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Abstract

In this paper, we are interested in digital convexity. This notion is applied
in several domains like image processing and discrete tomography. We choose
to study the inflation and deflation of digital convex sets while maintaining
the convexity property. Knowing that any digital convex set can be read and
identified by its boundary word, we use combinatorics on words perspective
instead of a purely geometric approach. In this context, we characterize the
points that can be added or removed over the digital convex sets without losing
their convexity. Some algorithms are given at the end of each section with
examples of each process.

Keywords: Digital convexity, Christoffel words, Lyndon words, Digital set
inflation, Digital set deflation

1. Introduction

In this paper, we provide characterizations of convexity-preserving removable
and insertable points of digital convex sets. In Z2, even a simple transforma-
tion (such as rotation) of a digital convex set can cause the loss of the digital
convexity property. We aim to provide the discrete equivalent of infinitesimal
transform, from which we can derive convexity-preserving set deformations. In
order to study such atomic deformations that preserve digital convexity, we need
to investigate deflation and inflation processes [30]. The theory of combinatorics
on words provides useful tools and techniques for our investigation [22]. Relying
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on this theory, we are able to characterize the removable points x of a digital
convex set C, such that C \ {x} is still digitally convex. Similarly, we provide
the characterization of the insertable points x ∈ C (the complement of C in Z2)
such that C∪{x} is still digitally convex. These two actions can only be applied
at some specific points on the digital convex set if we want to preserve digital
convexity. As a matter of fact, deflation is easy; finding the correct point to re-
move from a digital set is simple from a geometrical point of view. On the other
hand, inflation is more involved. Propositions and theorems for inflation and
deflation are naturally associated with algorithms in the mathematical sense.
In [31], we provide an implementable algorithm, containing all the necessary
details.

The plan of the paper is the following. Section 2 provides an overview
of digital convexity, from combinatorics on words perspective, and gives the
basic notations needed to understand our results. In Section 3, we characterize
removable points and prove that such a point can be any simple point that is
a corner of the convex hull of C. As said before, finding a characterization
of insertable points is not an easy task. We provide necessary and sufficient
conditions to determine candidate points in Section 4. The necessary condition
is based on a result from [13]: the authors proved that adding the closest outer
point of a segment maintains its digital convexity. Based on this result, we
provide in this paper the characterization of all insertable points for the whole
digital convex set. We provide two main results for the sufficient condition. The
first one is the general case and leads to propagation after inflation. The second
result imposes a strong constraint on the sufficient condition. Figure 1 shows
an example of a digitally convex set with some removable and insertable points.
For both procedures and after each iteration, we must consider an update for
the segments of the convex hull. In this paper, we discuss all the possible cases
for this update. One of them is presented in Figure 2. The last section is left
for the conclusions and perspectives.

Figure 1: The green points are the removable points, which are the vertices of the convex
hull of a digital convex set C. The red points are the insertable points, which some are the
exterior Bézout point of each segment of the convex hull.
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Figure 2: The first picture shows an example of deflation. The green point x is the point to be
removed from a digital convex set (orange points) C. The second picture shows an example
of inflation. The green point x is the new point to be added. The blue and red segments in
both pictures are respectively Conv(C) and their modifications after each process.

2. Digital convexity and combinatorics on words

In this section, we first give the definition of digital convex sets based on
convex hull [19], which are also called H-convex sets [16]. We then show that
their boundaries can be expressed by words represented with the Freeman chain
code [18], called a boundary word. After recalling basic notions of combinatorics
on words, we present the characterization of digital convexity along boundary
words using those notions [8].

2.1. Definitions of digital convex sets
In R2, a subset R is said to be convex if for any pair of points x, y ∈ R, every

point on the straight line segment joining x and y is also within R. This notion,
however, cannot be straightforwardly applied to subsets in Z2. In order to tackle
this issue, various notions of convexity of a set S of Z2 have been proposed. They
are categorized into four approaches; the first approach is based on no existence
of triplet of collinear points (p, q, r) such that p, r ∈ S and q ∈ S [25]. The second
one is based on the existence of a convex set R ⊂ R2 such that the digitization
of R is S [29]. Kim proposed another definition, which can be characterized by
verifying if the digitization of the convex hull of S is equal to S, and also showed
its equivalence with the two former [19]; the definition based on the convex hull
is later called H-convex by Eckhardt [16]. The fourth approach is based on
the notion of digital line segments [20], such that S is digitally convex if the
digital line segment joining any pair of points of S belongs to S. Note that this
last notion guarantees the connectivity of S contrary to the other three. Under
the connectivity assumption, it is then shown that the above different concepts
coincide [16].

The definition of connectivity on Z2 is based on the notion of neighborhood.
Given a point p ∈ Z2, the neighborhood of p is defined by N (p) = {q ∈ Z2 :
∥p− q∥1 ≤ 1}, also called 4-neighborhood. We say that a point q is 4-adjacent
to p if q ∈ N (p) \ {p}. From the reflexive–transitive closure of this adjacency
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Figure 3: An example of a digital set C that is digitally convex but not 4-connected. The
orange points represents the elements x ∈ C while the blue line represents Conv(C).

relation on a finite subset X ⊂ Z2, we derive the 4-connectivity relation on X,
which is an equivalence relation. If there is exactly one equivalence class for
this relation, then we say that X is 4-connected. In this article, we consider
finite and 4-connected sets of Z2. As this 4-connectivity assumption yields the
coincidence of the above different definitions of digital convexity [16]1, we use
the one based on convex hull [16, 19], which is defined for a finite subset Y ⊂ R2

as:

Conv(Y ) := {x ∈ R2 | x =
∑
y∈Y

λyy ∧
∑
y∈Y

λy = 1 ∧ ∀y ∈ Y, λy ≥ 0}.

Definition 1. (Digital convexity [19]) A finite subset S of Z2 is digitally convex
if Conv(S) ∩ Z2 = S.

From this definition, we have the following remark, which is contrary to the
implication of connectivity in the concept of convexity in R2 (see Figure 3 for
an example).

Remark 1. Digital convexity does not imply connectivity in Z2.

The above definition of digital convexity is also used in [12], whose aim is
verifying if a given finite 4-connected set S of Z2 is digitally convex. Their
approach focuses rather on the boundary of S, on which maximal line segments
and their arithmetic properties are analyzed [12]. On the other hand, properties
of the boundary of S based on combinatorics on words are also studied [8].

The problems treated in this article are different from the ones from [8, 12],
but are related. Our problem is stated as follows; given a finite, 4-connected
and digitally convex set C of Z2 and a point p of C (resp. the complement C),

1In [16], 8-connectivity, to which the 4-connectivity leads, is assumed to show the coinci-
dence of the different concepts of digital convexity.
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Figure 4: A digital convex set C is represented by the orange points and its boundary path
Bd(C) is represented by the ordered orange points linked by black line segments. The bound-
ary word W (C) is then given by 101001001̄01̄1̄01̄0̄0̄1̄0̄1̄0̄0̄10̄110̄ while

the blue polygonal line represents the convex hull Conv(C).

we would like to verify if C \ {p} (resp. C ∪{p}) is still digitally convex (and 4-
connected). In order to answer such questions, we use the boundary properties
based on combinatorics on words that are presented in [8].

2.2. Boundary words of digitally convex sets
Let C ⊂ Z2 be a finite, 4-connected digitally convex set. The border points

of C can be tracked by a classical border following algorithm (for example, see
[1] for “left-hand-on-wall” border following, i.e. placing the left hand on a wall
(border) and then following the wall by maintaining contact between the hand
and the wall), which generates a 4-connected sequence of the border points of C.
Note that the sequence can include dead-ends and thus sometimes turnaround
sub-sequences. Such a sequence is also called the boundary path of C, denoted
by Bd(C), and represented by a word obtained by Freeman chain code [18],
denoted by W (Bd(C)) or simply W (C) and called the boundary word of C [17].
Boundary words are thus defined over an alphabet of four letters 0, 1, 0̄, 1̄, which
are associated to the right, up, left and down steps, respectively. See Figure 4
for an example.

It is then observed that the boundary word W (C) of any digital convex set
C can be factorized into four sub-words, such that each sub-word is a binary
word, i.e., it contains only two letters. For such a factorization, we first enclose
the boundary path Bd(C) by its bounding box, and cut Bd(C) into four parts
at the four intersections with the bounding box; for example, on the left side
of the bounding box, we consider the lowest intersection point W as a cutting
position. Similarly, we can find the other three cutting positions, denoted by N,
E, and S, as seen in Figure 5. Starting from W in the clockwise direction and
ending at N, we obtain the WN -path as a part of Bd(C), which is associated
with the WN -word of W (C). Similarly, we obtain NE−, ES−, and SW-paths
and their associated words. Figure 5 illustrates the factorization of boundary
words and shows that each word is a binary word. This factorization allows us

5



to treat the four parts of the boundary of any digital convex set independently,
and to introduce the notion of digital convexity adapted to each part [8].

Definition 2 ([8]). A word w is said WN -convex if it codes the WN -word of
the boundary word of some finite, 4-connected and digitally convex set of Z2.

Similarly, we can define NE-, ES-, SW−convex words.

S

1̄

0̄ 1̄

0̄ 0̄ 1̄
W

0̄ 1

1

0̄ 1

0̄ 0̄

N

100

10

1
E

01̄

1̄

01̄

00

Figure 5: The four parts WN , NE, ES and SW of the boundary of a digital convex set C
are represented in four different colors. The word that codes the WN -path is w = 101001.

Our aim is to deform digital convex sets with preserving their digital convex-
ity and our approach is based on combinatorics on words. In order to present the
important characterization of digital convexity by combinatorics on words [8],
we first recall the necessary notions of combinatorics on words in the following.

2.3. Basic notations of words
We first present some terminologies of words that can be found in [22]. An

alphabet A is a nonempty finite set of symbols called letters; in this article,
we have four letters 0, 1, 0̄, 1̄ as mentioned above. A word w is a sequence of
concatenated letters from A. The empty word ϵ is a sequence of zero symbols.
A∗ denotes the set of all finite words over A. We let |w| represent the length
of a word w, while |w|a represents the number of occurrences of a in w. For
all a ∈ A, we thus have |w| =

∑
a∈A |w|a . The n-times concatenation of w is

denoted by wn. The sub-word s of w from position k to position l is denoted
by: s = w[k : l].

A word is said primitive if it is not the power of a nonempty word. We say
that w and w′ are conjugate, denoted by w ≡ w′, if there exist two factors u, v
in both w and w′, such that w = uv and w′ = vu. The reversal of a word
w = a1a2 . . . an is w̃ = an . . . a2a1 where each ai is a letter. If w̃ = w, the
word is called a palindrome. In this paper, we use the total lexicographic order,
denoted by <.

We recall that the boundary word over {0, 1, 0̄, 1̄} can be divided into 4 parts
and each of them belongs to a different binary alphabet. For each of these parts,
we give the lexicographic order between the two letters in such a way we preserve
the decreasing order of the Lyndon factorization (see below for the definition).

6



In this case, the slope of each factor will be calculated depending on which part
it belongs to. Table 1 shows this information with respect to each part of the
boundary word.

Words Alphabet Order Slopes
WN {0, 1} 0 < 1 |w|1

|w|0
NE {0, 1̄} 1̄ < 0 |w|0

|w|1̄
ES {0̄, 1̄} 0̄ < 1̄ |w|1̄

|w|0̄
SW {0̄, 1} 1 < 0̄ |w|0̄

|w|1

Table 1: The alphabet, the lexicographic order and the slope’s calculation used in each of the
4 parts of the boundary word

In the following, we introduce the two families of words needed in this article,
Lyndon and Christoffel words.

2.4. Lyndon words
We introduce the lexicographic order over the words in order to talk about

the Lyndon family that was introduced by R. C. Lyndon [23].

Definition 3 ([22]). Let u and v be two words. We say u > v if and only if:

∃ r ∈ A∗ u = vr or ∃ m, l, e ∈ A∗ u = m1e and v = m0l

Definition 4 ([23]). A word w is Lyndon if it is the smallest among its con-
jugates using its lexicographic order.

We then have the following unique factorization of any word, which is called
Lyndon factorization, introduced by Lyndon, Chen and Fox in 1958.

Theorem 1 ([28]). Every non-empty word w admits a unique factorization as
a lexicographical decreasing sequence of Lyndon words, w = ℓn1

1 ℓn2
2 · · · ℓnk

k , where
every ni ∈ N and every ℓi is a primitive Lyndon word such that ℓ1 > ℓ2 > · · · >
ℓk.

A linear-time algorithm to compute the Lyndon factorization was proposed
by Duval [15], while there also exists a O(log n)-time parallel algorithm proposed
by Apostolico and Crochemore [2], where n is the length of the word.

Definition 5. Let C ⊂ Z2 be a finite 4-connected, digitally convex set. The
points on Bd(C) that separate different Lyndon factors of W (C) are called Lyn-
don points of C.

Geometrically, Lyndon points correspond to the vertices of the convex hull
of C. They are used in the next section and you can see them in Figure 1 as
the green points in C.
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2.5. Christoffel words
Christoffel words are regarded as the discretization of line segments with

rational slopes.
Geometrically, a Christoffel word is determined by encoding with Freeman

chain code the discretization of a line segment of rational slope [3]. More pre-
cisely, for any two non-negative co-prime integers a and b, the discretization of
a line segment of rational slope a

b is the closest digital path below the line seg-
ment such that no integer point exists between the path and the line segment.
This digital path is called the Christoffel path. If a and b are positive co-prime
numbers, a Christoffel word w of slope a

b , denoted by C
(
a
b

)
, is a sequence of

a+ b letters chosen from the binary alphabet {0, 1}. The choice of letters is not
random, but it is obtained by assigning the letter 0 (resp. 1), to each increasing
(resp. decreasing) step in the sequence of all the multiples of a modulo (a+ b)
as given below.

Definition 6 ([9, 28]). Given a pair of non-negative co-prime integers a and
b, the Christoffel word w of slope a

b is the sequence of a+b letters of {0, 1}∗,
such that the i-th letter of w is given by:

∀i ∈ {1, . . . , n} w[i] :=

{
0 if ri−1 < ri,
1 otherwise

where the remainder ri is defined by

ri = ia mod (a+ b)

for 0 ≤ i ≤ a+ b.

The remainder sequence ri and the i-th letter of C
(
5
8

)
are shown in Table 2.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13
ri 0 5 10 2 7 12 4 9 1 6 11 3 8 0
w[i] 0 0 1 0 0 1 0 1 0 0 1 0 1

Table 2: The Christoffel word w of slope 5
8

with the remainder sequence (ri)0≤i≤13.

It is also noticed that each Christoffel word starts with a horizontal step, i.e.
0, and ends with a vertical step, i.e. 1, while the central part is a palindrome.

Property 1 ([4]). Let C
(
a
b

)
be the Christoffel word of slope a

b with a and b two
positive co-prime numbers, we can write C

(
a
b

)
= 0w′1 where w′ is a palindrome.

As the slope of a Christoffel word is exactly the number of occurrences of the let-
ter 1 over the number of occurrences of the letter 0, the slope of each Christoffel
word is defined as follows.
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Definition 7 ([6]). Given a non-empty primitive Christoffel word w ∈ A∗, the
morphism ρ(w) from A∗ to Q+ ∪ {∞} is defined by

ρ(w) :=

{
∞ if w = 1
|w|1
|w|0 otherwise.

Property 2 ([6]). For any two non-empty Christoffel words u and v, we have

u > v ⇔ ρ(u) > ρ(v).

For this family of words, Borel and Laubie introduced the standard factorization
[6, 7], which allows writing any Christoffel word as the concatenation of two
other Christoffel words in a unique way as follows.

Theorem 2 ([6, 7]). Any Christoffel word w of length greater or equal to 1 can
be written in a unique way such that w = uv where u and v are both primitive
Christoffel words. The couple (u, v) is called the standard factorization of w.

Geometrically, this factorization can be seen as the decomposition of w into u
and v at the closest point of the path corresponding to w with respect to the
line segment between the origin to (|w|0, |w|1). It is equivalent to say that this
factorization corresponds exactly to the position where ri = 1. This closest
point of w is denoted by cl(w). Figure 6 illustrates the standard factorization
of the Christoffel word in Table 2, that is (00100101, 00101).

(0, 0)

w1

w2

(8,5)

B P

Q

Figure 6: The standard factorization of the Christoffel word w of slope 5
8
. P corresponds to

the closest point cl(w) while Q corresponds to the furthest point fu(w). P is also called the
interior Bézout point, while B is the exterior Bézout point. We have: C

(
5
8

)
= C

(
3
5

)
C
(
2
5

)
.

A direct application of Theorem 2 and Property 1 induces the palindromic
factorization, which allows to write any Christoffel word as a concatenation of
two palindromes [6, 28].

Property 3 ([6, 10, 28]). Any primitive Christoffel word w of length strictly
greater than 1 can be written in a unique way as w = p1p2 where p1 and p2 are
palindromes.
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This property comes from the fact that the central part of each factor of the
couple (u, v), which forms the standard factorization of w, is a palindrome (i.e.
u can be written as 0u11 with u1 a palindrome). Namely, we have:

w = uv = 0u110v11 = 0p1 = 0v101u11 = p1p2

where p, p1 and p2 are palindromes (Property 1 and Theorem 2).

Corollary 1 ([6]). Let w be a Christoffel word of length greater than 1. If its
palindromic factorization is given by w = p1p2, then ρ(p1) < ρ(w) < ρ(p2).

Corollary 2 ([13]). Let w be a Christoffel word of length greater than 1. Then
the palindromic factorization decomposes w into p1 and p2 exactly at the furthest
point of the Christoffel path of w with respect to the line segment from the origin
to the grid point (|w|0, |w|1), which is unique respect to w.

This furthest point is denoted fu(w). Note that the position of the grid point
fu(w) over w is ri = |w| − 1 as seen in Figure 6. The two types of points,
the closest point cl(w) and the furthest point fu(w), on the Christoffel path are
highlighted due to particular interest for the rest of the paper; fu(w) is used
in Section 4 for inflation of digital convex sets. We call a closest outer point
of a word, a point which is the diagonally opposite to fu(w). In order to link
Lyndon and Christoffel words, we need the notion of k-balanced words [24]; a
word w ∈ {0, 1}∗ is k-balanced if and only if for every pair of sub-words s, t of
w, we have:

|s| = |t| =⇒ ||s|1 − |t|1| ≤ k.

It is shown that Christoffel words are 1-balanced [6, 7], and the following theorem
connects the two families of words.

Theorem 3 ([24]). A word w is a Christoffel word if and only if it is a 1-
balanced Lyndon word.

2.6. Digital convexity interpreted by combinatorics on words
The authors in [8] gave a characterization for the boundary word W (C) using

the notions of combinatorics on words, in particular Lyndon and Christoffel
words.

Theorem 4 ([8]). A word of {0, 1}∗ is WN-convex if and only if its Lyndon
factorization is unique, and its factors are all primitive Christoffel words.

Thanks to Theorem 3, if each factor of Lyndon factorization is in addition 1-
balanced, we can say that the factors are also Christoffel words. From Theorem
4, we can also conclude that the slopes of the Christoffel factors are in decreasing
order.

Corollary 3. If w = wn1
1 wn2

2 ...wnk

k be the Lyndon factorization of the boundary
word of a certain digital convex set C then ρ(w1) > ρ(w2) > ... > ρ(wk).
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The following example shows a WN -path and the factorization of its bound-
ary word.

Example 1. Let us consider a WN -convex word w whose Lyndon factorization
is:

w = (1)(011101111)(0111)(01)(001)(00010001001)(0001).

The slopes ρ of the factors are decreasing: 1
0 ,

7
2 ,

3
1 ,

1
1 ,

1
2 ,

3
8 ,

1
3 .

In [8], we can find a linear-time algorithm over the word length that checks
the WN -convexity of a path encoded by a binary alphabet. Then, Theorem 4
allows us to detect the exact position of the vertices of the convex hull of Bd(C)
over the boundary word w.

Property 4 ([8]). Given a digital convex 4-connected set C, the vertices of the
convex hull of C or its boundary Bd(C) corresponds to the Lyndon points of
Bd(C).

Figure 7 shows the result of Theorem 4 and Property 4 for the digitally
convex set with boundary word W (C) = 101001001̄01̄1̄01̄0̄0̄1̄0̄1̄0̄0̄10̄110̄.

Figure 7: Let us consider the digital convex set C of the orange and red points, whose
boundary Bd(C) is drawn as the integer points on the black rectilinear polygonal line.
The Lyndon points of Bd(C) are colored in red. Each Lyndon point corresponds to the
end of each distinct factor of the Lyndon factorization of the boundary word W (C) =
(1)(01)(001)(0)2(1̄0)(1̄1̄0)(1̄)(0̄0̄1̄0̄1̄)(0̄)2(10̄)(110̄). We have ρ(1) > ρ(01) > ρ(001) > ρ(0)
in WN -path.

In the next sections, we show how to deflate and inflate a digital convex
4-connected set using the above tools of combinatorics on words. In such a
context, we characterize removable points for the deflation process in Section 3
and similarly identify insertable points for inflation in Section 4.

3. Deflation of digital convex sets

In this section, we first define removable points that allow deflating a digital
convex 4-connected set C while preserving its convexity. We then characterize
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such points in order to make a list of all removable points using concepts of digi-
tal topology and combinatorics on words. They are defined along the boundary
path Bd(C) via the boundary word W (C) (see Section 2.2). Applying iteratively
such point-wise deflation operation may be required in various applications of
computer imagery. This implies that we need each step to choose a removable
point among the list of removable points and then to update the list, which is
made by the new Lyndon factorization of W (C). We show that this update can
be made locally. In practice, we need to choose one removable point in the list
by using some priority. In this article, however, we do not discuss how to define
such priority and simply assume that we have such a priority a priori [30]. We
focus on the characterization of removable points and the update of the list of
removable points, which are critical issues in the deflation algorithm.

3.1. Removable points
We first give a definition of removable points, which are used for deflating a

4-connected digital convex set C while preserving its convexity.

Definition 8. Given a digitally convex, 4-connected set C, a point x ∈ C is
removable if C \ {x} is still 4-connected and digitally convex.

First of all, let us consider the preservation of connectivity. In digital topol-
ogy, given a subset X ⊂ Z2, a point x ∈ X is said to be simple if deleting it from
X preserves the topological characteristics of X, i.e. the number of connected
components of both X and its complement in Z2 [11, 21]. As we consider X
to be 4-connected and digitally convex here, preserving the topological charac-
teristics of X is equivalent to preserving the connectivity of X; X can have no
hole due to the digital convexity. Therefore, removable points must be simple
if we would like to preserve the connectivity of C. Note that digital convexity
does not imply connectivity (see Remark 1).

The definition of simple points relies on the notion of connected components,
which is a global characteristic such that the whole object must be taken into
account. However, it is well known that simple points can be characterized
locally [11, 26], for example, using the connectivity number defined in the 8-
neighborhood [5].

Given a digital convex 4-connected set C, we recall that the boundary
path Bd(C) is decomposed into four parts BdWN (C), BdNE(C), BdES(C) and
BdSW(C) whose boundary words are respectively WWN (C),WNE(C), WES(C)
and WSW(C). Let us consider removing a point on WWN (C), except its extrem-
ities, with preserving the convexity. Then we observe that if boundary points
are removable, then the points and their neighboring points back and forth in
the path BdWN (C) may form the sub-word 10 in WWN (C). Removing a point
from C means switching a factor of the form 10 into 01 in WWN (C) (resp.
1̄0, 0̄1̄, 10̄ into 01̄, 1̄0̄, 0̄1 in WNE(C), WES(C), WSW(C)) as seen in Figure 8.
For the extremity points, we usually use the same concept. A particular study
will be considered further in this paragraph. This switch operator can be de-
fined over the alphabet {0, 1, 0̄, 1̄} so that two consecutive letters are exchanged
at a position k as follows.
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1

A 0

0

1

a) b)

Figure 8: a) A is a point in the WN -path, where its neighboring points back and forth in
BdWN (C) form the sub-word 10. b) Removing the point A corresponds to switching the
sub-word 10 into 01, i.e applying the switch operator at the position of the point A

Note that any point all over Bd(C), whose neighboring points back and forth
in Bd(C) form a sub-word of the same letter can be removed. But, in this case,
we lose the convexity as we can see in Figure 9.

0

B
0

a) b)

Figure 9: a) B is a point in the WN -path, where its neighboring points back and forth in
BdWN (C) form the sub-word 00. b) The digital convexity is lost when removing the point B

Definition 9 ([30]). Given a word w = a1a2 . . . an, the switch operator at
position k, k < n, on w is defined by:

switchk(w) := a1a2 . . . ak+1ak . . . an.

We should mention that sometimes the same grid points appear twice in the
boundary path Bd(C) so that the boundary word W (C) contains two consecu-
tive letters of opposite directions. They are always positioned at the junction of
two of four decomposed paths, BdWN (C), BdNE(C), BdES(C) and BdSW(C),
such that the two consecutive letters are in different paths. We can also remove
such a grid point, so that we replace the sub-word consisting of two letters of
opposite directions by ϵ, as seen in Figure 10.

Over W (C), we can find several points that form with their neighboring
points either sub-word 10, 01̄, 1̄0̄, 0̄1, 0̄0, 11̄, 00̄ or 1̄1. According to Definition
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A
0̄0

a) b)

Figure 10: a) The digital set C whose boundary word is: W (C) = 011000001̄1̄1̄0̄1̄0̄1̄0̄0̄10̄110̄.
The point A ∈ C creates the sub-word 0̄0 in W (C). b) Removing A means replacing this
factor by ϵ.

5, they correspond to Lyndon points; we recall that Lyndon points are geo-
metrically the vertices of Conv(C), each of which is at the end of each factor
of the Lyndon factorization of W (C) according to Property 4. However, not
all of Lyndon points are removable. Indeed, the switch operation on such fac-
tors may lead to losing the connectivity. To avoid this problem, Theorem 5
gives the characterization of removable points for any C. In order to prove
this theorem, we recall that the Christoffel words, which are the one-balanced
Lyndon words of the Lyndon factorization of W (C) (Theorem 4), have the fol-
lowing form: 0u1, 1̄k0, 0̄ℓ1̄ and 1m0̄, where u, k, ℓ and m are palindromes in
WWN (C),WNE(C),WES(C) and WSW(C)(Property1).

Theorem 5. Given a digital convex 4-connected set C of Z2, a point x ∈ C
is removable if and only if x is a simple point with respect to C and a Lyndon
point of the boundary Bd(C).

Proof: Let us consider the boundary word W (C) of C, which is decomposed by
the Lyndon factorization such that W (C) = ℓn1

1 ℓn2
2 . . . ℓns

s . Since C is digitally
convex, each ℓi, 1 ≤ i ≤ s, is a Christoffel word (Theorems 3 and 4). We give
the proof only for the binary sub-word WWN (C) of W (C) as follows; the similar
proofs are found to the three other sub-words WNE(C),WES(C) and WSW(C).
As mentioned above, removing a point from the boundary means applying the
switch operator at a Lyndon point, so that the corresponding sub-word 10 is
replaced by 01, or 0̄0, 11̄ by ϵ. The simplicity of a point x guarantees the 4-
connectivity of C \ {x}. If a point is not a Lyndon point, i.e. the boundary
sub-word belongs to one of the Lyndon factors ℓi of WWN (C), it cannot be
removed as we lose the WN -convexity. Let us consider any boundary sub-word
10 such that 1 appears at the end of one of the Lyndon factors in WWN (C),
and 0 appears at the beginning of the consecutive Lyndon factor. If these
two Lyndon factors are identical, then switching the pair 10 makes us lose the
WN -convexity. Now, let us focus on sub-words 10 that are obtained by two
consecutive distinct Lyndon factors ℓiℓi+1 of WWN (C). By Property 1, we can
write ℓi = 0u1 and ℓi+1 = 0v1 where u and v are both palindromes, so that
ℓiℓi+1 = 0u10v1. By applying the switch operator on ℓiℓi+1 at position |ℓi|, we
obtain: switchk(ℓiℓi+1) = 0u01v1, which is also a Christoffel word if u01v is a
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palindrome, as seen in Property 3; otherwise, we get several other Christoffel
words. This effect will be studied and detailed in the next subsection where we
give the update’s effect on the sub-word after removing a point (see also the
proof of Theorem 1 in [30]). Finally, when the corresponding sub-word of the
point to remove is 0̄0 (resp. 11̄), this means that we are at the intersection
between the SW and WN paths (resp. WN and NE paths). Replacing this
sub-word with ϵ means that the position of the point W will change and the
BdWN (C) will be longer and starts from the first letter after the last 0̄ in
BdSW(C). □

The property 4 provides the geometrical interpretation of Theorem 5: any
vertex of the convex hull of C corresponds to a Lyndon point on Bd(C). We note
that detecting all the removable points for C is performed in linear complexity
with respect to |W (C)| as it is done via Lyndon factorization of W (C).

3.2. Updating the removable points
Given a digital convex 4-connected set C of Z2, the first iteration of our

deflation process of C is started by making the list of all the possible removable
points with respect to C. Once a candidate has been chosen among them, the
boundary word W (C) is modified and the Lyndon factorization is made again.
This means that new candidates can arise or disappear from the list of removable
points.

Example 2. Let w1 = C( 25 )C( 13 ), w2 = C( 37 )C( 13 ), w3 = C( 35 )C( 13 ) and w4 =
C( 1419 )C( 4

17 ) be three different factors of the boundary word W (C) of a digital
convex 4-connected set C. As proved before, the removable points with respect
to C are simple and Lyndon points. From the definition, the Lyndon points
of each wi are positioned at the joint between consecutive distinct Christoffel
words. If we apply the switch operator on each wi at the Lyndon point, we obtain:
switch7(w1) = C( 38 ); switch10(w2) = (C( 25 ))

2; switch8(w3) = C( 23 )(C( 12 ))
2 and

switch33(w4) = C( 1115 )C( 23 )C( 12 )(C( 14 ))
4. These examples show that Lyndon

points can disappear or newly appear due to the switch operation (see Figure
11).

The above deflation step is iterated in general, and we remark that several
removable point candidates exist at each iteration step. Various heuristics can
be considered to choose one of the removable points [30]. It is also important
to know what happens after each iteration because of the update of the Lyndon
factorization. The property 5 shows all the possible effects that arise after
removing a point. We can also see that the update of removable points are
made locally, which means that the Lyndon factorization before the factor u
and after the consecutive factor v is unchanged if the Lyndon point is removed
at the joint of u and v.
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a) switch7(C( 25 ).C( 13 )) = C( 38 )

b) switch10(C( 37 ).C( 13 )) = (C( 25 ))
2

c)switch8(C( 35 ).C( 13 )) = C( 23 )(C( 12 ))
2

d)switch33(C( 1419 ).C( 4
17 )) = C( 1115 )C( 23 )C( 12 )(C( 14 ))

4

Figure 11: Before and after the pixel-wise deflation of (a) w1, (b) w2, (c) w3 and (d) w4 and
their Lyndon factorization (left and right); a) and b) no removable point remains after the
update; c) a removable point arises at a different position; d) several new removable points
appear.

Property 5 ([30]). Let the binary word w = uv such that u and v are two
Christoffel words with ρ(u) > ρ(v). By applying the switch operator to w at
position |u|, we obtain switch|u|(w) = mℓ1

1 . . .mℓk
k , k ≥ 1 such that ρ(u) >

ρ(m1) > . . . > ρ(mk).

3.3. Algorithm
We give a small recap about all the previous results considered in combina-

torics on words point of view. In order to deflate a digital convex 4-connected
set C, we must start the procedure by considering the boundary word w of
C. By Property 4, it is sufficient to apply the Lyndon factorization on w in
order to get the positions of all the Lyndon points. At each step of the de-
flation procedure, several points are considered good candidates. In order to
know which point is removable, we need to be sure that this point is also a
simple point thanks to Theorem 5. We then choose a certain heuristic in order
to stock these candidates in a priority queue. Once a point is selected from
the queue, we apply the switch operator at its position, given in Definition 9.
Some local updates must be considered over the Lyndon factorization. This will
certainly affect the priority queue of removable points, which requires an update
too since the Lyndon points may vary. This procedure can be repeated for a
fixed number of times. Knowing that we are removing a single point at each
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step, the number of iterations is limited by the cardinality of the digital set. To
remove k points from C while preserving digital convexity, the procedure must
be iterated k times. Algorithm 1 represents such an iterative pointwise deflation
over a 4-connected digital convex set C.

Algorithm 1 Point-wise deflation
Input: a digital convex 4-connected set C, a number of removing points k
Output: a sequence of removed points R

1: Compute the Lyndon Factorization F of the boundary word of C
2: Insert all the Lyndon points in a priority queue L
3: while k > 0 do
4: Pull the highest-priority simple point p from L and add p to R
5: Let u and v be the two distinct Christoffel words of F around p
6: Compute w = switch|u|(uv)
7: Compute the Lyndon Factorization of w and update F and L
8: Decrement k
9: end while

10: return R

Figure 12 shows the deflation procedure applied on a digital convex 4-
connected set using the heuristic of area-change, which minimize or maximize
the area difference between the convex hull of C and C \ {p} (see [30] for more
details).

a) b) c)

Figure 12: The deflation process of a digital convex 4-connected set (a) represented after 150
and 250 iterations respectively in (b) and (c) using the heuristic of area-change.

4. Inflation of digital convex sets

In this section, we study the pixel-wise inflation of any digital convex 4-
connected set C with the preservation of digital convexity, which is more com-
plex than the deflation process as seen in the previous section. We first give a
necessary condition and then a sufficient condition for characterizing insertable
points for such inflation. We will show that such insertable points cannot be at
any arbitrary place around C. Here the key process, if such inflation is applied
iteratively, is also the update of Lyndon factorization over the boundary word
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W (C). The question raised is whether the induced factorization can be made
locally and efficiently.

Here, we focus on the closest outer points, each of which is uniquely defined
for every Lyndon factor of the boundary word W (C), with length greater than
1 (see Corollary 2). Lyndon factors of length 1 have no closest outer point, and
this case will be treated differently later on in this section. In order to inflate
C, we need to determine the insertable points, which are necessarily the closest
outer points indeed. In order to verify the insertability of a closest outer point,
we have to take into consideration the local and global effects on W (C) after
adding this point, which requires the Lyndon factorization update of W (C). In
fact, we might lose the digital convexity after adding a furthest point if we do
not choose the right one. We characterize insertable points with some iterative
local digital convexity verification. In order to avoid such an expensive iterative
verification, we also propose some strong constraints to locally characterize a
subset of insertable points.

4.1. Definition of insertable points
We define insertable points, which are used for pixel-wise inflation of a digital

convex 4-connected set C without losing its digital convexity.

Definition 10. Given a digital convex 4-connected set C, a point x ∈ C is
insertable if C ∪ {x} is still 4-connected and digitally convex.

In this section and unlike Section 3, there is no need to verify if an insertable
point refers to a simple point or not. We only need to verify the digital convexity
as the simple 4-connectedness of C ∪ {x} is kept. We recall that the Lyndon
factorization of the boundary word W (C) is of the following form: W (C) =
ℓn1
1 . . . ℓns

s where all ℓi are made of primitive Christoffel words of length greater
or equal to 1, with the decreasing slope order, and every ni is a positive integer.
If ni > 1, this signifies that a Christoffel word ℓi is repeated ni times in W (C).
To find insertable points, we need to consider the following two cases for each
Lyndon factor ℓi of W (C): |ℓi| > 1 and |ℓi| = 1.

4.2. The link between insertable points and furthest points
In this part, we show the link between insertable points and furthest points

associated with primitive Christoffel words. Let us call the diagonal opposite
point in C̄ of each furthest point in C the closest outer point2. We show that
for each primitive Christoffel word of length strictly greater than 1, we can find
a unique position in the boundary word W (C) where a point is added at its
closest outer point. We first present the definition of the split operator applied
on primitive Christoffel words, proposed in [13]. This operator helps us to see
the local modification over the boundary word W (C), which can influence the
Lyndon factorization of W (C) globally sometimes.

2This point corresponds exactly to the exterior Bézout point of a line segment in Z2.
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Figure 13: Split operator applied to Christoffel paths of slopes (a) ∞ so that split(1) = (10̄, 0),
and (b) 0 such that split(0) = (01, 1̄).

4.2.1. Necessary condition for insertable points
Adding a point to a digital convex 4-connected set C at neither its vertical

nor horizontal parts of the bounding box of C correlates, in a viewpoint of
combinatorics on words, to applying the switch operator, given in Definition 9,
to a sub-word of form 01 (resp. 1̄0, 0̄1̄, 10̄) over the boundary word WWN (C)
(resp. WNE(C), WES(C), WSW(C)); on the vertical and horizontal sides, the
letters 0̄10 (resp. 101̄, 01̄0̄, 1̄0̄1) replace 1 (resp. 0, 1̄, 0̄) instead. We aim at
inflating C without losing its digital convexity. This means that after adding a
point, the updated Lyndon factorization of W (C) must remain made of factors of
Christoffel words whose slopes are in decreasing order, as seen in Corollary 3. In
general, this condition is not satisfied if we add a point randomly. We will show
that any insertable point must be a closest outer point, which is the diagonally
opposite point of a furthest point. Note that the reverse is not always true.

Definition 11 ([13]). The split operator applied on a primitive Christoffel
word w decomposes w into two Christoffel words w+ and w−, defined as

split(w) := (w+, w−)

such that:

• when |w| ≥ 2,

(w+, w−) := (w′[1 : k], w′[k + 1 : |w|])

where w′ = switchk(w); with k the position of the furthest point of w,

• when |w| = 1,

(w+, w−) :=


(10̄, 0) if w = 1,
(01, 1̄) if w = 0,
(1̄0, 0̄) if w = 1̄,
(0̄1̄, 1) if w = 0̄.

In Figure 13, we show examples of the case that the length of a Christoffel word
is equal to 1. Note that, if the Christoffel word w is not primitive, i.e. w = ℓni

i

with ni > 1, we can apply the split operator on any of these ℓi.
Corollary 2 shows that the split operator applied at the furthest point po-

sition of a Christoffel word of length greater than 1 gives two other Christoffel
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words. These two words are of decreasing order with respect to their slopes.
Lemma 1 also shows that the concatenation of these two new factors gives the
same result for the switch operator, defined previously when applied at the same
position. This can be seen in Example 3 and illustrated in Figure 14.

Lemma 1 ([13]). Given a Christoffel word w with |w| > 1 such that w = uv
and u and v are the factors of the standard factorization of w. Then we have

split(w) = (v, u)

where ρ(v) > ρ(u).

From Theorem 2, we know that u and v, the two factors of the standard fac-
torization of w, are both primitive Christoffel words. Lemma 1 then shows that
the result of the split operator exactly consists of the two primitive Christoffel
words v and u, which are in the reverse order of the standard factorization.

Example 3. (Example of the split operator)
Let w = 00100100101 be the Christoffel word of slope 4

7 with its standard fac-
torization w = w−w+ where w− = C

(
1
2

)
, w+ = C

(
3
5

)
and ρ(w−) < ρ(w+). By

applying the split operator on w, we obtain

split(w) = (w+, w−) = (00100101, 001).

O

w+

w−

P

fu(w)

split(w)

O

w+

w−

P

Q

Figure 14: Christoffel word (left) whose standard factorization is w = w−w+, and the result
of the split operator (right), split(w) = w+w− = switch8(w).

Property 3 ensures the uniqueness of the furthest point for each Christoffel
word. Based on that, it is shown in [13, 14] that any Christoffel word of length
greater than 1 can only be split at this position.

Proposition 1. [14] Let w be a Christoffel word of length n and k the position
of fu(w).

1. The words u = w[1, k−1]1 and v = 0w[k+2, n], are two Christoffel words,
where the notation w[i, j] indicates the subword of w from position i to j,
with 1 ≤ i ≤ j ≤ n.

2. For each non-negative integer k′ different from k, the words u′ = w[1, k′−
1]1 and v′ = 0w[k′ + 2, n] are not both Christoffel words.
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Proof: Let w be a Christoffel word of length n and k is the position of fu(w).
From Property 1, we know that w = 0p1 where p is a palindrome. From
Corollary 2, we can write w in a unique way as w = p1p2, where p1 and p2 are
two palindromes with |p1| = k. This gives w = 0s01t1 where the length of s is
k − 2. Therefore, u = w[1, k − 1]1 = 0s1 and v = 0w[k + 2, n] = 0t1 are two
Christoffel words. The unicity of the position of fu(w) ensures the unicity of u
and v. □

A useful consequence follows.

Corollary 4. Let w, u and v be as defined in Proposition 1. It holds ρ(u) >
ρ(v).

In other words, if we need to add a point from C to C in order to inflate
a certain digital line segment of the boundary of C, we must choose a closest
outer point associated to the digital line segment.

So far, we have shown how to split one Christoffel word with or without
multiplicity; Lemma 1 ensures that the order of the slopes for the new Christoffel
words, obtained after splitting, is still decreasing. The next question is the
following: will this order be preserved also around the boundary word? In
other words, does this operation affect the order of the slopes around a chosen
Christoffel word to be split? These questions are answered in the following part.
They help us to give the characterization of insertable points.

4.2.2. Example of closest outer points that are not insertable
Let us consider a digital convex 4-connected set C and its boundary word

whose Lyndon factorization is given by W (C) = ℓn1
1 . . . ℓns

s . Each factor ℓni
i rep-

resents one of the polygonal line segments of Conv(C) and each ℓi is a primitive
Christoffel word. As we have seen, in order to add a point around C, we choose
one of the factors of W (C) together with its closest outer point. This must be
done by respecting the conditions given in Definition 11 and Lemma 1. Two
examples are illustrated in Figure 15.

(a) (b)

Figure 15: Figure (a) shows that the inflation at this position maintains the convexity. Figure
(b) shows that there is an additional step of propagation to verify the convexity on the left
side of the segment.

During the inflation process, we can also get the case where we can com-
pletely lose the convexity property. In this case, we know that this closest outer
point, cannot be chosen as an insertable point. This is illustrated in Example
4.

Example 4. (Example of a closest outer point that is not insertable) Let w1 =
C
(
30
41

)
and w2 = C

(
5
7

)
be two consecutive Christoffel words on the boundary
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word of a certain digital convex 4-connected set. From Theorem 4, we have
ρ(w1) > ρ(w2). If we apply the split operator on w2, i.e. add the closest outer
point of w2, we lose the digital convexity while it is not the case if we apply it
on w1:

split(w1)w2 =

(
C

(
11

15

)
,C

(
19

26

))
C

(
5

7

)
w1split(w2) = C

(
30

41

)(
C

(
3

4

)
,C

(
2

3

))
.

This example indicates that a closest outer point is not always insertable. In
the following, we study sufficient conditions for insertable points in detail.

4.2.3. Characterization of insertable points and Lyndon factorization update
As seen before, not all closest outer points correspond to insertable points.

In order to verify such insertability, we need to update, after adding a clos-
est outer point, the Lyndon factorization over the boundary word W (C). As
mentioned before, we might need to do some propagation for certain cases.
This propagation can be made on the right and/or left side of the Christoffel
word where we split, and can reach the beginning or the end of the sub-word
WWN (C),WNE(C),WES(C) or WSW(C), in the worst case. We give the char-
acterization of an insertable point in Theorem 6. The proof will be given at the
end of this section since we need to show some notions before. Definition 12
introduces two types of insertability verification for grid points, one on the left
side and the other one on the right side. A point is insertable on the left (resp.
right) if we are able to concatenate a finite number of the previous (resp. next)
consecutive Christoffel words. This concatenation is called the propagation and
is possible under some conditions as shown in Definition 12.

Definition 12. Given a digital convex 4-connected set C, let us consider the
boundary word W (C) and its Lyndon factorization W (C) = ℓn1

1 . . . ℓnm
m . Let x

be the closest upper point in C of the j-th Lyndon factor ℓi for i ∈ [1,m] and
j ∈ [1, ni] in W (C) such that split(ℓi) = (ℓ+i , ℓ

−
i ), we say that:

• x is insertable on the left if there exists some non-negative integer k (k ∈
Z+), such that ℓi−k−1 ≥ Lk, where Lh for h ≤ k is recursively defined by

Lh :=

{
ℓj−1
i ℓ+i for h = 0
ℓ
ni−h

i−h Lh−1 for h ≥ 1 if ∃ mh−1 ∈ Z+, ℓi−h = ℓi−h−1L
mh−1

h−1

• x is insertable on the right if there exists some non-negative integer k such
that ℓi+k+1 ≤ Rk, where Rh for h ≤ k is recursively defined by

Rh :=

{
ℓ−i ℓ

ni−j
i for h = 0

Rh−1ℓ
ni+h

i+h for h ≥ 1 if ∃ mh−1 ∈ Z+, ℓi+h = R
mh−1

h−1 ℓi+h−1

Example 5. Let us consider the three consecutive Christoffel words: w1 =
C( 32 ), w2 = C( 43 ) and w3 = C( 1411 ), where w1 > w2 > w3. By splitting w1,
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we get: split(w1) = (C( 21 ), C( 11 )). The point added is insertable on the right
since we can do a finite propagation:

• R0 = C( 11 ), but w2 > R0. So we construct R1 = R0w2 = C( 54 ), since
w2 = R0C( 43 ).

• We now have, w3 > R1, but w3 = R2
1w2, then we can construct R2 =

R1w3 = C( 1915 ).

After this finite propagation, we end up with C( 21 )R2. For more details check
Figure 16.

Theorem 6 is one of the main results of this paper. It provides the charac-
terization of the insertability of such a closest upper point x ∈ C.

Theorem 6. Given a digital convex 4-connected set C, let x be the closest upper
point in C with respect to one of the Lyndon factors of the boundary word W (C).
Then, x is insertable if and only if x is insertable on both the left and right sides.

Theorem 6 characterizes insertable points. Using this characterization, we can
obtain the positions of all the insertable points to inflate a digital convex set
by preserving its digital convexity. Once one of these eligible candidates is
chosen and added, we update W (C), which also updates the list of insertable
points for the next step of inflation. Theorem 6 and Definition 12 show all the
possible cases we can face after adding an insertable point. In order to prove
this theorem, we first need to define the following morphism that maps the set
of Christoffel words to the set of binary words.

Definition 13 ([7]). Given an ordered pair of Christoffel words over {0, 1}∗
B = (C

(
a
b

)
,C

(
c
d

)
), we define the Christoffel morphism ΘB from the set of

Christoffel words to A∗ such that ΘB(0) = C
(
a
b

)
and ΘB(1) = C

(
c
d

)
.

Being a morphism, ΘB(uv) = ΘB(u)ΘB(v), and it is ordered as we can see in
the following property.

Property 6 ([7]). If C
(
a
b

)
< C

(
c
d

)
, then the Christoffel morphism ΘB with

B = (C
(
a
b

)
,C

(
c
d

)
) is an increasing morphism. In other words, for any two

Christoffel words w1 and w2 such that w1 < w2, we have: ΘB(w1) < ΘB(w2).

Example 6. Let B = (C
(
3
5

)
,C

(
2
3

)
), w1 = C

(
3
4

)
and w2 = C

(
3
2

)
. From the

lexicographic order, we have that C
(
3
5

)
< C

(
2
3

)
and w1 < w2. By applying

Definition 13 and Property 6, we get the following words:

ΘB(w1) = C

(
3

5

)2

C

(
2

3

)
C

(
3

5

)
C

(
2

3

)
C

(
3

5

)
C

(
2

3

)
ΘB(w2) = C

(
3

5

)
C

(
2

3

)
C

(
3

5

)
C

(
2

3

)2

so that ΘB(w1) < ΘB(w2).
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Lemma 2 studies the effect of the split operator of a certain Christoffel word
with multiplicity higher than 1.

Lemma 2. Let us consider a WN -convex word w and its Lyndon factorization
w = ℓn1

1 . . . ℓns
s . For any j ∈ [1, s] such that | ℓj | > 1, if we split the i-th element

of ℓnj

j where 1 ≤ i ≤ nj, we obtain split(ℓj) = (ℓ+j , ℓ
−
j ) and the factors ℓi−1

j ℓ+j

and ℓ−j ℓ
nj−i
j are two decreasing Christoffel words, i.e. ℓi−1

j ℓ+j > ℓ−j ℓ
nj−i
j .

Proof: First, we prove that the two factors ℓi−1
j ℓ+j and ℓ−j ℓ

nj−i
j are Christoffel

words. This is obtained by applying the Christoffel morphism ΘA over A =
(ℓ−j , ℓ

+
j ) on the words (01)i−11 and 0(01)nj−i respectively. Second, we must

prove that ℓi−1
j ℓ+j > ℓ−j ℓ

nj−i
j . This inequality comes from the fact that ΘA is

an increasing morphism, as seen in Property 6; since ℓ−j < ℓ+j and 0(01)nj−i <

(01)i−11, we have ΘA((01)
i−11) < ΘA(0(01)

nj−i). □
When the length of a Christoffel word is equal to one, the split operator gives

two Christoffel words with different binary alphabets such as split(1) = (10̄, 0).
These two new Christoffel words cannot be compared with each other as the
two Christoffel words do not belong to the same part of the four parts of the
boundary path (ex. WN -path). When they belong to different parts of the
boundary word of a digital convex 4-connected set C, the right insertability of
the associated point is verified in the initial binary boundary sub-word while the
left insertability is verified in the previous one. In the case of split(1) = (10̄, 0),
the right insertability verification is made in WWN (C) while the left one is made
in WSW(C).

To simplify the proof of Theorem 6, we treat only the right insertability as
the left one can be proved similarly. We consider all the possible situations that
can arise after applying the split operation.

Proof of Theorem 6:
Let us consider the boundary word W (C) and its Lyndon factorization W (C) =
ℓn1
1 . . . ℓnm

m . Let x be the closest upper point in C of the j-th Lyndon factor ℓi
for i ∈ [1,m] and j ∈ [1, ni] in W (C) such that split(ℓi) = (ℓ+i , ℓ

−
i ). From

Lemma 2, we know that ℓ−i ℓni−1
i is a Christoffel word and that ℓ+i > ℓ−i ℓni−1

i .
Let us consider that Ri+1 is in WWN (C). To check the WN -convexity, we must
compare R0 = ℓ−i ℓni−1

i to ℓi+1. We get the following cases:

1. If ℓi+1 < R0, so no further verification is needed and the digital convexity
is maintained.

2. If ℓi+1 = R0, the convexity is also preserved in this case since the line
segments discretized by R0 and ℓ

ni+1

i+1 will be aligned, and the multiplicity
of ℓi+1 is increased by 1 in the factorization of w.

3. If ℓi+1 = Rmi
0 ℓi, then R1 = R0 ℓ

ni+1

i+1 is set and R1 is now compared with
to ℓ

ni+2

i+2 using the same reasoning. This propagation is kept until the right
insertability verification is done with one of the cases 1, 2 and 4 or until
the end of WWN (C). Hence the sequence Rk is constructed.
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4. If ℓi+1 > R0 and ℓi+1 ̸= Rmi
0 ℓi, then the we lose the decreasing order,

namely the WN -convexity. Hence, the point x is not insertable.

A similar proof can be given for the left insertability. Note that if the length of
ℓi is equal to one, the left insertability should be verified in the previous binary
boundary sub-word. □

Note that the propagation test is limited by the extremity of the WN side.
In Figure 16, we show an example of the propagation following Theorem 6.

Figure 16: Procedure of insertability verification on the right with propagation: the closest
upper point (1, 2) of ℓi (ℓi in pink) is inserted (left); as ℓi+1 ≤ R0 (ℓi+1 in blue and R0 = ℓ−

in red) is not satisfied but we have ℓi+1 = R0ℓi, we obtain R1 = R0ℓi+1 (R1 in green
(=red+blue)) (center); as ℓi+2 ≤ R1 (ℓi+2 in brown) is not satisfied but we have ℓi+2 =
R2

1ℓi+1, we obtain R2 = R1ℓi+2 (R2 in green (=red+blue+brown)) (right).

With Theorem 6, we have the characterization of the insertable pixels over
W (C). We give in Example 7, 8 and 9, several numerical cases showing the
inflation process.

Example 7. Let us consider a
WN

-convex word w =
(
C
(
3
4

))4
C
(
3
5

)
C
(
1
2

)
and the split of the second factor. As

split(C
(
3
5

)
) =

(
C
(
2
3

)
,C

(
1
2

))
, we obtain the new

WN

-convex word w′;

w′ =

(
C

(
3

4

))4

C

(
2

3

)(
C

(
1

2

))2

.

Example 8. Let us consider a
WN

-convex word w = (C
(
3
4

)
)4(C

(
3
5

)
)3C

(
1
2

)
and the split of the second word of the

second factor ℓ2. As split(C
(
3
5

)
) = (C

(
2
3

)
,C

(
1
2

)
) and ℓ3 = ℓ−2 , we obtain:

w′ =

(
C

(
3

4

))4

C

(
3

5

)
C

(
2

3

)
C

(
1

2

)
C

(
3

5

)
C

(
1

2

)
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whose Lyndon factorization is
(
C
(
3
4

))4
C
(
5
8

)
C
(
4
7

)
C
(
1
2

)
Example 9. Let us consider a WN -convex word w =

(
C
(
3
4

))4 (
C
(
3
5

))5
C
(
24
41

)
,

so that ℓ3 = (ℓ−2 ℓ22)
3 ℓ2, and consider splitting the third word of the second factor

C
(
3
5

)
. We get:

w′ =

(
C

(
3

4

))4

C

(
2

3

)
C

(
13

22

)
C

(
24

41

)
whose Lyndon factorization is (C

(
3
4

)
)4C

(
8
13

)
C
(
31
53

)
.

4.3. Strong sufficient condition to insertable points
Given a digital convex 4-connected set C, till now, for each closest upper

point of C, we must check the conditions given in Theorem 6 in order to know
if it is an insertable point or not. However, checking if a point is insertable,
using Theorem 6 may require processing the whole boundary word W (C) due
to the propagation process for the left and right insertability verification (see
Definition 12). In this section, we consider some extra local constraints on a
chosen Lyndon factor, which ensures that the associated closest upper point is
always insertable without the propagation process. For this aim, the authors
in [7] restricted the study within the case where all the factors of the Lyndon
factorization of the boundary word are primitive. They choose the closest upper
point of the segment that is correlated to a primitive Christoffel word of maximal
length with respect to the previous and next primitive Christoffel words. With
this constraint, removing the corresponding closest upper point of the locally
longest Christoffel word always preserves the digital convexity. This result was
not proved and neither generalized in the case where the factors of the boundary
word are not primitive. We provide here the general result with a full study for
all the possible cases and updates.

In fact, we would like to show that splitting a locally longest primitive
Christoffel word of W (C) guarantees inflation at any step, while preserving
the digital convexity. In other terms, the closest upper points of all the primi-
tive Christoffel words of local maximal length correspond to insertable points.
Before reaching this theorem, we prove first that if we have three consecutive
decreasing Christoffel words such that the first one is longer than the neighbors,
then its split preserves this decreasing order in the local part.

From Definition 13 and Proposition 6, we recall that the Christoffel mor-
phism ΘB induces an increasing bijection between the set of Christoffel words
and itself. Based on this we can get the following Corollary.

Corollary 5. Any Christoffel word C such that C
(
a
b

)
< C < C

(
c
d

)
satisfies

|C| ≥ |C
(
a
b

)
|+ |C

(
c
d

)
| > max(|C

(
a
b

)
|, |C

(
c
d

)
|).

Proof: Let B = (C
(
a
b

)
,C

(
c
d

)
), and Θ = ΘB be the Christoffel morphism defined

by Θ(0) = C
(
a
b

)
and Θ(1) = C

(
c
d

)
. If C

(
a
b

)
< C < C

(
c
d

)
then C = Θ(U),

where U is a Christoffel word other than 0 or 1. Hence, U contains one letter
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0 and one letter 1. Therefore the image contains two disjoint factors C
(
a
b

)
and

C
(
c
d

)
. □

Corollary 5 allows us to give an algorithm that inflates a digital convex set
C while preserving its digital convexity. We start by defining the notion of
maximal primitive length of a Christoffel word with respect to the previous and
next one.

Definition 14. Let W (C) = ℓn1
1 . . . ℓns

s be the Lyndon factorization of a digital
convex set C, and let ℓj, 1 ≤ j ≤ s, be one of the Christoffel words, seen in a
cyclic way at j = 1 and j = s. We say that ℓj has a local maximal primitive
length if | ℓj | > max (| ℓj−1 |, | ℓj+1 |).

By inflating the Christoffel word ℓj , with a local maximal primitive on the
closest upper point, we preserve the digital convexity, thanks to Theorem 7.

Theorem 7. Given a digital convex 4-connected set C, if x ∈ C is the closest
upper point of a local maximal primitive length Christoffel word of the Lyndon
factorization of the boundary word W (C) then x is an insertable point.

Proof: The proof is deduced from Corollary 5. □
This means that adding this constraint assures that this particular closest

upper point is an insertable one.
After inflating C with respect to this strong constraint, we only can face one
out of four cases, when we update W (C). They are mentioned in Lemma 3.

Lemma 3. Let ℓj be one of the Christoffel words of local maximal primitive
length in the boundary word, W (C) = ℓn1

1 . . . ℓns
s , of a 4-connected digital convex

set C. By applying the split operator on the i-th ℓj for any 1 ≤ i ≤ nj such that
split(ℓj) = (ℓ+j , ℓ

−
j ), the Lyndon factorization can be updated by the following

local replacement:

1. if (i > 1 or ℓj−1 > ℓ+j ) and (i < nj or ℓj+1 < ℓ−j ):

ℓn1
1 ℓn2

2 . . . ℓ
nj−1

j−1 (ℓi−1
j ℓ+j )(ℓ

−
j ℓ

nj−i
j ) ℓ

nj+1

j+1 . . . ℓnk

k ,

2. if (i = 1 and ℓj−1 = ℓ+j ) and (i < nj or ℓj+1 < ℓ−j ):

ℓn1
1 ℓn2

2 . . . ℓ
nj−1+1
j−1 (ℓ−j ℓ

nj−i
j ) ℓ

nj+1

j+1 . . . ℓnk

k ,

3. if (i > 1 or ℓj−1 > ℓ+j ) and (i = nj and ℓj+1 = ℓ−j ):

ℓn1
1 ℓn2

2 . . . ℓ
nj−1

j−1 (ℓi−1
j ℓ+j ) ℓ

nj+1+1
j+1 . . . ℓnk

k ,
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4. if (i = 1 and ℓj−1 = ℓ+j ) and (i = nj and ℓj+1 = ℓ−j ):

ℓn1
1 ℓn2

2 . . . ℓ
nj−1+1
j−1 ℓ

nj+1+1
j+1 . . . ℓnk

k .

Proof: The proof of this lemma relies on the following two points:

1. Showing that u = ℓi−1
j ℓ+j and v = ℓ−j ℓ

nj−i
j are Christoffel words. This

follows from Lemma 2 by taking the base B = (ℓ−j , ℓ
+
j ). We obtain u =

ΘB((01)
i−11) and v = ΘB(0(01)

nj−i).
2. Proving the following inequalities: ℓj−1 > ℓi−1

j ℓ+j > ℓ−j ℓ
nj−i
j > ℓj+1.

• The inequality in the middle comes from the fact that ΘB defined
earlier is increasing and 0(01)nj−i < (01)i−11.

• If the last inequality is not correct, we have: ℓ−j ≤ ℓ−j ℓ
nj−i
j ≤ ℓj+1 <

ℓj . Then ℓj is a Christoffel word in the B and the condition does not
allow the equality ℓj+1 = ℓj ; in this case it has to be longer than ℓj ,
contradicting the condition that ℓj is longer than ℓj+1.

• The first inequality is treated in a symmetric way as the previous
one.

□
From Lemma 3, we can remark that in all the four cases, the digital convexity

is preserved. The inflated segment of the conv(C) is replaced by two others. For
the second case, ℓ+j is the same as ℓ

nj−1

j and a concatenation from the left side
arises. Similarly and by symmetry, for the third case, ℓ−j is the same as ℓ

nj+1

j

and a concatenation from the right side arises. For the last case, ℓ+j (resp. ℓ−j )
is the same as ℓ

nj−1

j (resp. ℓ
nj+1

j ), and concatenations from both sides arise. In
other words, we lose one of the segments of conv(C). For all the cases, we can
note that the propagation does not exceed the neighboring Christoffel words
ℓ
nj+1

j+1 and ℓ
nj−1

j−1 .

Corollary 6. Splitting the Christoffel word of the Lyndon factorization which
has the local maximal primitive length limits the propagation and bounds it only
by the previous and next factor.

4.4. Algorithm
We give now a general algorithm to inflate C based on the previous results:

for the general case or the case with strong constraint. In Algorithm 2, we
determine the list of all the possible insertable points obtained either by ap-
plying Theorem 6 or Theorem 7. For each iteration, we choose the point with
the highest priority queue and we apply the necessary updates on the Lyndon
factorization. We recall that for the general case, this update can lead to a
propagation, while for the case with strong constraint, this update is local. Two
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different and more detailed algorithms, for each of the cases separately, will be
given in future work. By using this approach for inflation, if we keep choosing
the side with primitive local maximal length at each iteration, we remark that
the horizontal and vertical segments of conv(C) will not be chosen. In fact, the
discretization of these segments is either factors of the form 0p, 1q, 0r or 1

s for
certain integer numbers p, q, r, or s. This means that their primitive length
is always equal to 1. Hence, at any step of the inflation they cannot be desig-
nated. We see in this case, that the inflation will happen at the beginning on
the WN ,NE , ES and SW sides without considering the horizontal and vertical
sides which leads to an octagonal shape as seen in Figure 17. Once we are at
this step, all the remaining factors are of length 2 and 1. The inflation will
continue until we reach the form: 1k0l1

k
0
l for certain integers l, k, which is our

rectangle-bounded box.

a) b)

Figure 17: Figure b) shows the inflation of the digital convex set represented in a) by applying
the algorithm with the stronger constraint based on local maximal primitive length of a Lyndon
factor.

Algorithm 2 Point-wise inflation
Input: a digital convex 4-connected set C, a number of adding points k
Output: a sequence of inserted points I

1: Compute the Lyndon factorization F of the boundary word w of C
2: Insert all insertable points in a priority queue P
3: while k ≥ 0 do
4: Pull the highest-priority insertable point p from P and add p to I
5: Let ℓj be the associated primitive Christoffel word of p in F ;
6: Compute split(ℓj) and update F and P following Lemma 2 or 3
7: Decrement k
8: end while
9: return I
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5. Conclusion

We have proposed a combinatorics-on-words study of the points that can be
chosen to inflate and deflate a 4-connected digital convex set C while preserving
its digital convexity property. The approach relies on Christoffel words and
Lyndon factorizations of the boundary word of C that is represented on a four-
letter alphabet. Some update procedures are to be done on these factors, in order
to maintain the Lyndon factorizations while adding/removing specific points.
For both operations, we have characterized for C the set of points that can be
inserted or removed, while maintaining the convexity. For the deflation process,
the updates and modifications are local. In contrast, for the inflation process,
the updates, using the general procedure, can be global. In worst case, these
updates do not go past the side where the inflation is applied. Adding the
strong condition on the choice of the insertable points corresponding to the
local maximal primitive Christoffel word, the updates during this procedure
become local.

In this work, we have focused on the characterization and theoretical prop-
erties of geometrical set operations on boundary word factorizations. The al-
gorithmic details and optimization can be found in [31]. Another question that
can arise is to determine if there exists an optimal heuristic for deflating a digital
convex set. The choice of the heuristic is crucial, since for each choice we get a
different convergent shape. Another stimulating perspective would be to apply
these algorithms on non-convex shapes by studying the locally convex boundary
using combinatorics on words [12, 27].
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