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ABSTRACT
Shark populations that are distributed alongside a latitudinal gradient often display
body size differences at sexual maturity and vicariance patterns related to their
number of tooth files. Previous works have demonstrated that Scyliorhinus canicula
populations differ between the northeastern Atlantic Ocean and the Mediterranean
Sea based on biological features and genetic analysis. In this study, we sample
more than 3,000 teeth from 56 S. canicula specimens caught incidentally off Roscoff
and Banyuls-sur-Mer. We investigate population differences based on tooth shape
and form by using two approaches. Classification results show that the classical
geometric morphometric framework is outperformed by an original Random
Forests-based framework. Visually, both S. canicula populations share similar
ontogenetic trends and timing of gynandric heterodonty emergence but the Atlantic
population has bigger, blunter teeth, and less numerous accessory cusps than the
Mediterranean population. According to the models, the populations are best
differentiated based on their lateral tooth edges, which bear accessory cusps, and the
tooth centroid sizes significantly improve classification performances.
The differences observed are discussed in light of dietary and behavioural habits of
the populations considered. The method proposed in this study could be further
adapted to complement DNA analyses to identify shark species or populations based
on tooth morphologies. This process would be of particular interest for fisheries
management and identification of shark fossils.

Subjects Aquaculture, Fisheries and Fish Science, Ecology, Marine Biology, Zoology, Data Mining
and Machine Learning
Keywords Machine learning, Geometricmorphometrics, Toothmorphology, Scyliorhinus canicula,
Random Forests, Linear discriminant analysis, Sharks

INTRODUCTION
The recognition of disjunct shark populations has opened to new questionings on marine
ecosystem connectivity and consequences of gene flows on species evolution. Shark
population distributions are structured by ecological habits of species (e.g., degree of
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habitat fidelity), reproductive strategies (e.g., use of nursery areas by females), dispersal
ability (e.g., type of reproduction, migratory behaviour), and environmental barriers to
gene flow (e.g., oceanic basins, geological climatic events) (Lucifora et al., 2003; Rodríguez-
Cabello et al., 2004; Portnoy et al., 2010; Veríssimo, McDowell & Graves, 2010; Karl, Castro
& Garla, 2012; Kousteni et al., 2015). Populations of a given shark species sometimes
display vicariance patterns in number of vertebrae (Gruber & Compagno, 1981) and tooth
files (McEachran &Martin, 1977; Templeman, 1984; Lucifora et al., 2003). In some species,
the total length of a specimen at sexual maturity also differs between populations, as in
bonnethead sharks Sphyrna tiburo (Parsons, 1993; Lombardi-Carlson et al., 2003),
shortspine spurdogs Squalus mitsukurii (Taniuchi & Tachikawa, 1997), starspotted
smooth-hounds Mustelus manazo (Yamaguchi, Taniuchi & Shimizu, 1998, 2000), and
cloudy catsharks Scyliorhinus torazame (Horie & Tanaka, 2002). Such differences in
specimen size at sexual maturity that are reported among shark populations have been
hypothesized to result from genetic or environmental constraints, or both, but the
combination between these factors is difficult to evaluate (Lombardi-Carlson et al., 2003).

When observed, these size differences at sexual maturity are often distributed alongside
a latitudinal gradient and shark populations inhabiting higher and colder latitudes are
significantly bigger (Leloup & Olivereau, 1951; Parsons, 1993; Taniuchi & Tachikawa,
1997; Yamaguchi, Taniuchi & Shimizu, 2000; Horie & Tanaka, 2002; Lombardi-Carlson
et al., 2003; Capapé et al., 2014; Kousteni & Megalofonou, 2019). The warmer temperatures
at lower latitudes (Blackburn, Gaston & Loder, 2008) are thought to limit the energy
allowed for somatic growth by inducing increased energy expenditure (Parsons, 1993;
Carlson & Parsons, 1997) and also trigger early sexual maturity (Parsons, 1993; Yamaguchi,
Taniuchi & Shimizu, 2000; Goren, 2014).

Scyliorhinus canicula is an abundant benthic species in the eastern Atlantic Ocean
(from Senegal to the UK) and Mediterranean Sea that inhabits depths from a few meters to
500 m (most commonly found around 110 m) (Compagno, 1984; Ellis & Shackley, 1997;
Rodríguez-Cabello et al., 2004). Support for population differentiation was raised by
morphometric and genetic diversity analyses within the distribution range of this species
(Barbieri et al., 2014; Capapé et al., 2014; Kousteni et al., 2015). Population genetic
structures have been attributed to the philopatric behaviour of S. canicula and to its low
dispersal ability across basins (Leloup & Olivereau, 1951; Mellinger, Wrisez & Alluchon-
Gérard, 1984; Rodríguez-Cabello et al., 2004; Barbieri et al., 2014; Capapé et al., 2014;
Kousteni et al., 2015; Anastasopoulou et al., 2016; Kousteni & Megalofonou, 2019).

Despite genetic structuration, Mediterranean S. canicula populations exhibit very
slight body size differences at sexual maturity (Barbieri et al., 2014; Capapé et al., 2014;
Kousteni et al., 2015; Kousteni & Megalofonou, 2019). Conversely, populations differ
greatly in body size at sexual maturity between the North Atlantic Ocean (Bristol Channel,
UK) and the Mediterranean Sea (Leloup & Olivereau, 1951;Mellinger, Wrisez & Alluchon-
Gérard, 1984; Rodríguez-Cabello et al., 1998; Kousteni, Kontopoulou & Megalofonou,
2010; Capapé et al., 2014; Kousteni & Megalofonou, 2019). Furthermore, there is currently
no recognition of unequivocal morphological differences between S. canicula or any
shark populations, other than body length at sexual maturity which differs along vast
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latitudinal gradient and separated marine environments. This is an important gap in
our ability to follow population dynamics, notably for sharks that have long generation
time and struggle withstanding or recovering from accidental catches and fishing (Smith,
Au & Show, 1998; Cortés, 2000; Dulvy et al., 2014, 2021). Commercial frauds are regularly
checked, but the identification of species and populations mainly relies on a framework
based on DNA barcoding (Barbuto et al., 2010;Melo Palmeira et al., 2013; Almerón-Souza
et al., 2018), whose cost, time, and dependence to a wet lab are limitations to the current
inspection process. Therefore, we investigated the possibility to identify differences in
tooth morphology between catshark populations, considering that shark tooth shape
undergoes morphological changes with ontogeny, sexual maturation, and diet (Powter,
Gladstone & Platell, 2010; Moyer & Bemis, 2016; Tomita et al., 2017; Cullen & Marshall,
2019; Berio et al., 2020) and that life history traits differ between Atlantic and
Mediterranean S. canicula populations (Leloup & Olivereau, 1951; Ivory et al., 2004;
Bendiab, Mouffok & Boutiba, 2012; Capapé et al., 2014).

This work tests a feature-based framework to reliably discriminate shark populations
based on their tooth morphological characteristics. The assessment of shark tooth form
differences is successfully achieved with geometric morphometrics (Whitenack &
Gottfried, 2010; Soda, Slice & Naylor, 2017; Cullen & Marshall, 2019; Berio et al., 2020).
Linear Discriminant Analysis (LDA) is a frequently used machine learning algorithm to
discriminate between groups based on geometric morphometric data (Mitteroecker &
Bookstein, 2011; MacLeod, 2017; Doyle, Gammell & Nash, 2018). The performances of
LDA depend on a much higher number of items (e.g., teeth) as compared to the number of
features (e.g., aligned coordinates). Yet, these conditions are difficult to meet in biological
datasets, which often implies a feature reduction step through a Principal Component
Analysis (PCA) (Fort & Lambert-Lacroix, 2005; Pechenizkiy, Puuronen & Tsymbal, 2006;
Sheets et al., 2006; Archer & Kimes, 2008). Moreover, subtle discriminant patterns can
also be missed when reducing data dimensionality to the first PCA axes prior to a
classification task (MacLeod, 2018). Traditional and geometric morphometric studies
use several machine learning algorithms for classification, but often focus on the
classification performances–rather than on interpretable features (Santos, Guyomarc’h &
Bruzek, 2014; Navega et al., 2015; Doyle, Gammell & Nash, 2018; Courtenay et al.,
2019). As opposed to LDA, Random Forests (Breiman, 2001) usually outperform other
machine learning algorithms for supervised classification (Caruana & Niculescu-Mizil,
2006; Domínguez-Rodrigo & Baquedano, 2018; Doyle, Gammell & Nash, 2018; Püschel
et al., 2018; Courtenay et al., 2019). Furthermore, Random Forests provide intuitive and
interpretable importance measures of feature contribution to classification, is highly
resistant to overfitting, and do not require feature reduction prior to the analysis to achieve
good performances (Díaz-Uriarte & Alvarez de Andrés, 2006; Archer & Kimes, 2008;Doyle,
Gammell & Nash, 2018).

This work is a proof of concept that shark populations can be discriminated based on
tooth morphology. We take advantage of the geometric morphometric and machine
learning methods to test for differences between S. canicula teeth from northeast Atlantic
and Mediterranean populations that exhibit clear body size differences at sexual maturity
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(Capapé et al., 2014; Kousteni & Megalofonou, 2019). By using Random Forests to classify
the teeth of S. canicula population samples of different geographic origin, we aim not only
to challenge the traditional geometric morphometrics workflow, but also to provide
indications of discriminant tooth form features between S. canicula populations. Our work
aims to provide an alternative tool for discrimination of shark species and populations
based on dental features and to set the basis for future research.

MATERIALS AND METHODS
Sampling
S. canicula populations were sampled in 2018 and 2019 in two localities separated by over
2,000 nautical miles: off Roscoff (France, northeast Atlantic Ocean) and Banyuls-sur-Mer
(France, western Mediterranean Sea). The Atlantic specimens were sampled at the
Roscoff fishmarket and were provided by the Station Biologique de Roscoff and the
University of Montpellier. The Mediterranean specimens were incidentally caught during
experimental surveys of the Observatoire Océanologique de Banyuls-sur-Mer or were
formerly euthanized for independent experiments led by the Observatoire Océanologique
de Banyuls-sur-Mer and the University of Montpellier. Biological samples were preserved
in 70% ethanol. Specimens were selected based on their total body length (TL, from the
tip of the snout to the tip of the tail) to account for three ontogenetic stages within each
population, hereafter referred to as “hatchling”, “juvenile”, and “mature”. The TL of
mature Atlantic and Mediterranean specimens was selected according to Ivory et al. (2004)
(>53.5 cm TL for males, >57 cm TL for females; reference lengths for 50% maturity) and
Leloup & Olivereau (1951) (�40 cm TL for both sexes; reference length for “frequently”
observed maturity), respectively. Hatchling specimens were euthanized just after hatching.
Mediterranean juveniles were selected between hatchling [>9 cm TL for both sexes (Leloup
& Olivereau, 1951)] and sexually mature [<37.5 cm TL for both sexes; reference length
for first sexual maturity (Leloup & Olivereau, 1951)] stages. Atlantic juveniles were selected
between hatching [>10.5 cm TL for both sexes (Ellis & Shackley, 1997)] and first sexual
maturity [<49 cm and <52 cm in males and females, respectively (Ellis & Shackley, 1997;
Ivory et al., 2004)]. The Mediterranean sample is composed of six hatchling (three
females, three males; 9.1 � 0.3 cm TL; 8.8 to 9.5 cm TL), 10 juvenile (five females, five
males; 26.8 � 4.1 cm TL; 21 to 31 cm TL), and nine mature (five females, four males,
42.9 � 2.7 cm TL; 40 to 47 cm TL) specimens. The Atlantic sample includes 11 hatchling
(six females, five males, 11.9 � 1.4 cm TL; 10.2 to 13.9 cm TL), 10 juvenile (five females,
five males, 34.4 � 1.5 cm TL; 32 to 36 cm TL), and 10 mature (five females, five males,
58.9 � 2.7 cm TL; 56 to 64 cm TL) specimens. The maturity assessment of specimens was
not conducted because only the heads were collected for the juvenile and sexually mature
specimens after body length was recorded in marine stations. Attempts were made to
equally sample specimens from both sexes (F, female; M, male) within each category.
In addition, we estimated the approximate age of the specimens using the von Bertalanffy
growth parameters for the Atlantic and Mediterranean populations provided by Ivory
et al. (2004) and Bendiab, Mouffok & Boutiba (2012) respectively because these studies
provide sex-specific growth curves. Ivory et al. (2004) estimated von Bertalanffy parameters
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based on vertebral growth increment counts, whereas Bendiab, Mouffok & Boutiba (2012)
estimated these parameters by analyzing length-frequency distributions.

We used the growth parameters (K , coefficient of growth; L1, asymptotic length; Lt,
length at age t; t0, theoretical age at which the size is zero) from literature data (Ivory et al.,
2004; Bendiab, Mouffok & Boutiba, 2012) (Fig. 1) to compute von Bertalanffy growth
curves with the following growth equation: Lt ¼ L1½1� e�Kðt�t0Þ�.

The ages were estimated for each specimen according to its sex and population and the
age estimates were subsequently averaged per sex, ontogenetic stage, and population.
We estimated the age of Mediterranean hatchlings to be 0 year. Female and male Atlantic
hatchlings are 0.2 and 0.1 year old, respectively. Juvenile females in the Mediterranean
population are 0.8 year old and juvenile males are estimated to be 1.1 year old. Mean age of
juveniles from the Atlantic is 3.1 years for both sexes. Within the Mediterranean
population, sexually mature females and males are 3.7 and 3.9 years old, respectively.
The sexually mature specimens from the Atlantic were estimated to be 9.9 years old for
females and 7.9 years old for males. However, the parameters for the Atlantic and
Mediterranean specimens were estimated with different methods, the results of which
depend either on calcification degree (Natanson et al., 2018) and periodicity, or on sample

Figure 1 Growth curves of Scyliorhinus canicula from northeast Atlantic Ocean and Mediterranean
Sea. Von Bertalanffy growth parameters retrieved from [1] Ivory et al. (2004) and [2] Bendiab, Mouffok &
Boutiba (2012). Markers represent the specimens used in the current study. Black, Mediterranean spe-
cimens; grey, Atlantic specimens. H, hatchling; J, juvenile; M, mature.

Full-size DOI: 10.7717/peerj.13575/fig-1
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size and reproducibility of the results (Schwamborn, Mildenberger & Taylor, 2019).
The estimated ages of the specimens sampled in this study are therefore not strictly
comparable and should be interpreted in light of the method limitations, but are useful
indicators of differences between the populations and ontogenetic stages considered.

Data acquisition
The jaws were microCT scanned using a Phoenix Nanotom S or an EasyTom 150 with
voxel sizes ranging from 6.0 to 30.8 µm and 3D volumes were reconstructed using the
phoenix datos x2 (v2.3.0) reconstruction or xact softwares (v11025). The surfaces are
available in Berio et al. (2022). 3D surfaces of right palatoquadrate (upper) and Meckelian
(lower) teeth were generated with the Amira software (v6.5), extracted using the
ContourTreeSegmentation module from the AmiraZIBEdition software (v2018.28)
(Stalling, Westerhoff & Hege, 2005), and were labelled according to their mesio-distal
position along the jaw (NAtlantic = 1,757 and NMediterranean = 1,542, Fig. 2A). Seven
landmarks (respectively numbered 1, 13, 15, 17, 19, 21, and 33 in Fig. 2, Supplemental
Materials 1 and 2) and 31 semilandmarks were placed on each 3D tooth surface.
The semilandmarks were made denser on the lateral sides of the teeth, where modifications
of accessory cusp number are reported during S. canicula ontogeny (Debiais-Thibaud
et al., 2015) (Fig. 2B and see Berio et al. (2020) for similar trend in S. stellaris).

Data analyses
A Generalised Procrustes Analysis was performed on 3D coordinates that were formerly
preprocessed following Berio & Bayle (2020). Semilandmarks were allowed to slide based
on minimised bending energy (Bookstein, 1991). The structure of the dataset was first
investigated through a PCA and centroid size patterns, and tooth centroid sizes were
used as a proxy for tooth size. The centroid size is computed as the square root of the sum
of squared distances between all landmarks and semilandmarks and the centroid of a form
(Webster & Sheets, 2010; Klingenberg, 2016). The slopes of allometric patterns between
populations of same sex was assessed with ANCOVAs and the interaction between shape
data and size was tested using linear regression models. The shape data used to test for
allometry were PC axes, whose number was determined following the procedure described
by Evin et al. (2013). The relationship between shape data and size was tested using
centroid size values of teeth and the specimens TL. Allometric vectors were computed with
linear models and pairwise comparisons allowed to compare lengths and angles between
the vectors of populations of same sex.

Supervised classification of teeth from Atlantic and Mediterranean populations was
first achieved with LDA on the same PC axes used for testing allometry, without and
with tooth centroid sizes [respectively tooth shapes and forms (Klingenberg, 2016)].
The results from the LDAmodel were compared with those obtained with Random Forests
on tooth shape (Procrustes coordinates) and form (Procrustes coordinates + tooth
centroid sizes) (Breiman, 2001). A five-fold cross-validation was performed in both
methods (train set = 80% and test set = 20%).
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Figure 2 Labelling and landmarking Scyliorhinus canicula teeth. (A) Mesio-distal numbering of right
palatoquadrate andMeckelian teeth in a mature male from the North Atlantic population (59 cm TL); (B)
Right Meckelian lateral tooth of the specimen in A with numbering of landmarks (red dots) and
semilandmarks (small circles on grey lines). Dorsal (left) and mesial (right) views. A, anterior; D, distal; L,
left; Lab., labial; Ling., lingual; P, posterior; R, right. Full-size DOI: 10.7717/peerj.13575/fig-2
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In Random Forest models, the number of trees was set to 500 and the minimal node size
was set to one. The models were allowed to sample among 114 (shape) to 115 (form)
variables to split each internal node. A good fit of the models was determined through the
comparison between the accuracies reached on the train and test sets, and for both models
(on shape and form), the difference between these metric values was 0.2%. The feature
importance for the classification was assessed with a measure of Mean Decrease Accuracy
(MDA) and features with importance values �1.0% were commented (Breiman, 2001).

The classification performances reached by the models were compared based on three
metrics: the accuracy, precision, and recall. The accuracy is an average of precision values
for the Atlantic and Mediterranean populations. The precision is the number of items
correctly assigned to a group (e.g., Atlantic), as compared to all items (Atlantic and
Mediterranean) classified in this same group (Atlantic). The recall is interpreted as the
number of specimens correctly assigned to a group (e.g., Atlantic), as compared to the total
number of specimens actually belonging to this class (Atlantic). Additionally, a detailed
confusion matrix is proposed to identify which teeth of males, females and hatchling,
juvenile, and mature specimens were classified the best.

The classification results on shape and form were compared to evaluate the contribution
of the centroid size to population discrimination. The overall results of LDA and Random
Forest models on tooth shape and form were further compared.

The geometric morphometric analyses were performed using the geomorph package
(v3.1.1) and supervised classification was computed using the MASS package (v7.3.53)
for LDA and the randomForest package (v4.6.14) for Random Forests with R software
(v4.0.3) (Liaw & Wiener, 2002; Venables & Ripley, 2002; Adams, Collyer &
Kaliontzopoulou, 2019; R Core Team, 2020).

RESULTS
Visual description
The tooth diversity presented in Fig. 3 is a selection of examples among the whole variation
observed in the dataset. It provides a broad overview of the main morphological
differences and associated factors in S. canicula tooth forms. Differences in mesio-distal
location of a tooth are usually linked with an addition of accessory cusps (Figs. 3A and
3B) and an increase of the main cusp bending. Gynandric heterodonty at sexually mature
stage is characterised by more accessory cusps in females as compared to males (Figs. 3C
and 3D). Along the ontogeny, new teeth undergo size increase, as well as the addition
of accessory cusps, except after sexual maturation (Figs. 3E and 3F), when males
experience a decrease in number of accessory cusps, as opposed to females. The
interpopulational tooth form differences involve less accessory cusps and blunter teeth
in the Atlantic population than in the Mediterranean population (Figs. 3G and 3H).

We report significantly more Meckelian tooth files in Atlantic juvenile females (23� 2)
as compared to the Mediterranean ones (20� 1) (permutation t test, t = 3.29, p-val = 0.04),
all other interpopulation tests being not statistically significant (permutation t tests,
p-vals > 0:11).
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Figure 3 Examples of tooth morphological differences in Scyliorhinus canicula. (A and B) Form
differences between tooth files: Meckelian teeth from file 5 (A) and 20 (B) of a North Atlantic mature
female; (C and D) Form differences between sexes: palatoquadrate teeth from file 15 of Mediterranean
mature male (C) and female (D); (E and F) Form differences between ontogenetic stages: Meckelian teeth
from file 5 of North Atlantic hatchling (E) and juvenile (F) males; (G and H) Form differences between
populations: Meckelian teeth from file 15 of North Atlantic (G) and Mediterranean (H) juvenile males.
Scale bars are 100 mm. Full-size DOI: 10.7717/peerj.13575/fig-3
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Geometric morphometrics
The first two principal components gather 61% of the total variation in the dataset.
The Atlantic and Mediterranean populations are not visually discriminated in the
morphospace (Fig. 4). Extreme shapes for PC1 and PC2 suggest that most variation of
the dataset relates to the number of accessory cusps, to their relative size compared to
the main cusp, and to the mesio-distal bending of the main cusp (Fig. 4). In addition, shape
variation along PC1 might also involve the relative width of the crown base, as compared
to the main cusp height (Fig. 4).

The tooth centroid size patterns in the S. canicula dataset are exemplified for male
palatoquadrate teeth (Fig. 5), but similar trends are observed for both jaws and sexes.
In hatchlings, the tooth centroid size patterns display no variation along the jaw nor visual
differences between populations (Fig. 5). The patterns overlap between juveniles of both
populations, while tooth centroid sizes of mature Atlantic males are 35% bigger than
those of mature Mediterranean males (Fig. 5). In mature specimens of both populations,
the tooth centroid sizes are overall higher for the Atlantic population, whose body
length is also higher as compared to Mediterranean specimens (Figs. 1 and 5). However, no

Figure 4 PCA with all Scyliorhinus canicula teeth contained in the dataset. Black, teeth from Med-
iterranean specimens; grey, teeth from North Atlantic specimens. Wireframes are the extreme shapes for
PC1 and PC2. Full-size DOI: 10.7717/peerj.13575/fig-4
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such trend is observed for juveniles, whose differences in body length are not reflected by
their tooth centroid size patterns (Figs. 1 and 5).

The first 12 PCs (93.43% of the total variation) are selected to represent the tooth shape
in the following statistical tests and are used as LDA features. The tooth centroid size
and the TL of specimens significantly impact the tooth shape in all subgroups (e.g.,
Mediterranean × females) (One-Way MANOVAs, p-vals < 2:20e�16), meaning for
example that bigger teeth in larger specimens constrain the global shape of their teeth.
The slopes of allometric patterns significantly differ between females and between males of
both populations, indicating that the relationship between tooth size and shape is not
equivalent between populations (Two-Way ANCOVAs, p-vals < 2:20e�16). The strength
of relationship between shape and tooth centroid size is similar between females from
Atlantic and Mediterranean populations (linear regressions, adjusted R-squared
respectively of 0.83 and 0.81, p-vals < 2:20e�16), as well as between Atlantic and
Mediterranean males (linear regressions, adjusted R-squared respectively of 0.86 and 0.84,
p-vals < 2:20e�16). The allometric relationship between shape and TL is also similar
between Atlantic and Mediterranean populations (linear regressions, adjusted R-squared
respectively of 0.73 and 0.69 in females and of 0.82 and 0.81 in males, p-vals < 2:20e�16),
which indicates that the tooth shapes are similarly modified over the ontogeny in both
populations.

Figure 5 Tooth centroid size patterns of North Atlantic and Mediterranean populations of
Scyliorhinus canicula: Example of male palatoquadrate teeth. Black, teeth from Mediterranean spe-
cimens; grey, teeth from North Atlantic specimens. The centroid size is in mm.

Full-size DOI: 10.7717/peerj.13575/fig-5
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Supervised classification
General performances
The LDA classification reached an accuracy of 64:5� 0:7% with tooth shapes and
74:6� 1:2% with tooth forms. The precision is similar for both populations, whereas
the recall is much higher for the Atlantic population as compared to the Mediterranean
one (Fig. 6). Better performances are also achieved on tooth forms as compared to tooth
shapes (Fig. 6).

The classification task performed by the Random Forests reaches an accuracy of
81:7� 1:7% with tooth shapes and 86:9� 1:4% with tooth forms, indicating a significant
contribution of the centroid size information at improving the discrimination between
populations. This means our protocol allows differentiating Mediterranean from Atlantic
S. canicula tooth forms with 85.5% to 88.3% accuracy. The precision values are similar
between both populations, but the recall values are better for the Atlantic population than
for the Mediterranean one (Fig. 6).

Subclass results
To get further indications of the classification performances, we detail the confusion
matrix for each sex-stage subclass in the dataset (Table 1). We remind, however, that these
values are still computed based on the population class (Atlantic and Mediterranean)
only and that the performances for subclasses (e.g., Atlantic female hatchling) are detailed
after the classification process.

With LDA, the lesser precision values are achieved for hatchlings and mature males
with shape data and for hatchlings only with form data (Table 1). The less complex dental
morphologies of the dataset are also visually identified in these groups that display one
or three tooth cusps. Recall values are low for Mediterranean hatchlings and mature males
for which the recall reaches 10.5% with shape data (Table 1). This means that amongst all
Mediterranean mature males only 10.5% are detected as such by the model.

The Random Forests models on shape and form data achieve better classification
performances for juvenile and mature specimens than for hatchling ones (Table 1).
The model with form data also reaches 100% precision for Mediterranean mature males
and 100% recall for Atlantic mature males (Table 1).

In most subclasses, better performances are obtained with form data as compared with
shape data (Table 1). In some cases, however, the classification of form data confuses
the models, which reach identical or lesser performance values than with shape data.
The tooth centroid size for example does not improve the recall of Atlantic hatchling males
after a LDA (Table 1). Lesser performances with form rather than shape data are also
reported with LDA performed on teeth of Atlantic juvenile males and females (recall
values) and with Random Forests performed on teeth of Atlantic and Mediterranean
juvenile males (precision and recall values) (Table 1).

With shape data, the most important feature lies in semilandmark 11 (4.5% in x),
followed by semilandmark 24 (1.5% in x and 1.4 in y) and landmarks 1, 13, and 19 (1.5% in
y, y, and x respectively) (Supplemental Material 1). Semilandmarks 12, 22, and 23 also
account for more than 1.0% in accuracy (1.0% in x and 1.3% in y, 1.0% in y, and 1.1% in y,
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respectively) (Supplemental Material 1). With form data, however, the feature contributing
the most to the classification is centroid size (12.3%) (Supplemental Material 2).
The following most important features with form data are semilandmark 11 (5.7% in x and

Figure 6 Classification performances of LDA and RF algorithms on Scyliorhinus canicula teeth from
a North Atlantic and a Mediterranean population. (A) Precision values; (B) Recall values. Black, teeth
from Mediterranean specimens; grey, teeth from North Atlantic specimens. LDA, Linear Discriminant
Analysis; RF, Random Forests. Full-size DOI: 10.7717/peerj.13575/fig-6
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1.6% in y), semilandmark 24 (2.1% in x), landmark 19 (1.1% in x and 1.8% in y),
semilandmark 23 (1.7% in x), semilandmark 12 (1.2% in y), landmarks 1 and 13 (1.0%
in y), and semilandmark 38 (1.0% in z) (Supplemental Material 2).

DISCUSSION
Visual descriptions and GM struggle to discriminate between
populations
This work highlights that inter-population tooth differences lie in the lateral cusps.
We first visually examined S. canicula teeth from both populations and, except in
hatchlings, the teeth in the Mediterranean population appear sharper than in the Atlantic
at all locations and usually display more accessory cusps for equivalent mesio-distal
positions along the jaw.

On centroid size patterns, very few elements discriminate between the two populations:
hatchling and juvenile specimens of both populations display similar tooth centroid size
patterns and amplitude along the jaw. The main difference between populations arises
between juvenile and mature stages because mature Atlantic specimens have teeth whose
centroid size is about 35% higher than those of mature Mediterranean S. canicula.
The similarities between the tooth centroid size patterns of Atlantic and Mediterranean
hatchlings are consistent with their very close estimated age and TL (Fig. 1). In mature
specimens also, the amplitude delta in tooth centroid size patterns can be easily interpreted
in light of their TL and age differences (Fig. 1). Yet, the age estimations we provide
remain approximative because we chose among several studies on S. canicula growth
parameters. The similar amplitude of tooth centroid size patterns between juveniles of

Table 1 LDA and RF performances of tooth shape and form classification from North Atlantic and Mediterranean Scyliorhinus canicula
populations. Atl., Atlantic; Med., Mediterranean.

LDA Random forests

Shape Form Shape Form

Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%)

Atl. (female hatchling) 57.1 63.8 63.5 68.1 64.4 80.6 82.8 80.0

Atl. (female juvenile) 74.5 75.0 88.5 69.4 81.4 81.4 88.5 83.1

Atl. (female mature) 73.6 61.3 78.8 84.0 81.5 84.3 85.7 84.6

Atl. (male hatchling) 49.3 59.6 60.7 59.6 70.4 79.2 83.3 83.3

Atl. (male juvenile) 78.4 79.0 86.1 73.4 94.3 97.1 91.9 89.5

Atl. (male mature) 50.9 92.2 65.2 94.8 77.9 92.3 84.9 100

Med. (female hatchling) 41.9 35.3 52.2 47.1 69.6 50.0 66.7 70.6

Med. (female juvenile) 65.7 65.1 67.9 87.7 76.8 76.8 79.2 85.7

Med. (female mature) 72.8 82.4 86.5 81.9 83.1 80.2 84.6 85.7

Med. (male hatchling) 45.2 35.2 58.2 59.3 80.0 71.4 72.2 72.2

Med. (male juvenile) 71.7 71.0 70.3 84.1 95.7 91.7 87.7 90.5

Med. (male mature) 57.1 10.5 90.4 49.0 88.9 70.2 100 75.8
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both populations could also be a consequence of the very close ranges of size of our
specimens (Fig. 1). Regarding allometric patterns, differences in slopes were detected
between populations, meaning that the difference of increase between tooth centroid size
and body size is not the same between the Atlantic and Mediterranean populations
considered.

In summary, the reported differences between the populations’ tooth centroid size
patterns seem to be related to the TL of mature specimens, but they do not discriminate
between both populations among hatchlings and juveniles.

The contribution of Random Forests to decipher inter-population
differences
Machine learning models have already improved the understanding of subtle structures in
geometric morphometric data (Lorenz, Ferraudo & Suesdek, 2015; Soda, Slice & Naylor,
2017; Doyle, Gammell & Nash, 2018; Courtenay et al., 2019; Quenu et al., 2020; Barone
et al., 2021), especially when the shapes between groups share common quadrants in a
morphospace, as it is the case for the S. canicula populations considered in this study.
However, even though the algorithms perform well at classifying geometric morphometric
data, the choices made by these models to make groups are usually unknown and deprived
of biological meaning (Lorenz, Ferraudo & Suesdek, 2015; Quenu et al., 2020).

In traditional geometric morphometrics, supervised classification is performed with an
LDA on several PC axes based on raw shape data. We aimed to compare the results from
this traditional workflow with the classification performances obtained with Random
Forests on raw shape data. Doyle, Gammell & Nash (2018) already compared the
classification performances of LDA and Random Forests on the shells of populations
of common periwinkles (Littorina littorea) distributed in different niches. They
recommended the use of Random Forests over LDA because the former is more
straightforward and robust, does not make assumptions about the data nor necessitate
the user to check the violation of LDA assumptions (Doyle, Gammell & Nash, 2018).
However, the models of Doyle, Gammell & Nash (2018) do overfit and the results obtained
might not be optimal.

Overall, LDA models achieve lower performances than Random Forests with our
dataset, which can be due to information reduction. We used LDA for classification as in
the majority of geometric morphometric articles, e.g., without considering the data
distribution nor the homogeneity of variance. That such criteria for optimality are not met
does not prevent from performing an LDA. The LDA algorithm is robust to such violations
and still achieves good performances when assumptions of normality and common
covariance matrix among groups are not met (Lachenbruch & Goldstein, 1979; Li,
Zhu & Ogihara, 2006). Furthermore, Doyle, Gammell & Nash (2018) showed similar
performances between LDA and Random Forests on geometric morphometric data and
conclude that LDA is robust enough to the abovementioned violated conditions to achieve
good classification performances.
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The contribution of Random Forest models to our work is four-fold. It requires less
preprocessing steps than LDA, performs better than LDA at the classification task,
achieves good performances at classifying teeth from two S. canicula populations based on
raw data, and determines the most discriminant features to perform this task. Among
landmark and semilandmark features, it is clear that the most discriminant information is
contained in two dimensions (x and y), whereas the third dimension brings less
information. This implies that running the models with 2D landmark data would have
probably achieved similar classification performances as those obtained here, as this has
also been evidenced in some traditional geometric morphometric studies (Cardini,
2014; Buser, Sidlauskas & Summers, 2018; Wasiljew et al., 2020). Nevertheless, 3D
landmarking avoids parallax biases (Cardini, 2014) and none of the landmarks and
semilandmarks caused a decrease of the metrics, indicating that even though the z
dimension contains little information, it still cannot be considered as noise. Furthermore,
the landmarks (1, 13, 19) and semilandmarks (11, 12, 23, and 24) contributing the most to
the classification are located at geometrical extrema, at extreme mesial and distal
locations of the teeth and on the lateral edges, where accessory cusps emerge. It is also
likely that the spacing of these points makes them useful to the algorithm and that spatially
close points would bring less information. Overall, the results show that a few points,
especially on the lateral sides of the teeth, provide enough information to represent most
differences between the tooth shapes of the two S. canicula populations considered. This is
consistent with our visual inspection on the variation of accessory cusps number.

The use of form features instead of shape greatly improves the overall classification.
We expected such impact in the classification of mature specimens due to the amplitude
differences of their centroid size patterns (likely caused by TL and putative age
discrepancies, Fig. 1). However, the reason for the significant contribution of tooth
centroid size to the classification improvement of the teeth of juveniles and hatchlings is
less intuitive. We first assume that the very slight differences in tooth centroid size patterns
we visually interpret as part of the inter-populational variability might actually be
considered useful information for the model to discriminate between populations.
The centroid size is theoretically independent of shape, however, the placement and
density of landmarks and semilandmarks modify the contribution of certain parts of a
tooth (e.g., the lateral sides of the crown as compared to the main cusp) to the centroid size
value. Thus, we assume that slight changes in centroid size values between populations
might also convey relevant shape information for the Random Forest model, which is
cryptic to the observer. For a minority of subclasses, however, the addition of centroid size
to shape features does not improve the classification performances or diminish them.
In the first case, the centroid size is probably too similar between two subgroups (e.g.,
Atlantic and Mediterranean hatchling males) to allow the model to discriminate against
the populations. In the second case, the centroid size information confuses the model,
which might indicate that some form data contain more noise than in other groups, which
could be overcome by increasing the sampling effort for the subclasses considered (e.g.,
Atlantic and Mediterranean juvenile males).
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Ecological origins of anatomical divergence between populations
The inter- and intraspecific diversity of shark tooth shapes correlates with their feeding
behaviour. Molariform teeth, for example, help crushing hard-bodied preys, while cutting
teeth allow to remove pieces from larger items (Cappetta, 1986).

S. canicula is considered a generalist predator with opportunistic behaviour, whose
favourite preys are teleosts, cephalopods, and crustaceans but it also occasionally feeds on
macroalgae and echinoderms (Olaso, 1998; Mnasri et al., 2012; Kousteni, Karachle &
Megalofonou, 2017; Kousteni et al., 2018). Within the same population, however, slight
differences in diet composition can occur between specimens of different sex and
ontogenetic stages (Lyle, 1983; Olaso, 1998; Rodríguez-Cabello, Sánchez & Olaso, 2007;
Mnasri et al., 2012; Kousteni, Karachle & Megalofonou, 2017; Kousteni et al., 2018).
S. canicula also displays seasonal diet shifts that differ according to the geographic area:
more cephalopods are eaten in the winter than in autumn by a Cantabrian Sea (North
Atlantic Ocean) population, while a population from eastern Mediterranean Sea feeds
most on teleosts in spring and on molluscs in autumn (Olaso, 1998; Kousteni, Karachle &
Megalofonou, 2017). Molluscs are far less important in the diet composition of Atlantic
populations than in Mediterranean ones, whereas Atlantic specimens feed more on teleosts
(Kousteni, Karachle & Megalofonou, 2017). However, the diet differences between
several Atlantic and Mediterranean S. canicula populations are probably due to the
variability of available prey items in contrasting habitats, as suggested by the opportunistic
behaviour of this species (Lyle, 1983; Kousteni, Karachle & Megalofonou, 2017).
Additionally, we show in this work that S. canicula tooth shapes differ between one
Atlantic and one Mediterreanean population. If this variation is under functional selection,
diet differences would correlate with distinct tooth forms: sharper teeth of the
Mediterranean population may enhance grasping molluscs such as cephalopods, whereas
teeth of Atlantic specimens might perform better at catching benthic teleosts. However, the
specific diet of the specimens sampled in this study is not known and the relationship
between the tooth morphologies depicted here and broad dietary trends in all Atlantic
and Mediterranean S. canicula remains hypothetical. Overall, several studies already
suggested that the diet composition of S. canicula, as well as of other elasmobranchs, is
correlated to the body size (Lyle, 1983; Bethea et al., 2006; Ellis & Musick, 2007; Borrell
et al., 2011; Šantić, Radja & Pallaoro, 2012; Kousteni, Karachle & Megalofonou, 2017).
Furthermore, our results support the correlation between tooth shape and ontogeny, and
thus body length in S. canicula, which could suggest that there is an association between
diet shifts and tooth shape modifications over a specimen lifetime.

S. canicula has a philopatric behaviour and most specimens do not move further than
30 km over the years (Rodríguez-Cabello et al., 2004). Additionnally, shared haplotypes
between specimens caught off Portugal and specimens from the Mediterranean Sea
demonstrate past communication occurrences between the populations, probably resulting
from colonisation events from the Atlantic or retention of ancestral polymorphism
(Kousteni et al., 2015; Ramírez-Amaro et al., 2018). There is evidence of multiple genetic
stocks of S. canicula within the Mediterranean Sea (Barbieri et al., 2014; Kousteni et al.,
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2015). Yet, molecular studies suggest that the Siculo-Tunisian Strait may allow gene
flow between the eastern and western Mediterranean populations, whereas genetic
exchanges are currently very low between the Atlantic and Mediterranean populations of
S. canicula (Barbieri et al., 2014; Kousteni et al., 2015). The communication between these
Atlantic and Mediterranean populations would indeed only be permitted through the
Strait of Gibraltar, yet bottom topography may limit the migration between populations to
a few specimens (Ramírez-Amaro et al., 2018). Therefore, the differences in tooth
morphology between the Atlantic and Mediterranean population samples of S. canicula is
probably related to the species genetic differentiation recorded between these locations
(Barbieri et al., 2014). This assumption could be further tested by examining the
differentiation at both molecular and tooth morphology level between these stocks.

CONCLUSIONS
We combined geometric morphometrics with a machine learning approach to
discriminate between teeth of population samples of S. canicula from the northeastern
Atlantic Ocean and the Mediterranean Sea. The traditional framework used in geometric
morphometrics reached lesser performances at distinguishing the tooth shapes of
S. canicula specimens from the two populations. Nevertheless, these shape data combined
with centroid sizes allow a Random Forest model to classify S. canicula teeth with
up to 100% precision. This framework should be further tested in more S. canicula
populations to decipher tooth morphological differences between spatially and genetically
close-related populations. We hope this emergent framework to be further tuned by
ichthyologists by including geographical parameters and life history traits to discriminate
between subtle tooth morphologies and to provide a basis for facilitating the identification
procedures of fish stocks and improving fisheries management.
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