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Abstract. The dramatic increase in social media has given rise to the
problem of online hate speech. Deep neural network-based classifiers have
become the state-of-the-art for automatic hate speech classification. The
performance of these classifiers depends on the amount of available la-
belled training data. However, most hate speech corpora have a small
number of hate speech samples. In this article, we aim to jointly use
multiple hate speech corpora to improve hate speech classification per-
formance in low-resource scenarios. We harness different hate speech cor-
pora in a multi-task learning setup by associating one task to one corpus.
This multi-corpus learning scheme is expected to improve the general-
ization, the latent representations, and domain adaptation of the model.
Our work evaluates multi-corpus learning for hate speech classification
and domain adaptation. We show significant improvements in classifica-
tion and domain adaptation in low-resource scenarios.

Keywords: hate speech detection · multi-task learning · low-resource
text classification.

1 Introduction

An increase in online social media usage has led to a rise in hate speech. Hate
speech is an anti-social behavior that targets a small part of the society, based
on race, gender, etc. [9]. In many countries, hate speech is prohibited by the law
and has to be filtered from social media platforms. However, manually analyzing
the user contents is time-consuming and expensive. Natural language processing
techniques can be used to automatically detect and filter hate speech content.
Hence, there is an increased interest in automatic hate speech classification. Deep
learning-based approaches have become the state-of-the-art for this task [3, 8, 17,
19, 14]. However, the performance of these classifiers depends on the amount of
available labelled training data [2].

Typically, hate speech datasets are collected from sources such as Twitter [7,
13, 4], Wikipedia [26], etc. Characteristics of the dataset, such as the sampling
strategy, the time frame [11] of the comments, and the definition of class labels
[12], often bias the models trained on each dataset. Particularly, a model trained
on one dataset can be inefficient on another dataset [25], resulting in the re-
stricted generalizability of the model. Furthermore, these datasets have a small
number of labelled samples. In order to bring diversity in the training data, and
increase the number of samples to train the model, multiple hate speech corpora
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can be harnessed to consider the corpus diversity and reduce the data sparsity is-
sue. In this paper, we investigate a multi-task learning (MTL) approach, instead
of a simple combination of different corpora.

MTL aims to jointly learn from multiple related tasks. MTL combines the
domain-specific information and shares representations between related tasks,
hence, can improve the generalization capabilities of the model on the target
task [6]. MTL has applications in various domains, such as computer vision,
bioinformatics, speech, natural language processing (NLP), etc. [27, 23].

MTL has been explored for hate speech classification. An MTL architecture
having shared and private task-specific layers to capture shared and task-specific
features, respectively, from different hate speech classification tasks is proposed
in [15]. A joint model of emotion and abusive language detection, that allows one
task to receive relevant information from the other tasks is introduced in [21].
They combine the features of single task-learning and MTL using an attention
mechanism. Although these prior works have shown the effectiveness of MTL
architectures, they haven’t exploited the pre-trained models.

In this article, we design an MTL approach based on the work in [18], wherein
the authors combined a range of NLP tasks using shared layers represented by
the pre-trained BERT model and several groups of task-specific layers; each
group corresponding to a single task. Compared to this work, we adapt the
paradigm of multi-task learning to multi-corpus learning. In our approach, a
task corresponds to a corpus. Compared to the works in [15, 21], we use the pre-
trained Bidirectional Encoder Representations from Transformers (BERT [10])
model for our MTL to benefit from extensive knowledge learned by BERT pre-
training. A Spanish BERT model in an MTL setup has showed improvements
for hate speech classification tasks in [20]. However, they incorporate sentiment
analysis and emotion analysis tasks in their MTL. Instead, we exploit the relat-
edness of hate speech classification tasks by using five well-known hate speech
datasets extracted from Twitter and Wikipedia. Furthermore, these prior works
do not study the performance of the MTL approach in low-resource scenarios.
Thus, we explore a low-resource domain adaptation scenario in the framework
of multi-corpus learning.

Our contributions are summarized as follows:
1. We adapt MTL approach to multi-corpus learning (MCL) for hate speech

classification and validate it on widely used hate speech corpora.
2. We study the robustness of the proposed MCL in low-resource scenarios.
3. We study low-resource domain adaptation.

2 Proposed Methodology

In this section, we first describe MTL. This is followed by our approaches for
MCL and domain adaptation in low-resource scenario.

2.1 Objective of Multi-Task Learning

Given T related tasks {ti}Ti=1, MTL aims to jointly learn these tasks to improve
the model performance on each task ti. Let us consider supervised learning task
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task ti, a MTL model learns the parameter set {θs, θi} using a function f i as
follow:

f i(Xi; θs, θi) : Xi → Y i (1)

where θs are the model parameters shared between all the tasks in {ti}Ti=1, and
θi represents the task-specific model parameters. The objective is to minimize
the overall loss L:

L(θs, θ1, θ2, . . . θT ) =

T∑
i=1

Li(θs, θi) (2)

where Li(θs, θi) is the loss for task ti, and, in the supervised case, can be eval-
uated as follow:

Li(θs, θi) =
1

ni

ni∑
j=1

L(f i(xi
j ; θ

s, θi), yij) (3)

Where, L is a loss function measuring how well the function f i fits the train-
ing data (Xi, Y i). The objective of MTL is to reduce the overall loss L, by op-
timizing the task-specific parameters {θi}Ts

i=1, and the parameters shared across
all the tasks θs. In a single task learning approach, T = 1 and the dataset of
task t1 is processed by a model with parameters θ1.

Corpus Specific 
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Layers 2
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Multi-corpus Learning Domain Adaptation

Corpus 1

...

...

Shared Layers (BERT)
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Shared Layers (BERT)
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Fig. 1: Architecture of the multi-corpus model (left part) and the procedure of
domain adaptation (right part).

2.2 Our Approach for Multi-Corpus Learning

MTL can be done with either hard or soft parameter sharing of hidden layers [23].
In our work, we use the most common approach of MTL: the hard parameter
sharing. In this case, all the datasets are first processed by the shared layers
having learnable parameters θs. These layers learn a shared representation for
all the tasks from all the available input data. The outputs of the shared layers
are passed into the task-specific layers with parameters θi when the model input
corresponds to the data of task ti.
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Our methodology is based on MTL proposed in [18], where a pre-trained
BERT model is incorporated. We adapt this model for our task of low-resource
hate speech classification and apply it in a multi-corpus scenario. Usually, su-
pervised classification approaches require a large amount of annotated data. By
combining several corpora, MCL mitigates the problems of less amount of train-
ing data to efficiently train a model and reduces the overfitting problem.

Figure 1 (left part) shows the architecture of our approach. We consider a
corpus as a task. The number of tasks corresponds to the number of available
annotated corpora used to train the model. The MCL model consists of two
parts: (a) the shared layers; (b) a set of corpus-specific layers.

Shared layers: The shared layers are shared by all the tasks. We chose the
pre-trained BERT model [10] as shared layers. The training samples from all
the tasks are passed as input to the shared layers. These layers benefit from an
implicit data augmentation as they process the data from all the tasks. This
enriches the representations learned by the shared layers.

Corpus-specific layers: The outputs of the shared layers are used as input
to the corpus-specific layers. The objective of the corpus-specific layers is to
optimize the model for a given corpus.

2.3 Domain Adaptation using Multi-Corpus Learning

The goal of an efficient model is to generalize to unseen data. When the dis-
tribution of train and test sets differ (domain shift) [22], the ability of a model
trained on one domain to perform on another domain reduces. Supervised do-
main adaptation techniques allow a model trained on the source domain to adapt
to a target domain with a limited amount of labelled data.

The procedure for domain adaptation using the MCL is presented in Figure 1
(right). We first train an MCL model with all the available corpora except one,
which is our target corpus for adaptation. Then we adapt the trained MCL
model to our target corpus. After adding new corpus-specific layers for the new
target corpus, during adaptation, we update the shared layers along with the
newly added corpus-specific layers using the target corpus.

3 Experimental Setup

In this section, we briefly describe the considered datasets, the text pre-processing,
and the choice of model parameters for our MCL approach.

3.1 Corpora

We consider five widely used hate speech corpora to train our MCL model. Four
of these corpora are tweets sampled from Twitter, namely Davidson [7], Founta
[13], Hateval [4], and Waseem [24]. The fifth corpus is sampled from Wikipedia
talk pages [26]. We perform binary classification for the Hateval, Waseem and
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Wikipedia datasets. The Davidson and Founta corpora are used for the multi-
class classification of hate speech. The statistics of these corpora are provided in
Table 1.

Table 1: Corpus statistics: number of tweets or comments.
Corpus Total Class labels

Normal Abusive Hateful

Davidson 24.8k 4.2k 19.2k 1.4k

Founta 86.0k 53.8k 27.2k 5.0k

Non-hateful Hateful
Hateval 13.0k 7.5k 5.5k

Waseem 10.9k 8.0k 2.9k

Non-Toxic Toxic
Wikipedia 159.7k 131.7k 28.0k

Davidson: This dataset is collected by sampling tweets using some keywords
from the hatebase lexicon.1 The corpus is annotated into three classes neither,
offensive language, and hate speech. We refer to these classes as normal, abusive,
hateful, respectively.

Founta: The Founta corpus has four classes, namely, normal, abusive, hate-
ful, and spam. We removed samples labelled as spam class, which reduced the
size of this dataset from 100k tweets to 86.9k tweets.

Hateval: This corpus was designed for the ‘SemEval-2019’ shared task. For
our study, we have used the English part of the dataset. The corpus is annotated
into two classes, namely, hateful and non-hateful. The corpus provides 9k, 3k,
and 1k samples for training, development, and test sets, respectively.

Waseem: This dataset is sampled using keywords containing racial and sex-
ual slurs. This dataset has three classes, racism, sexism, and none with 2.0k,
3.4k, and 11.6k samples, respectively. Due to the filtering strategy of Twitter to
remove hateful content, we retrieved only 20, 2.9k, and 8.0k samples for racism,
sexism, and none classes, respectively, using the tweet-ids provided by the au-
thors, as in [5]. We refer to the sexism class as hateful, and the none class as
non-hateful. We discard samples from the racism class due to very few samples.

Wikipedia: This corpus contains comments from the user talk pages. We
use the ‘toxicity’ part of the dataset, annotated with five labels - very toxic,
toxic, neither, healthy, and very healthy. Each comment is annotated by approxi-
mately ten annotators. We chose to split the corpus into two classes: toxic versus
non-toxic for each comment. We consider the comment as toxic if at least two
annotators have labelled the comment as toxic or very toxic, and if the number
of annotations as toxic or very-toxic is higher than the number of annotations as
healthy and very-healthy. The dataset provides 95.7k, 32.1k, and 31.9k samples
for training, development, and test sets, respectively.

1 https://www.hatebase.org
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3.2 Dataset Split

For Davidson, Founta, and Waseem, we randomly split the datasets into three
parts, training, validation, and test sets, each containing 70%, 10%, and 20%,
respectively. For Hateval and Wikipedia corpora, we utilize the splits provided
by the datasets. The training set is used to train the model, the validation set to
adjust the model parameters, and the test set to evaluate the model performance.

3.3 Input Pre-processing

For Twitter corpora, the user handles are changed to ‘@USER’. The ‘#’ symbol
in the hashtag is removed, and the multi-word hashtags are split based on the
presence of the uppercase characters. For example, ‘#leaveThisPlace’ is changed
to ‘leave This Place’. The tweets containing the term ‘RT’ indicating re-tweet are
also removed. For all the datasets, we remove all numbers, newlines, and special
characters except ‘.’, ‘,’, ‘!’, ‘?’, and apostrophes. The repeated occurrences of the
same special character are reduced to a single one. All the URLs and emoticons
are also removed. Finally, all the data is lower-cased.

3.4 Multi-Corpus Model and Training Description

The shared layers consist of the pre-trained English ‘bert-base-uncased’ model.
We use five sets of corpus-specific layers as we have five corpora. The output of
the [CLS] token of the BERT model is used as input to the corpus-specific layers.
We define a single dense layer with 768 hidden units as our corpus-specific layer.
The outputs of this hidden layer are passed through a softmax classifier with the
number of units equal to the number of classes of the respective corpus. We use
ReLU[1] activation for the dense layers, a learning rate of 1e−5, Adam optimizer
[16], a maximum of 30 epochs, mini-batch size of 32, and early stopping.

Compared to the standard way of a random selection of training samples
for a mini-batch, we perform a task-specific selection of mini-batches. All the
samples of a given mini-batch are extracted from a single corpus. For example,
given two datasets, for one mini-batch, we select a fixed number of random
training samples from one dataset, and for the other mini-batch we select the
same number of samples from the other dataset. This procedure is repeated for
the remaining mini-batches. When one corpus has fewer samples compared to
another corpus, the samples from the smaller dataset are repetitively selected.
This kind of mini-batch selection ensures that the multi-task learning model is
trained with an equal number of samples from all the corpora. Our source code
for MCL is made available2.

4 Results and Discussion

In this section, we report the classification performance. We compute average
macro-F1 and standard deviation over five runs of the model with different
random initialization.
2 https://gitlab.inria.fr/adsa/multitasklearning_lrec
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4.1 Multi-Corpus Learning

We evaluate the following configurations:
Single-Corpus Learning (SCL): We create five models, one for each cor-

pus. Each model is obtained by fine-tuning the pre-trained BERT on the training
part of the corresponding corpus. The test set is used to evaluate the model.

Multi-Corpus Learning (MCL): We create a single model using all the
training corpora (see Section 2.2). The test set of each corpus is used separately
to evaluate the model.

Multi-Corpus Learning with corpus-specific fine-tuning (MCLfinetuned):
The model learned using the MCL setup, is further fine-tuned using five target
corpora. We create five models, one for each corpus. In the beginning, one MCL
model is learned. Then, this model is fine-tuned using five training corpora sepa-
rately. This results in five models. The test part of each corpus is used to evaluate
the corresponding fine-tuned MCL model.

The results obtained on the five corpora are presented in Table 2.

Table 2: Macro-F1 results on test sets for the different approaches. Average
column presents the mean on five test corpora.

Davidson Founta Hateval Waseem Wikipedia Average

SCL 76.0 ± 0.6 75.8 ± 0.4 49.3 ± 1.8 84.0 ± 0.5 86.9 ± 0.1 74.4

MCL 76.3 ± 1.1 75.5 ± 0.2 50.4 ± 3.0 84.1 ± 0.4 86.4 ± 0.2 74.5

MCLfinetuned 75.7 ± 1.0 75.8 ± 0.7 52.1 ± 2.6 84.6 ± 0.6 86.7 ± 0.2 75.0

We observe that the average macro-F1 obtained for the SCL approach is
74.4%. The average macro-F1 of the MCL approach 74.5% is close to the SCL
approach. We note that for the two smaller training corpora (Davidson and
Hateval) the performance slightly increased, but for the two larger training cor-
pora (Founta and Wikipedia) the performance marginally reduced, thus showing
higher improvements in low-resource corpora. For the MCLfinetuned setup, we ob-
tain an average macro-F1 of 75.0%. This shows an improvement compared to
SCL and MCL approaches. We observe that all the corpora, except Davidson,
benefit from the fine-tuning of the MCL model. This improvement observed for
the MCLfinetuned approach can be due to the fact that the MCL model is not
fully optimized for every considered corpus. Hence, fine-tuning the MCL model
on a specific corpus can help.

We would like to highlight that, although we obtain poor classification results
on the Hateval dataset, our results are higher than the average macro-F1 of
44.84% obtained by the participants of the SemEval-2019 Task 5 challenge [4].

In the MCL approach, only the shared layers benefit from jointly training
with several corpora. Whereas, each corpus-specific layer is trained only with
the corpus-specific data. To increase the amount of data used to train corpus-
specific layers, we combine the training sets of related corpora. To achieve this,
we merge the training sets of the three-class datasets together, and similarly, the
training sets of the two-class datasets. We represent the combined training sets
as {Davidson & Founta} and {Hateval & Waseem & Wikipedia} in Table 3. This
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setup reduces the number of corpus-specific layers used for the MCL architecture,
and the the number of parameters to train. Compared to the standard MCL
approach, which consists of five sets of corpus-specific layers, by combining the
training sets, we have only two sets of corpus-specific layers. In this setup, for
all the configurations, we fine-tune the MCL model using the combined training
sets. However, the model is evaluated on a specific test set and the results are
reported separately to allow their comparison with the previous results.

Table 3: Macro-F1 results on test sets for the different approaches by combining
tasks. Average column presents the mean on five test corpora.

Train set {Davidson & Founta} {Hateval & Waseem & Wikipedia}
Average

Test set Davidson Founta Hateval Waseem Wikipedia

SCL 82.1 ± 4.7 77.2 ± 0.7 39.8 ± 2.3 80.4 ± 1.7 86.7 ± 0.2 73.2

MCL 82.2 ± 3.3 77.7 ± 1.1 42.5 ± 3.6 80.0 ± 1.2 86.4 ± 0.3 73.7

MCLfinetuned 88.1 ± 1.7 78.4 ± 0.2 42.3 ± 2.5 81.9 ± 0.7 86.0 ± 0.3 75.3

Table 3 presents the results obtained using the MCL by combining corpora.
For SCL, we obtain better results for Davidson and Founta test sets compared
to the SCL approach without combining the training sets (results in Table 2).
Perhaps this is because Davidson and Founta datasets have a similar label def-
inition. However, we observe a reduced performance for Hateval and Waseem
test sets. This can be due to the fact that abusive speech and toxic speech are
close but represent different concepts and bias the system.

The MCL approach by combining the tasks provides a small improvement
compared to the SCL approach (73.7% versus 73.2%). Furthermore, for MCLfinetuned

approach, we obtain the best results (75.3%). In conclusion, we note that corpus-
specific fine-tuning of the trained MCL model shows improvements compared to
the MCL approach.

4.2 Multi-Corpus Learning in Low-Resource Scenarios

We explore the MCL approach in low-resource training scenarios. We down-
sample the available training sets of all the corpora to 100, 200, 500, and 1000
samples. We then perform the training using SCL, MCL, and MCLfinetuned ap-
proaches on the reduced training data.

Table 4 presents the average macro-F1 on the five datasets in low-resource
scenarios. Figure 2 shows the macro-average F1 for SCL, MCL, and MCLfinetuned

setup for the Founta and Wikipedia test sets. For illustration, we plot the results
only for the Wikipedia and Founta datasets, as examples of two-class and three-
class classification performance. We obtained similar results for other datasets.

From Table 4 and Figure 2, we can note that MCL and MCLfinetuned setups
show similar or better results than SCL. However, MCL and MCLfinetuned give
higher performance gains in very low-resource scenarios. When we use 100 sam-
ples for the training sets, we obtain a relative improvement of 16.8% and 23.9%
for MCL and MCLfinetuned , respectively, compared to SCL (61.2%, 57.7% versus
49.4%). For 200 samples, we obtain a relative improvement of 18.5% and 22.3%
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Table 4: Average macro-F1 results on test sets for five corpora in low-resource
scenarios.

Approaches
Number of training samples
100 200 500 1000

SCL 49.4 53.4 67.7 70.2

MCL 57.7 63.3 67.0 69.6

MCLfinetuned 61.2 65.3 68.7 70.6
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Fig. 2: Macro-average F1 results on test sets for low-resource scenarios.

for MCL and MCLfinetuned , respectively (65.3% and 63.3% versus 53.4%). These
improvements are statistically significant.

This shows that when the number of available samples is low, the MCL gains
from jointly training the model using several datasets. Furthermore, the results
also indicate that corpus-specific fine-tuning of the MCL model gives significant
performance improvements in low-resource scenarios.

4.3 Domain Adaptation using Multi-Corpus Learning Approach

We perform supervised domain adaptation for hate speech classification as de-
scribed in Section 2.3. We simulate low-resource scenarios for domain adaptation.
We train the MCL model with entire training sets of four tasks. Whereas, for the
target corpus, we use only 100, 200, 500, and 1000 training samples. The average
macro-F1 results obtained on five target corpora in low-resource scenarios are
presented in Table 5. The results of domain adaptation are compared against
low-resource single-corpus learning, where the SCL model is fine-tuned with the
varying amount of training data of the target set (same model as in section 4.2).
Figure 3 presents the results obtained for domain adaptation for Founta and
Wikipedia as target datasets.

Compared to the SCL, for domain adaptation, we obtain a significant rel-
ative improvement of 37% and 31.5%, using 100 and 200 training samples for
the target datasets, respectively (67.7% versus 49.4% and 70.2% versus 53.4%).
The improvement is higher when the amount of available data is lower. This
can be because the shared layer of MCL captures information from multiple
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Table 5: Average of macro-F1 results for five test datasets as target datasets for
domain adaptation: low-resource scenario and all training samples.

Approaches
Low-resource scenario

All training samples for adaptationNumber of adaptation samples
100 200 500 1000

SCL (without adaptation) 49.4 53.4 67.7 70.2 73.2

MCL domain adaptation 67.7 70.2 71.2 72.1 74.7
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(a) Macro-F1 on Founta test set. The
MCL model is trained using Davidson,
Hateval, Waseem, andWikipedia train-
ing sets. Model adapted using varying
amount of Founta training set.
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(b) Macro-F1 on Wikipedia test
set. The MCL model is trained us-
ing Davidson, Founta, Hateval, and
Waseem training sets. Model adapted
using varying amount of Wikipedia
training sets.

Fig. 3: Macro-average F1 results for domain adaptation.

related corpora, that can be transferred to a new corpus. Figure 3b shows a con-
siderable amount of improvements in the low-resource domain adaptation for
the Wikipedia dataset, although the MCL model was trained with four Twitter
datasets. This indicates that the MCL approach can still be helpful when the
task is related but the corpora come from different domains. Using the entire
training set as a target corpus for domain adaptation, an average macro-F1 of
74.7% is obtained. This result is better than macro-F1 of 73.2% obtained using
SCL. Thus, from Table 5, we conclude that domain adaptation in low-resource
scenarios gives better performance than the SCL approach.

5 Conclusion

In this article, we explored multi-corpus learning(MCL) for low-resource hate
speech classification. Our approach for MCL is based on the paradigm of multi-
task learning. Our idea is to utilize the shared layers of MCL to learn a common
representation for several corpora, and corpus-specific layers to take into account
the corpus-specific characteristics. We showed that the fine-tuning of the MCL
model improves the performance compared to the SCL model.

In very low-resource scenarios, the MCL showed significant performance im-
provement when compared to SCL. We also used the MCL approach to perform
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domain adaptation. Compared to fine-tuning a pre-trained BERT, our adapta-
tion approach showed significant improvements, especially when the amount of
available adaptation data is very low. Overall, we experimentally demonstrated
the efficiency of MCL for low-resource hate speech classification and domain
adaptation.
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