, ASI and R@1 on each
semantic scale before averaging them. We cannot compute H-AP or NDCG on
those datasets as the hierarchical tree is not available on the test set.

Baselines We compare HAPPIER to several recent image retrieval methods
optimized at the fine-grained level, which represent strong baselines for IR when
training with binary labels: Triplet SH (TLSH) [49], NormSoftMax (NSM) [51],
ProxyNCA++ (NCA++) [43] and ROADMAP [36]. We also benchmark against
hierarchical methods obtained by summing these fine-grained losses at different
levels (denoted by Σ), and with respect to the recent hierarchical CSL loss [41].
Details on the experimental setup are given in supplementary B.

4.2 Main Results

Hierachical results We first evaluate HAPPIER on global hierarchical metrics.
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On Tab. 1, we can notice that HAPPIER significantly outperforms methods
trained on the fine-grained level only, with a gain on H-AP over the best perform-
ing methods of +16.1pt on SOP, +14.1pt on iNat-base and +13.8pt on iNat-full.
HAPPIER also exhibits significant gains compared to hierarchical methods. On
H-AP, HAPPIER has important gains on all datasets (e.g. +6.3pt on SOP,
+4.2pt on iNat-base over the best competitor), but also on ASI and NDCG. This
shows the strong generalization of the method on standard metrics. Compared
to the recent CSL loss [41], we observe a consistent gain over all metrics and
datasets, e.g. +6pt on H-AP, +8pt on ASI and +2.6pts on NDCG on SOP. This
shows the benefits of optimizing a well-behaved hierarchical metric compared to
an ad-hoc proxy method.

Table 1: Comparison of HAPPIER on SOP and iNat-base/full when using
hierarchical metrics. Best results in bold, second best underlined.

Method
SOP iNat-base iNat-full

H-AP ASI NDCG H-AP ASI NDCG H-AP ASI NDCG

F
in
e

Triplet SH [49] 42.2 22.4 78.8 39.5 63.7 91.5 36.1 59.2 89.8
NSM [51] 42.8 21.1 78.3 38.0 51.6 88.9 33.3 51.7 88.2
NCA++ [43] 43.0 21.5 78.4 39.5 57.0 90.1 35.3 55.7 89.0
ROADMAP [36] 43.3 19.1 77.9 40.3 61.0 91.2 34.7 59.6 89.5

H
ie
r.

ΣTLSH [49] 53.1 53.3 89.2 44.0 87.4 96.4 39.9 85.5 92.0
ΣNSM [51] 50.4 49.7 87.0 47.9 75.8 94.4 46.9 74.2 93.8
ΣNCA++ [43] 49.5 52.8 87.8 48.9 78.7 95.0 44.7 74.3 92.6
CSL [41] 52.8 57.9 88.1 50.1 89.3 96.7 45.1 84.9 93.0

HAPPIER 59.4 65.9 91.5 54.3 89.3 96.9 47.9 87.2 93.8

On Tab. 2, we evaluate HAPPIER on the recent DyML benchmarks. HAP-
PIER again shows significant gains in mAP and ASI compared to methods only
trained on fine-grained labels, e.g. +9pt in mAP and +10pt in ASI on DyML-V.
HAPPIER also outperforms other hierarchical baselines: +4.8pt mAP on DyML-
V, +0.9 on DyML-A and +1.8 on DyML-P. In R@1, HAPPIER performs on par
with other methods on DyML-V and outperforms other hierarchical baselines by
a large margin on DyML-P: 63.7 vs. 60.8 for ΣNSM. Interestingly, HAPPIER
also consistently outperforms CSL [41] on its own datasets4.

Detailed evaluation Tabs. 3 and 4 shows the performances obtained by the
different methods on each semantic hierarchy levels. We evaluate HAPPIER and
also HAPPIERF (α > 1 for Eq. (4) in Sec. 3.1), with α = 5 on SOP and α = 3 on
iNat-base/full. HAPPIER optimizes the overall hierarchical performances, while
HAPPIERF is meant to be optimal at the fine-grained level while still optimizing
coarser levels.

4 CSL’s score on Tab. 2 are above those reported in [41]; personal discussions with the
authors [41] validate that our results are valid for CSL, see supplementary B.5.
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Table 2: Performance comparison on Dynamic Metric Learning benchmarks [41].

Method
DyML-Vehicle DyML-Animal DyML-Product

mAP ASI R@1 mAP ASI R@1 mAP ASI R@1
F
in
e TLSH [49] 26.1 38.6 84.0 37.5 46.3 66.3 36.32 46.1 59.6

NSM [51] 27.7 40.3 88.7 38.8 48.4 69.6 35.6 46.0 57.4
ROADMAP [36] 27.1 39.6 84.5 34.4 42.6 62.8 34.6 44.6 62.5

H
ie
r.

ΣTLSH [49] 25.5 38.1 81.0 38.9 47.2 65.9 36.9 46.3 58.5
ΣNSM [51] 32.0 45.7 89.4 42.6 50.6 70.0 36.8 46.9 60.8
CSL [41] 30.0 43.6 87.1 40.8 46.3 60.9 31.1 40.7 52.7

HAPPIER 37.0 49.8 89.1 43.8 50.8 68.9 38.0 47.9 63.7

Table 3: Comparison of HAPPIER vs. methods trained only on fine-grained labels
on SOP and iNat-base. Metrics are reported for both semantic levels.

SOP iNat-base

Fine Coarse Fine Coarse
Method R@1 AP AP R@1 AP AP

F
in
e

TLSH [49] 79.8 59.6 14.5 66.3 33.3 51.5
NSM [51] 81.3 61.3 13.4 70.2 37.6 38.8
NCA++ [43] 81.4 61.7 13.6 67.3 37.0 44.5
ROADMAP [36] 82.2 62.5 12.9 69.3 35.1 50.4

H
ie
r.

CSL [41] 79.4 58.0 45.0 62.9 30.2 88.5

HAPPIER 81.0 60.4 58.4 70.7 36.7 88.6
HAPPIERF 81.8 62.2 36.0 71.0 37.8 78.8

On Tab. 3, we observe that HAPPIER gives the best performances at the
coarse level, with a significant boost compared to fine-grained methods, e.g.
+43.9pt AP compared to the best non-hierarchical TLSH [49] on SOP. HAPPIER
even outperforms the best fine-grained methods in R@1 on iNat-base, but is
slightly below on SOP. HAPPIERF performs on par with the best methods at
the finest level on SOP, while further improving performances on iNat-base, and
still significantly outperforms fine-grained methods at the coarse level.

The satisfactory behaviour and the two optimal regimes of HAPPIER and
HAPPIERF are confirmed and even more pronounced on iNat-full (Tab. 4):
HAPPIER gives the best results on coarser levels (from “Order”), while being
very close to the best results on finer ones. HAPPIERF gives the best results at
the finest levels, even outperforming very competitive fine-grained baselines.

Again, note that HAPPIER outperforms CSL [41] on all semantic levels and
datasets on Tabs. 3 and 4, e.g. +5pt on the fine-grained AP (“Species”) and
+3pt on the coarsest AP (“Kingdom”) on Tab. 4.

4.3 HAPPIER analysis
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Table 4: Comparison of HAPPIER vs. methods trained only on fine-grained labels
on iNat-Full. Metrics are reported for all 7 semantic levels.

Method
Species Genus Family Order Class Phylum Kingdom

R@1 AP AP AP AP AP AP AP

F
in
e

TLSH [49] 66.3 33.3 34.2 32.3 35.4 48.5 54.6 68.4
NSM [51] 70.2 37.6 38.0 31.4 28.6 36.6 43.9 63.0
NCA++ [43] 67.3 37.0 37.9 33.0 32.3 41.9 48.4 66.1
ROADMAP [36] 69.3 35.1 35.4 29.3 29.6 46.4 54.7 69.5

H
ie
r.

CSL [41] 59.9 30.4 32.4 36.2 50.7 81.0 87.4 91.3

HAPPIER 70.2 36.0 37.0 38.0 51.9 81.3 89.1 94.4
HAPPIERF 70.8 37.6 38.2 38.8 50.9 76.1 82.2 83.1

Table 5: Impact of optimization choices
for H-AP described in Sec. 3.2 on iNat-
base.

Ls
H-AP Lclust. H-AP

✗ ✗ 52.3
✓ ✗ 53.1
✓ ✓ 54.3

Table 6: Comparison of relevance func-
tions defined in Eq. (4), H-AP, and in
Prop. 1 in supplementary A.2, ΣwAP.

test→
train↓ H-AP

∑
wAP NDCG

H-AP 53.1 39.8 97.0∑
wAP 52.0 40.5 96.4

Ablation study In Tab. 5, we study the impact of our different choices regarding
the direct optimization of H-AP. The baseline method uses a sigmoid to optimize
H-AP as in [33,2]. Switching to our surrogate loss Ls

H-AP Sec. 3.2 yields a +0.8pt
increase in H-AP. Finally, the combination with Lclust. in HAPPIER results in
an additional 1.3pt improvement in H-AP.

Impact of the relevance function Tab. 6 compares models that are trained
with the relevance function of Eq. (4), i.e. H-AP, and

∑
wAP (relevance given

in supplementary A.2). We report results for H-AP,
∑

wAP and NDCG. Both
H-AP,

∑
wAP perform better when trained with their own metric: +1.1pt H-AP

for the model trained to optimize it and +0.7pt
∑

wAP for the model trained to
optimize it. Both models show similar performances in NDCG (96.4 vs. 97.0).

Hyper-parameters Fig. 4a studies the impact of α for setting the relevance
in Eq. (4): increasing α improves the performances of the AP at the fine-grained
level on iNat-base, as expected. We also show in Fig. 4b the impact of λ weighting
Ls
H-AP and Lclust. in HAPPIER performances: we observe a stable increase in

H-AP within 0 < λ < 0.5 compared to optimizing only Ls
H-AP, while a drop in

performance is observed for λ > 0.5. This shows the complementarity of Ls
H-AP

and Lclust., and how, when combined, HAPPIER reaches its best performance.

4.4 Qualitative study

We provide here qualitative assessments of HAPPIER, including embedding space
analysis and visualization of HAPPIER’s retrievals.
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(b) H-AP vs. λ for LHAPPIER.

Fig. 4: Impact on Inat-base of α in Eq. (4) for setting the relevance of H-AP (a)
and of the λ hyper-parameter on HAPPIER results (b).

t-SNE: organization of the embedding space In Fig. 5, we show using
the dimensionality reduction technique t-SNE [44,7] how HAPPIER learns an
embedding space on SOP (L = 2) that is well-organized. We plot the mean vector
of each fine-grained class and we assign the color based on the coarse level. We
show on Fig. 5a the t-SNE visualisation obtained using a baseline method trained
on the fine-grained labels, and in Fig. 5b we plot the t-SNE of the embedding
space of a model trained with HAPPIER. We cannot observe any clear clusters
for the coarse level on Fig. 5a, whereas we can appreciate the the quality of the
hierarchical clusters formed on Fig. 5b.

(a) t-SNE visualization of a model
trained only on the fine-grained labels.

(b) t-SNE visualization of a model
trained with HAPPIER.

Fig. 5: t-SNE visualisation of the embedding space of two models trained on SOP.
Each point is the average embedding of each fine-grained label (object instance)
and the colors represent coarse labels (object category, e.g. bike, coffee maker).
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Query image

H
AP
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ER

rank 1
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rank 2 rank 3 rank 4 rank 5 rank 6

(a) HAPPIER can help make less severe mistakes. The inversion on the bottom row
are with negative instances (in red), where as with HAPPIER (top row) inversions are
with instances sharing the same coarse label “bike” (in orange).

Query image

H
AP

PI
ER

rank 1

Ba
se

lin
e

rank 2 rank 3 rank 4 rank 5 rank 6

(b) In this example, the models fail to retrieve the correct fine grained images. However
HAPPIER still retrieves images of very similar bikes (in orange) whereas the baseline
retrieves images that are dissimilar semantically to the query (in red).

Fig. 6: Qualitative examples of failure cases from a standard fine-grained model
corrected by training with HAPPIER.

Controlled errors Finally, we showcase in Fig. 6 errors of HAPPIER vs. a fine-
grained baseline. On Fig. 6a, we illustrate how a model trained with HAPPIER
makes mistakes that are less severe than a baseline model trained only on the
fine-grained level. On Fig. 6b, we show an example where both models fail
to retrieve the correct fine-grained instances, however the model trained with
HAPPIER retrieves images of bikes that are visually more similar to the query.

5 Conclusion

In this work, we introduce HAPPIER, a new training method that leverages
hierarchical relations between concepts to learn robust rankings. HAPPIER is
based on a new metric H-AP that evaluates hierarchical rankings and uses a
combination of a smooth upper bound surrogate with theoretical guarantees and a
clustering loss to directly optimize it. Extensive experiments show that HAPPIER
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performs on par to state-of-the-art image retrieval methods on fine-grained metrics
and exhibits large improvements vs. recent hierarchical methods on hierarchical
metrics. Learning more robust rankings reduces the severity of ranking errors,
and is qualitatively related to a better organization of the embedding space with
HAPPIER. Future works include the adaptation of HAPPIER to the unsupervised
setting, e.g. for providing a relevant self-training criterion.
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A Method

A.1 H-rank

We define the H-rank in the main paper as:

H-rank(k) = rel(k) +
∑
j∈Ω+

min(rel(k), rel(j)) ·H(sj − sk) . (7)

We detail in Fig. 7 how the H-rank in Eq. (7) is computed in the example
from Fig. 2b of the main paper. Given a “Lada #2” query, we set the relevances
as follows: if k ∈ Ω(3) (i.e. k is also a “Lada #2”), rel(k) = 1; if k ∈ Ω(2) (i.e.
k is another model of “Lada”), rel(k) = 2/3; and if k ∈ Ω(1) (k is a “Car”),
rel(k) = 1/3. Relevance of negatives (other vehicles) is set to 0.

Query Image: 

Lada #2

Fig. 7: H-rank for each retrieval results given a “Lada #2” query with relevances
of Sec. A.1 and the hierarchical tree of Fig. 2a of the main paper.

In this instance, H-rank(2) = 4/3 because rel(2) = 1 and min(rel(1), rel(2)) =
rel(1) = 1/3. Here, the closest common ancestor in the hierarchical tree shared
by the query and instances 1 and 2 is “Cars”. For binary labels, we would have
rank+(2) = 1; this would not take into account the semantic similarity between
the query and instance 1.

A.2 H-AP

We define H-AP in the main paper as:

H-AP =
1∑

k∈Ω+ rel(k)

∑
k∈Ω+

H-rank(k)

rank(k)
(8)

We illustrate in Fig. 8 how the H-AP is computed for both rankings of Fig. 2b
of the main paper. We use the same relevances as in Sec. A.1. The H-AP of the
first example is greater (0.78) than of the second one (0.67) because the error is
less severe. On the contrary, the AP only considers binary labels and is the same
for both rankings (0.45).
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Query Image: 

Lada #2

Fig. 8: AP and H-AP for two different rankings when Given a “Lada #2” query
and relevances of Sec. A.1. The H-AP of the top row is greater (0.78) than
the bottom one’s (0.67) as the error in rank = 1 is less severe for the top row.
Whereas the AP is the same for both rankings (0.45).

Normalization constant for H-AP When all instances are perfectly ranked,
all instances j that are ranked before instance k (sj ≥ sk) have a relevance that
is higher or equal than k’s, i.e. rel(j) ≥ rel(k) and
min(rel(j), rel(k)) = rel(k). So, for each instance k:

H-rank(k) = rel(k) +
∑
j∈Ω+

min(rel(k), rel(j)) ·H(sj − sk)

= rel(k) +
∑
j∈Ω+

rel(k) ·H(sj − sk)

= rel(k) ·

1 +
∑
j∈Ω+

H(sj − sk)

 = rel(k) · rank(k)

The total sum
∑

k∈Ω+
H-rank(k)
rank(k) =

∑
k∈Ω+ rel(k). This means that we need to

normalize by∑
k∈Ω+ rel(k) in order to constrain H-AP between 0 and 1. This results in the

definition of H-AP from Eq. (8).

H-AP is a consistent generalization of AP For a binary setting, the AP is
defined as follows:

AP =
1

|Ω+|
∑

k∈Ω+

rank+(k)

rank(k)
(9)
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H-AP is equivalent to AP in a binary setting (L = 1). Indeed, the relevance
function is 1 for fine-grained instances and 0 otherwise in the binary case.
Therefore H-rank(k) = 1 +

∑
j∈Ω+ H(sj − sk) which is the same definition as

rank+ in AP. Furthermore the normalization constant of H-AP,
∑

k∈Ω+ rel(k),
is equal to the number of fine-grained instances in the binary setting, i.e. |Ω+|.
This means that H-AP = AP in this case.

Link between H-AP and ΣwAP We define the AP for the semantic level
l ≥ 1 as the binary AP with the set of positives being Ω+,l =

⋃L
q=l Ω

(q):

AP(l) =
1

|Ω+,l|
∑

k∈Ω+,l

rank+,l(k)

rank(k)
, rank+,l(k) = 1 +

∑
j∈Ω+,l

H(sj − sk) (10)

Property 1. For any relevance function rel(k) =
∑l

p=1
wp

|Ω+,q| , k ∈ Ω(l),

with positive weights {wl}l∈J1;LK such that
∑L

l=1 wl = 1:

H-AP =

L∑
l=1

wl ·AP (l)

i.e. H-AP is equal the weighted average of the AP at all semantic levels.

Proof of Property 1

Denoting ΣwAP :=
∑L

l=1 wl ·AP (l), we obtain from Eq. (10):

ΣwAP =

L∑
l=1

wl ·
1

|Ω+,l|
∑

k∈Ω+,l

rank+,l(k)

rank(k)
(11)

We define ŵl =
wl

|Ω+,l| to ease notations, so:

ΣwAP =

L∑
l=1

ŵl

∑
k∈Ω+,l

rank+,l(k)

rank(k)
(12)

We define 1(k, l) = 1
[
k ∈ Ω+,l

]
so that we can sum over Ω+ instead of Ω+,l

and inverse the summations. Note that rank does not depend on l, on contrary
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to rank+,l.

ΣwAP =

L∑
l=1

∑
k∈Ω+

ŵl · 1(k, l) · rank+,l(k)

rank(k)
(13)

=
∑

k∈Ω+

L∑
l=1

ŵl · 1(k, l) · rank+,l(k)

rank(k)
(14)

=
∑

k∈Ω+

∑L
l=1 1(k, l) · ŵl · rank+,l(k)

rank(k)
(15)

We replace rank+,l in Eq. (15) with its definition from Eq. (10):

ΣwAP =
∑

k∈Ω+

∑L
l=1 1(k, l) · ŵl ·

(
1 +

∑
j∈Ω+,l H(sj − sk)

)
rank(k)

(16)

=
∑

k∈Ω+

∑L
l=1 1(k, l) · ŵl +

∑L
l=1

∑
j∈Ω+,l 1(k, l) · ŵl ·H(sj − sk)

rank(k)
(17)

=
∑

k∈Ω+

∑L
l=1 1(k, l) · ŵl +

∑L
l=1

∑
j∈Ω+ 1(j, l) · 1(k, l) · ŵl ·H(sj − sk)

rank(k)

(18)

=
∑

k∈Ω+

∑L
l=1 1(k, l) · ŵl +

∑
j∈Ω+

∑L
l=1 1(j, l) · 1(k, l) · ŵl ·H(sj − sk)

rank(k)

(19)

We define the following relevance function:

rel(k) =

L∑
l=1

1(k, l) · ŵl (20)

By construction of 1(·, l):
L∑

l=1

1(j, l) · 1(k, l) · ŵl = min(rel(k), rel(j)) (21)

Using the definition of the relevance function from Eq. (20) and Eq. (21), we
can rewrite Eq. (19) with H-rank:

ΣwAP =
∑

k∈Ω+

rel(k) +
∑

j∈Ω+ min(rel(j), rel(k)) ·H(sj − sk)

rank(k)
(22)

=
∑

k∈Ω+

H-rank(k)

rank(k)
(23)
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Eq. (23) lacks the normalization constant
∑

k∈Ω+ rel(k) in order to have the
same shape as H-AP in Eq. (8). So we must prove that

∑
k∈Ω+ rel(k) = 1:

∑
k∈Ω+

rel(k) =
∑

k∈Ω+

L∑
l=1

1(k, l) · ŵl (24)

=

L∑
l=1

|Ω(l)|
l∑

p=1

ŵp (25)

=

L∑
l=1

|Ω(l)|
l∑

p=1

wp

|Ω+,p| (26)

=
L∑

l=1

|Ω(l)|
l∑

p=1

wp

|⋃L
q=p Ω

(q)|
(27)

=

L∑
l=1

|Ω(l)|
l∑

p=1

wp∑L
q=p |Ω(q)|

(28)

=

L∑
l=1

l∑
p=1

|Ω(l)| · wp∑L
q=p |Ω(q)|

(29)

=

L∑
p=1

L∑
l=p

|Ω(l)| · wp∑L
q=p |Ω(q)|

(30)

=

L∑
p=1

wp ·
∑L

l=p |Ω(l)|∑L
q=p |Ω(q)|

(31)

=

L∑
p=1

wp = 1 (32)

We have proved that ΣwAP = H-AP with the relevance function of Eq. (20):

ΣwAP =
1∑

k∈Ω+ rel(k)

∑
k∈Ω+

H-rank(k)

rank(k)
= H-AP (33)

Finally we show, for an instance k ∈ Ω(l), :

rel(k) =

L∑
p=1

1(k, p) · ŵp =

l∑
p=1

·ŵp =

l∑
p=1

wp

|Ω+,p| (34)

i.e. the relevance of Eq. (20) is the same as the relevance of Property 1. This
concludes the proof of Property 1. □
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A.3 Direct optimisation of H-AP

Decomposing H-rank and rank We have Ω+ =
⋃L

q=1 Ω
(q), for an instance

k ∈ Ω(l) we can define the following subsets: Ω> =
⋃L

q=l+1 Ω
(q) and Ω≤ =⋃l

q=1 Ω
(q), so that Ω+ = Ω> ∪Ω≤. So we can rewrite H-rank:

H-rank(k) = rel(k) +
∑
j∈Ω+

min(rel(k), rel(j)) ·H(sj − sk)

=
∑

j∈Ω>

min(rel(k), rel(j)) ·H(sj − sk)︸ ︷︷ ︸
H-rank>

+ rel(k) +
∑

j∈Ω≤

min(rel(k), rel(j)) ·H(sj − sk)︸ ︷︷ ︸
H-rank≤

Similarly we can define Ω≥ =
⋃L

q=l Ω
(q) and Ω< =

⋃l−1
q=0 Ω

(q), with Ω+ =

Ω≥ ∪Ω<. So we can rewrite rank:

rank(k) = 1 +
∑
k∈Ω

H(sj − sk)

= 1 +
∑

k∈Ω≥

H(sj − sk)︸ ︷︷ ︸
rank≥

+
∑

k∈Ω<

H(sj − sk)︸ ︷︷ ︸
rank<

Gradients for LH-AP We further decompose LH-AP from Eq. 5 of the main
paper, using H-rank≤(k) = H-rank=(k) +H-rank<(k), rank≥(k) = rank>(k) +
rank=(k):

LH-AP = 1− 1∑
k∈Ω+ rel(k)

∑
k∈Ω+

H-rank>(k) +H-rank=(k) +H-rank<(k)

rank>(k) + rank=(k) + rank<(k) + rank−(k)

Table 7: Decomposition of H-AP for optimization.

H-rank> rank< rank− H-rank= H-rank< rank> rank=

Optimization ✓ ✓ ✓ ✗ ✗ ✗ ✗

We choose to only optimize with respect to the terms indicated with ✓
in Tab. 7.
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rank−(k): ∂LH-AP

∂ rank−(k)
∝ H-rank(k)

rank(k)2 > 0 which means that in order to decrease

LH-AP we must lower rank−, which is an expected behaviour, as it will force k
to have a better ranking if it ranked after negative instances (in Ω−).

rank<(k): if we suppose that H-rank< is a constant, then ∂LH-AP

∂ rank<(k) ∝
H-rank(k)
rank(k)2 > 0 which means that in order to decrease LH-AP we must lower rank<,

which is an expected behaviour, as it will force k to have a better ranking if it
ranked after negative instances (in Ω<).

H-rank>(k): if we suppose that rank> is a constant, ∂LH-AP

∂H-rank>(k) ∝ −1
rank(k) <

0 which means that in order to decrease LH-AP we must increase H-rank>, which
is an expected behaviour, as it will force k to be ranked after other instances of
higher relevance (in Ω>).

We choose to not optimize with respect to H-rank=, H-rank<, rank>, rank=.

rank= & H-rank=: Optimizing through rank= has no impact so we choose
not to optimize it, indeed ∂LH-AP

∂ rank= = 0. This is the case because inversions between
instances of same relevance has no impact on H-AP. This is also the case for
H-rank=.

H-rank<(k): H-rank<(k) depends on rank<(k) and the relevance of the

other instances that are before. We note that 0 < ∂H-rank<(k)
∂ rank(k) < rel(k) indeed

when the rank< increases H-rank< increases and the increase rate can not be
equal or greater than rel(k)

∂LH-AP

∂ rank<(k)
∝−

( a︷ ︸︸ ︷(
∂H-rank<(k)

∂ rank<(k)
− rel(k)

)
· rank>(k) (35)

+

b︷ ︸︸ ︷(
∂H-rank<(k)

∂ rank<(k)
− rel(k)

)
· rank=(k) (36)

+

c︷ ︸︸ ︷(
∂H-rank<(k)

∂ rank<(k)
· rank<(k)−H-rank<(k)

)
(37)

+

d︷ ︸︸ ︷
∂H-rank<(k)

∂ rank<(k)
· rank−(k)

)
/ rank(k)2 (38)

When optimizing through H-rank< we can no longer explicitly control the
sign of ∂LH-AP

∂ rank<(k) . For example if a and b are null (i.e. not instances of higher

or equal relevance are above k), d remains and is greater than 0 and c can be
greater than 0 resulting in an overall negative gradient, which is an unexpected
behaviour. This is why we choose to not optimize through H-rank<.
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rank>(k): We have H-rank>(k) = rel(k) · rank>(k) indeed all instances j
ranked before k have a strictly higher relevance, i.e. min(rel(j), rel(k)) = rel(k),
so we can write:

∂LH-AP

∂ rank>(k)
∝

<0︷ ︸︸ ︷
H-rank<(k)− rel(k) · rank<(k)− rel(k) · rank−(k)

rank(k)2
< 0 (39)

Optimizing trough rank> instead of only H-rank> diminishes the magnitude
of the resulting gradient, so we decide to not optimize through rank>.

Approximating H-rank> In order to have a lower bound on H-rank> we
approximate the Heaviside step function H with a smooth lower bound:

H>
s (t) =

{
γ · t, if t < 0

max(α · t+ β, 1), if t ≥ 0
(40)

H>
s is illustrated in Fig. 9a. UsingH>

s we can approximateH-rank>:H-rank>s (k) =
rel(k)+

∑
j∈Ω+ min(rel(j), rel(k))H>

s (sj−sk). BecauseH
>
s (t) ≤ H(t):H-rank>s (k) ≤

H-rank>. In our experiments we use: γ = 10, β = 0.5, α = 25.

Approximating rank< In order to have an upper bound on rank< we approx-
imate the Heaviside with a smooth upper bound as given in [36]:

H<
s (t) =


σ( t

τ ) if t ≤ 0, where σ is the sigmoid function

σ( t
τ ) + 0.5 if t ∈ [0; δ] with δ ≥ 0

ρ · (t− δ) + σ( δτ ) + 0.5 if t > δ

(41)

H<
s is illustrated in Fig. 9a. Using H<

s we can approximate rank<: rank<s (k) =
1 +

∑
j∈Ω H<

s (sj − sk). Because H<
s (t) ≥ H(t): rank<s (k) ≥ rank<. We use the

hyper-parameters: τ = 0.01, ρ = 100, δ = 0.05.

We illustrate in Fig. 9a H>
s and in Fig. 9a H<

s vs. sj − sk. The margins
denote the fact the even when the instance k is correctly ranked (lower cosine
similarity than j in Fig. 9a and higher in Fig. 9a) we still want to backbropagate
gradient which leads to more robust training.

B Experiments

B.1 Datasets

Stanford Online Product (SOP) [29] is a standard dataset for Image Retrieval
it has two levels of semantic scales, the object Id (fine) and the object category
(coarse). It depicts Ebay online objects, with 120 053 images of 22 634 objects (Id)
classified into 12 (coarse) categories (e.g. bikes, coffee makers etc.), see Fig. 10. We
use the reference train and test splits from [29]. The dataset can be downloaded
at: https://cvgl.stanford.edu/projects/lifted_struct/.

https://cvgl.stanford.edu/projects/lifted_struct/
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s in Eq. (40).
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s in Eq. (40).

Fig. 9: Illustrations of the two approximations of the Heaviside step function used
to approximate H-rank> and rank<.

iNaturalist-2018 Base/Full iNaturalist-2018 is a dataset that has been used
for Image Retrieval in recent works [2,36]. It depicts animals, plants, mushroom
etc. in wildlife, see Fig. 11, it has in total 461 939 images and 8142 fine-grained
classes (“Species”). We use two different sets of annotations: a set of annotations
with 2 semantic levels the species (fine) and intermediate scale (coarse), we
term this dataset iNat-base, and the full biological taxonomy which consists of 7
semantic levels (“Species”, “Genus” . . . ) we term this dataset iNat-full. We use
the standard Image Retrieval splits from [2]. The dataset can be downloaded at:
github.com/visipedia/inat_comp, and the retrieval splits at: drive.google.
com.

DyML-datasets The DyML benchmark [41] is composed of three datasets,
DyML-V that depicts vehicles, DyML-A that depicts animals, DyML-P that
depicts online products. The training set has three levels of semantic (L = 3),
and each image is annotated with the label corresponding to each level (like
SOP and iNat-base/full), however the test protocol is different. At test time for
each dataset there is three sub-datasets, each sub-dataset aims at evaluating the
model on a specific hierarchical level (e.g. “Fine”), so we can only compute binary
metrics on each sub-dataset. We describe in Tab. 8 the statistics of the train and
test datasets. The three datasets can be downloaded at: onedrive.live.com.

B.2 Implementation details

SOP & iNat-base/full Our model is a ResNet-50 [18] pretrained on ImageNet
to which we append a LayerNormalization layer with no affine parameters after
the (average) pooling and a Linear layer that reduces the embeddings size from
2048 to 512. We use the Adam [24] optimizer with a base learning rate of 1e−5 and

https://github.com/visipedia/inat_comp/tree/master/2018
https://drive.google.com/file/d/1sXfkBTFDrRU3__-NUs1qBP3sf_0uMB98/view?usp=sharing
https://drive.google.com/file/d/1sXfkBTFDrRU3__-NUs1qBP3sf_0uMB98/view?usp=sharing
https://onedrive.live.com/?authkey=%21AMLHa5h%2D56ZZL94&id=F4EF5F480284E1C2%21106&cid=F4EF5F480284E1C2
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Fig. 10: Images from Stanford Online Products.

Fig. 11: Images from iNaturalist-2018.

weight decay of 1e−4 for SOP and a base learning rate of 1e−5 and weight decay
of 4e−4 for iNat-base/full. The learning rate is decreased using cosine annealing
decay, for 75 epochs on SOP and 100 epochs on iNat-base/full. We “warm up”
our model for 5 epochs, i.e. the pretrained weights are not optimized. We use
standard data augmentation: RandomResizedCrop and RandomHorizontalFlip,
with a final crop size of 224, at test time we use CenterCrop. We set the random
seed to 0 in all our experiments. We use a fixed batch size of 256 and use the hard
sampling strategy from [6] on SOP and the standard class balanced sampling [51]
(4 instances per class) on iNat-base/full.

DyML We use a ResNet-34 [18] randomly initialized on DyML-V&A and
pretrained on ImageNet for DyML-P, following [41]. We use an SGD optimizer
with Nesterov momentum (0.9), a base learning rate of 0.1 on DyML-V&A and
0.01 on DyML-P with a weight decay of 1e−4. We use cosine annealing decay to
reduce the learning rate for 100 epochs on DyML-V&A and 20 on DyML-P. We
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Table 8: Statistics of the three train and test DyML benchmarks [41].

Datasets
DyML-Vehicle DyML-Animal DyML-Product

train test train test train test

Coarse
Classes 5 6 5 5 36 6
Images 343.1 K 5.9 K 407.8 K 12.5 K 747.1 K 1.5 K

Middle
Classes 89 127 28 17 169 37
Images 343.1 K 34.3 K 407.8 K 23.1 K 747.1 K 1.5 K

Fine
Classes 36,301 8,183 495 162 1,609 315
Images 343.1 K 63.5 K 407.8 K 11.3 K 747.1 K 1.5 K

use the same data augmentation and random seed as for SOP and iNat-base. We
also use the class balanced sampling (4 instances per class) with a fixed batch
size of 256.

B.3 Metrics

The ASI [15] measures at each rank n ≤ N the set intersection proportion (SI)
between the ranked list a1, . . . , aN and the ground truth ranking b1, . . . , bN , with
N the total number of positives. As it compares intersection the ASI can naturally
take into account the different levels of semantic:

SI(n) =
|{a1, . . . , an} ∩ {b1, . . . , bn}|

n

ASI =
1

N

N∑
n=1

SI(n)

The NDCG [10] is the reference metric in information retrieval, we define it
using the semantic level l of each instance:

DCG =
∑

k∈Ω+

2l − 1

log2(1 + rank(k))
, with k ∈ Ω(l).

NDCG =
DCG

maxranking DCG

To compute the AP for the semantic level l we consider that all instances
with semantic levels ≥ l are positives:

AP (l) =
∑

k∈
⋃L

q=l Ω
(q)

rankl(k)

rank(k)
, where rankl(k) = 1 +

∑
j∈

⋃L
q=l Ω

(q)

H(sj − sk)
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B.4 Source Code

Our code is based on PyTorch [31]. We use utilities from Pytorch Metric

Learning [28] e.g. for samplers and losses, Hydra [50] to handle configuration files
(Yaml), tsnecuda [7] to compute t-SNE reductions using GPUs and standard
Python libraries such as NumPy [17] or Matplotlib [20].

We use the publicly available implementations of the NSM loss [51]5 which
is under an Apache-2.0 license, of NCA++[43]6 which is under an MIT license,
of ROADMAP [36]7 which is under an MIT license, we use the implementation
of Pytorch Metric Learning [28]8 for the TLSH [49] (MIT license), and finally
we have implemented the CSL [41] after discussion with the authors and we will
make it part of our repository.

We had access to both Nvidia Quadro RTX 5000 and Tesla V-100 (16 GiB
GPUs). We use mixed precision training [26], which is native to PyTorch, to
accelerate training, making our models train for up to 7 hours on Stanford Online
Products, 25 hours on iNaturalist-2018, less than 20 hours on both DyML-A and
DyML-V and 6 hours on DyML-P.

B.5 On DyML results

Their is no public code available to reproduce the results of [41]. After personal
correspondence with the authors, we have been able to re-implement the CSL
method from [41]. We report the differences in performances between our results
and theirs in Tab. 9. Our implementation of CSL performs better on the three
datasets which is the results of our better training recipes detailed in Sec. B.2.
Our discussions with the authors of [41] confirmed that the performances obtained
with our re-implementation of CSL are valid and representative of the method’s
potential.

Table 9: Difference in performances for CSL between results reported in [41] and
our experiments on the DyML benchmarks.

Method
DyML-Vehicle DyML-Animal DyML-Product

mAP ASI R@1 mAP ASI R@1 mAP ASI R@1

CSL [41] 12.1 23.0 25.2 31.0 45.2 52.3 28.7 29.0 54.3
CSL (ours) 30.0 43.6 87.1 40.8 46.3 60.9 31.1 40.7 52.7

5 https://github.com/azgo14/classification_metric_learning
6 https://github.com/euwern/proxynca_pp
7 https://github.com/elias-ramzi/ROADMAP
8 https://github.com/KevinMusgrave/pytorch-metric-learning

https://github.com/azgo14/classification_metric_learning
https://github.com/euwern/proxynca_pp
https://github.com/elias-ramzi/ROADMAP
https://github.com/KevinMusgrave/pytorch-metric-learning
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(a) HAPPIER can help make less severe mistakes. The inversion on the bottom row
are with negative instances (in red), where as with HAPPIER (top row) inversions are
with instances sharing the same coarse label (in orange).
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(b) In this example, the models fail to retrieve the correct fine grained images. However
HAPPIER still retrieves images with the same coarse label (in orange) whereas the
baseline retrieves images that are dissimilar semantically to the query (in red).

Fig. 12: Qualitative examples of failure cases from a standard fine-grained model
corrected by training with HAPPIER.

C Qualitative results

C.1 Controlled errors: iNat-base

We showcase in Fig. 12 errors of HAPPIER vs. a fine-grained baseline on iNat-
base. On Fig. 12a, we illustrate how a model trained with HAPPIER makes
mistakes that are less severe than a baseline model trained only on the fine-
grained level. On Fig. 12b, we show an example where both models fail to retrieve
the correct fine-grained instances, however the model trained with HAPPIER
retrieves images of bikes that are semantically more similar to the query.

C.2 Controlled errors: iNat-full

We illustrate in Figs. 13 and 14 an example of a query image and the top 25
retrieved results on iNat-full (L = 7). Given the same query both models failed
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to retrieve the correct fine-grained images (that would be in Ω(7)). The standard
model in Fig. 14 retrieves images that are semantically more distant than the
images retrieved with HAPPIER in Fig. 13. For example HAPPIER retrieves
images that are either in Ω(5) or Ω(4) (only one instance is in Ω(3)) whereas the
standard model retrieves instances that are in Ω(2) or Ω(1).
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Fig. 13: Images retrieved for the query image by a model trained with HAPPIER
on iNat-full (L = 7).
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Fig. 14: Images retrieved for the query image by a model trained with standard
model on iNat-full (L = 7).
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