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Introduction

In some sensitive applications misclassification can have serious consequences. This is the case in applications having impacts either on people's health or on the environment [START_REF] Jacquin | Control of waste fragment sorting process based on mir imaging coupled with cautious classification[END_REF], e.g., in medical diagnosis applications when a classifier is involved to detect early-stage cancer. In such applications cautiousness is necessary when imperfect data are present. This leads some recent works to focus on cautious classification. Among the existing cautious classifiers, we focus, in this paper, on those providing a subset of candidate class labels to a new sample to classify and we called them imprecise classifiers. Some of them, as the nondeterministic classifier (ndc) [START_REF] Coz | Learning nondeterministic classifiers[END_REF], use the posterior probability when it is known and provide the subset of classes, that minimize/maximize a risk/utility function, as prediction (see Subsection 2.2 for more details). Other approaches, as the Naive Credal Classifier (ncc) [START_REF] Zaffalon | A credal approach to naive classification[END_REF] [START_REF] Zaffalon | Statistical inference of the naive credal classifier[END_REF] proposed in the framework of imprecise probability, are based on a dominance relation defined on the set of classes using the credal set representing the imprecision and uncertainty about the true class label of a sample. Then the subset of the non-dominated classes is considered as the prediction for the sample. The imprecise classifiers proposed within the framework of belief functions utilise the mass function when it is known and a decision procedure. In [START_REF] Ma | Partial classification in the belief function framework[END_REF], it is proposed to generalize the utility matrix to the subsets of classes by aggregating the single utilities that are considered as known. The approach in [START_REF] Quost | Dealing with atypical instances in evidential decision-making[END_REF] uses the interval dominance approach where the intervals are represented by the values of belief and plausibility functions obtained of each class. In [START_REF] Jacquin | Evidential classification of incomplete data via imprecise relabelling: Application to plastic sorting[END_REF] [START_REF] Imoussaten | Cautious classification based on belief functions theory and imprecise relabelling[END_REF], the evidential classifier based on imprecise relabelling (eclair ) uses a generalisation of the gain function proposed in [START_REF] Coz | Learning nondeterministic classifiers[END_REF] to the case of belief functions framework. An imprecise classifier proposes the appropriate subset of candidate classes that can be assigned to the sample in the presence of imperfect information. But cautiousness should not override relevance and a trade-off has to be made between these two criteria. On one hand, a classifier that predicts always the whole set of the candidate classes is cautious but its predictions are not relevant. On the other hand, a classifier that predicts always a single class for difficult samples is relevant when the prediction is good but it is not cautious. Most of imprecise classifiers cannot control this trade-off except ndc and eclair. Indeed, the gain function implemented in the decision step of both classifiers ndc and eclair has an hyper parameter β that is used to control the trade-off between relevance and cautiousness. This hyper parameter is considered as a user-modifiable parameter for the use of these two classifiers and its theoretical aim is to control the size of the predicted subset of classes. The choice of β depends on the level of cautiousness required in the application in which the classifier is going to be used. This paper proposes to study this parameter in the case of the two classifiers and aims to propose a suggestion for the choice of the parameter value in the case of classification task. In the first experiment results, we show, on simulated data, the impact of the selected parameter value on the prediction of the two classifiers when faced to difficult samples, i.e., to which the standard classifiers failed to predict the true class labels. While in the second experiment part, we present some comparison of the ndc classifier tuned using our proposition with other imprecise classifiers of the state of the art conduct on 11 UCI data and based on five measures from the state of the art that are usually used to compare imprecise classification performances. The paper is organised as follows. In the second section, the reminders about the decision step in the classifiers eclair and ndc and the measures of imprecise classification performances are given. The third section presents a study of the expected gain function introduced in the decision step of the two classifiers. Finally, the fourth section presents the experiment results.

Reminders and notations

The imprecise classifiers eclair and ndc are based on the results of the standard point prediction classifiers to provide respectively the posterior mass function and the posterior probability function for a sample to classify. We focus in this paper on the decision step of those two classifiers that involves these two functions and a gain function that is the F β score. In this section we give some reminders about the F β score and it exploitation in the case of imprecise predictions by the two classifiers. Finally, five measures from the state of the art used to evaluate the imprecise classification performances are presented. To simplify notations, we adopt the following notations for the subsets in the rest of the paper: θ i := {θ i }, θ ij := {θ i , θ j }.

F β measure

The F β score used in the decision step of eclair and ndc to predict a subset of candidate classes is an adaptation of the F β score introduced in information retrieval and classification to imprecise classification. In the context of binary point prediction for classification, the F β score is defined as:

F β = (1 + β 2 ) recall • precision (β 2 • precision) + recall , (1) 
where precision = true positive true positive+f alse positive and recall = true positive true positive+f alse negative are two known performance measures in information retrieval and machine learning.

The decision step in ndc

The principle of ndc is very simple, a posterior probability is determined using a classification method for point prediction and then a decision rule is applied to determine the imprecise prediction. This subsection presents the decision rule applied in the decision step. The decision step with ndc consists in providing for a sample x a subset of classes as prediction, i.e., precise predictions are given as singletons, by considering as input the posterior probability p(.|x). The predicted subset of classes is the one maximizing the expected gain where the gain associated to each subset of classes is defined using the F β measure. More precisely, let us consider a set of n class labels Θ = {θ 1 , . . . , θ n }. Each subset of candidate classes A ⊆ Θ is evaluated as the good prediction for x using the F β measure as follows:

F β (A, x, θ) = (1 + β 2 ) • 1 A (θ) β 2 + |A| . (2) 
The quantity F β (A, x, θ) is interpreted as the gain obtained when predicting the subset of class labels A for the sample x when its true class label is θ. The Formula in (2) is analogue to the one in [START_REF] Abellan | Imprecise classification with credal decision trees[END_REF] where the quantities precision and recall are redefined as precision(A) =

1 A (θ)
nb of classes inA and recall(A) = 1 A (θ) but do not have the same meaning. Indeed, in (1) the case of binary classification, the two measures are quantified related to a data test set while in the case of imprecise classification the two measures are quantified related to a subset of classes that is a potential prediction. We can note that when the values of β are close to 0, F β (A, x, θ) becomes close to precision(A) thus the size of A is disadvantageous. On the other hand, when β is high, F β (A, x, θ) becomes close to recall(A) and in this case the size of A is an advantage. Let us suppose that a posterior probability distribution p(.|x) is known for the sample x, the nondeterministic classifier ndc predicts for x the subset of candidate classes that maximize the expected gain function u β (., p(.|x)) defined as:

u β (A, p(.|x)) = n i=1 F β (A, x, θ i ) • p(θ i |x). (3) 
Finally, the predicted subset δ ndc (x) for x using the classifier ndc is given as:

δ ndc (x) = arg max A⊆Θ u β (A, p(.|x)). (4) 

The decision step in eclair

The decision step with eclair consists in providing for a sample x a subset of classes as prediction, by considering as input the posterior mass function m(.|x).

The predicted subset of classes is the one maximizing the expected gain where the gain associated to each subset of classes is defined using a generalisation of the formula (2) [5] [4]. The main change is to consider the general case where the available information about the true class of a sample can be partial in the form of a subset B ⊆ Θ. It is the case, for example, when data are coarse [2] [9]. This leads to the new gain function defined as follows:

F β (A, x, B) = (1 + β 2 ) • |A ∩ B| β 2 • |B| + |A| (5) 
The quantity F β (A, x, B) is interpreted as the gain obtained when predicting the subset of class labels A for the sample x when its true class label is partially known and represented by a subset of classes B. In this case, the precision and recall analogue quantities of ones presented in (1) become: precision(A) = 

u β (A, m(.|x)) = B⊆Θ F β (A, x, B) • m(B|x) (6) 
Finally, the predicted subset δ eclair (x) for x using the classifier eclair is given as:

δ eclair (x) = arg max A⊆Θ u β (A, m(.|x)). (7) 

Evaluation measures for the imprecise classifiers

When evaluating an imprecise classifier one ensures that the predicted subset of classes 1) include the "true" class and 2) they are as small as possible depending on the sample data imperfection. Several works have studied this problem and provide some measures to check the two conditions 1) and 2) [START_REF] Zaffalon | A credal approach to naive classification[END_REF], [START_REF] Abellan | Imprecise classification with credal decision trees[END_REF], [START_REF] Yang | The costs of indeterminacy: How to determine them[END_REF]. Between the least drastic one that is imprecise accuracy which checks if the prediction contains the true class label of the sample and the most drastic one that is classical accuracy which checks if the prediction is equal to the true class label of the sample, one can find intermediate measure as Discounted accuracy [START_REF] Tsoumakas | Random k-labelsets: An ensemble method for multilabel classification[END_REF] that seems to be an interesting measure as it takes into account the size of the predicted subset. But in order to increase the cautiousness reward to the degree to which the decision maker prefers to fix it depending on his application and the quality of the information obtained for the samples, a family of measure are constructed from Discounted accuracy measure that are represented by a function g taking its values in [0, 1] and guaranteeing g(z) ≥ z, i.e., the reward with g is at least the same as the one given by the discounted accuracy, g(0) = 0 and g(1) = 1 (see [START_REF] Zaffalon | Evaluating credal classifiers by utilitydiscounted predictive accuracy[END_REF] for more details).

Let us consider a dataset of test samples dst = (x l , θ l ) 1≤l≤M where x l ∈ X and θ l ∈ Θ and an imprecise classifier δ ic . The five following measures are proposed to evaluate the performance of imprecise classification and applied to the classifier δ ic and the test data dst:

the classical accuracy:

accuracy(δ ic , dst) = 1 M M l=1 1 {θ l } (δ ic (x l )).
the imprecise accuracy (imprAcc):

imprAcc(δ ic , dst) = 1 M M l=1 1 δic(x l ) (θ l ).
the discounted accuracy (discAcc) corresponds to the function g(z) = z [START_REF] Tsoumakas | Random k-labelsets: An ensemble method for multilabel classification[END_REF]:

discAcc(δ ic , dst) = 1 M M l=1 1 δic(x l ) (θ l ) |δ ic (x l )| ,
where |A| denotes the size of the subset A. This measure is also denoted u 50 . -The u 65 measure that corresponds to the function g(z) = -0.6 • z 2 + 1.6 • z [START_REF] Zaffalon | Evaluating credal classifiers by utilitydiscounted predictive accuracy[END_REF]:

u 65 (δ ic , dst) = -0.6 • [discAcc(δ ic , dst)] 2 + 1.6 • discAcc(δ ic , dst).
-The u 80 measure that corresponds to the function g

(z) = -1.2 • z 2 + 2.2 • z [14]: u 80 (δ ic , dst) = -1.2 • [discAcc(δ ic , dst)] 2 + 2.2 • discAcc(δ ic , dst).
3 The expected gains related to β 

u(β, A, p(.|x)) = n i=1 F β (A, x, θ i ) • p(θ i |x) (8) 
In addition, let us consider the situation where the class θ i is the most likely class of x and some times the class θ i is confused with the class θ j , j = i due to data imperfection. The Propositions 1 and 2 give some results concerning the predicted subset of classes for x from the three options θ i , θ ij and Θ.

Proposition 1. Let suppose that p(θ i |x) > p(θ|x), ∀θ ∈ Θ \ θ i .
If p(θ j |x) > 0 then it exists β 1 ≥ 0 such that:

u(β, θ ij , p(.|x)) ≤ u(β, θ i , p(.|x)) if β ≤ β 1 u(β, θ ij , p(.|x)) > u(β, θ i , p(.|x)) if β > β 1 . (9) 
Elsewhere u(β, Θ, p(.|x)) < u(β, θ ij , p(.|x)), ∀β ≥ 0.

Proof. We have for all β ≥ 0,

u(β, θ i , p(.|x)) = p(θ i |x). and u(β, θ ij , p(.|x)) = 1 + β 2 2 + β 2 • [p(θ i |x) + p(θ j |x)
]. On the one hand, the function u(., θ ij , p(.|x)) increases related to

β. Thus u(β, θ ij , p(.|x)) ≥ 1 2 (p(θ i |x) + p(θ j |x)), for all β ≥ 0. On the other hand, p(θ i |x) > p(θ j |x) then p(θ i |x) > 1 2 (p(θ i |x) + p(θ j |x)). So, u(., θ ij , p(.|x)) intersects u(., θ i , p(.|x)) at β 1 ≥ 0 such that: 1 + β 2 1 2 + β 2 1 • [p(θ i |x) + p(θ j |x)] = p(θ i |x).
It comes:

β 1 = p(θ i |x) -p(θ j |x) p(θ j |x) . Proposition 2. Let suppose that p(θ i |x) > p(θ|x), ∀θ ∈ Θ \ θ i . If P(θ i,j |x) ∈ [ 2 3 , 1[ then it exists β 2 > 0 such that: u(β, Θ, p(.|x)) ≤ u(β, θ ij , p(.|x)) if β ≤ β 2 u(β, Θ, p(.|x)) > u(β, θ ij , p(.|x)) if β > β 2 . ( 10 
)
Proof. We have for all β ≥ 0,

u(β, Θ, p(.|x)) = 1 + β 2 3 + β 2 ,
and

u(β, Θ, p(.|x)) -u(β, θ ij , p(.|x)) = (1 + β 2 ) • (2 -3 • P(θ i,j ) + (1 -P(θ i,j ) • β 2 )) (3 + β 2 ) • (2 + β 2 )
where

P(θ i,j |x) = p(θ i |x) + p(θ j |x)]. If P(θ i,j |x) < 2 3 , then u(β, Θ, p(.|x)) > u(β, θ ij , p(.|x)), ∀β ≥ 0. Else, if P(θ i,j |x) = 1, then u(β, Θ, p(.|x)) = 1+β 2 3+β 2 < 1+β 2 2+β 2 = u(β, θ i,j , p(.|x)), ∀β ≥ 0.
Otherwise, let us consider the following value β * ≥ 0 such that:

β * 2 = 3 P(θ i,j |x) -2 1 -P(θ i,j |x) .
We can set

β 2 = β * 2 .
Example 1. Let us consider the following examples of four samples that obtain the posterior probabilities given in Figure 1. These distribution express several situation of sharing the masses between the three classes. For the first sample x 1 the mass is uniformly distributed on the classes; for x 2 the mass is totally given to the class θ 1 ; for x 3 the mass is uniformly distributed to θ 1 and θ 2 ; and for x 4 the mass distribution is as follows p(θ 3 |x 4 ) < p(θ 1 |x 4 ) < p(θ 2 |x 4 ). As one can see in figure 1, for the samples x 1 , x 2 and x 3 , Θ, θ 1 , and θ 1,2 are respectively the predictions as they maximize the expected gain regardless the value of β. In the case of x 4 , the prediction depends on the value of the parameter β. Indeed,

if β < β 1 = p(θ1|x4)-p(θ2|x4) p(θ2|x4)
= 0.5, i.e., the value of β where the curves of u(., θ 1 , x 4 ) and u(., θ 1,2 , x 4 ) intersect, then θ 1 dominates all the other options.

When

β 2 > β > β 1 (β 2 = 3 P(θ1,2|x)-2
1-P(θ1,2|x) = 2.65), then θ 1,2 dominates all the other options. When β ≥ β 2 , it is the turn of Θ to dominate the other options.

The case of eclair

In this subsection, we consider that the posterior mass function of a sample x is known. We denote this mass function by m(. expected gain function used as the criterion to choose the subset of classes to associate to x is the following:

u(β, A, m(.|x)) = B⊆Θ F β (A, x, B) • m(B|x) (11) 
The general multi-class case is complicate to treat directly. In this section, we present only the case of two classes. Consequently, the multi-class case can be treated using one-against-one prediction and then infer the final prediction by merging all the one-against-one predictions.

Proposition 3. Let us consider the case where

Θ = {θ 1 , θ 2 }. If m(θ 1 |x) > m(θ 2 |x), then it exists β 3 ≥ 0 such that: u(β, θ 12 , m(.|x)) ≤ u(β, θ 1 , m(.|x)) if β ≤ β 3 u(β, θ 12 , m(.|x)) > u(β, θ 1 , m(.|x)) if β > β 3 ( 12 
)
Elsewhere, u(β, θ 12 , m(.|x)) ≥ u(β, θ 1 , m(.|x)), ∀β ≥ 0.

Proof. In one hand, we have, 

du(β, θ 1 , m(.|x)) dβ = - 2 β (1 + 2 β 2 ) 2 m(θ 12 |x) consequently u(., θ 1 , m(.|x)) decreases ∀β ≥ 0 with u(0, θ 1 , m(.|x))) = m(θ 1 |x) + m(θ 12 |x) and lim β→+∞ u(β, θ 1 , m(.|x))) = m(θ 1 |x) + m(θ12|x)
m(θ 1 |x) + 1 + β 2 1 + 2 β 2 m(θ 12 |x) = 1 + β 2 2 + β 2 + 1 2 + β 2 m(θ 12 |x). ( 13 
)
Remark 1. Note that when m is a Bayesian mass function, we have the Equation [START_REF] Zaffalon | Statistical inference of the naive credal classifier[END_REF] giving

β 3 that becomes: m(θ 1 |x) = 1+β 2 3 2+β 2 3 
, which corresponds to

β 3 = β 1 = m(θ 1 |x) -m(θ 2 |x) m(θ 2 |x) .
Example 2. To illustrate the different situations, we consider six mass functions (see Figure 2). Figure 2 shows that when m(θ 1 |x) = m(θ 2 |x), e.g. m 1 and m 4 , regardless the mass of θ 12 , the option θ 12 obtains the maximal gains for all β > 0.

In the other cases the higher the mass of ignorance is, the smaller β 3 becomes.

Illustration

In this section we present the illustration of the performances of the classifiers ndc and eclair using generated data and then we present the comparisons of the ndc classifier tuned using our proposition with other imprecise classifiers on the UCI data based on the five measures presented in Subsection 2.4.

Illustration using simulated data

In this first illustration, we consider a simulated data for three class labels a, b, and c. each label are generated using the same bivariate Gaussian distributions with a Gaussian noise N (µ = (0, 0), Σ = 0.001I 2 ). First, nine classical classifiers are trained and tested on these data. The standard classifiers considered are the naive Bayes (nbc), the k-Nearest Neighbour (knn), the evidential k-Nearest Neighbour (eknn), the decision tree (cart), the random forest (rfc), linear discriminant analysis (lda), support vector machine (svm) and artificial neural networks (ann), the logistic classifier (logistic). The obtained accuracies are: logistic, ann: 94.67; svm, eknn: 95.33; and knn, nbc, rfc, lda, cart: 96. These classifiers are introduced here to detect the samples that are difficult to predict, i.e., most standard classifiers fail to predict the true class of the those samples.

The idea here for choosing the ndc hyper-parameter is to avoid misclassification when the samples are difficult. For the samples that are "certain", i.e., the posterior probability of one of the classes is close to 1, this later class obtain the maximum gain regardless the value given to β (see Subsection 3.1). Consequently, it is more interesting to set the value of β regarding the less "certain" samples. The proposition of this paper is to consider a fictive probability distribution p f where the first component is the mean of the maximal probabilities p 1 obtained for each less "certain" sample of the training data set using leave-one-out technique and the second component is the mean of the second maximal probabilities p 2 , and so on. Thus, p f = (p 1 , p 2 , ...). To determine the less "certain" sample a threshold is considered and when the maximal probability is lower than this threshold then the sample is considered less certain. in the illustration, this threshold is fixed to 0.99. The value of β is considered as the boundary behind which if the sample is less certain than the mean probabilities of less "certain" samples, we should predict the subset of the two first classes with maximal probabilities. Thus,

β ndc = p 1 -p 2 p 2 . ( 14 
)
In Figure 3, we present the prediction when β = 2.571 is determined as in Equation ( 14). The samples that are considered as difficult to predict by the point prediction classifier are labelled by their number in the dataset. Only the samples number 140 and 82 are errors in the predictions of ndc and only three less (not labelled as difficult) difficult samples are predicted as imprecise. Note that, the example 140 is an exception as its probability is significantly above the one of the reference probability for the wrong class label. Concerning the difficult samples, ten samples are predicted as subsets of two classes containing the true class and one as the whole set. For the case of eclair, we consider binary classifications In Figure 4, we can see that, for the case "a against b", two predictions are still errors and four are imprecise. For the case of "a against c", we have only one imprecise prediction. While for the case "b against c", we have four imprecise predictions. Fig. 4. The predictions obtained with eclair : a large size is given to the point symbols representing predictions that are errors or imprecise.

Illustration using UCI data

The second illustration concerns the comparison of the performances of the ndc classifier where β is determined as in the Equation ( 14) to the ndc cv, i.e., classifier tuned using cross-validation, and the naive credal classifier ncc using 11 UCI data based on the performances measures presented in the Subsection 2.4. The experimentation procedure is conduct as follows. Each dataset is split randomly 50 times to obtain a learning set (80%) and a testing set (20%). The parameters are optimized, each time, using the cross-validation technique on the learning dataset. More precisely, for ndc cv two hyper-parameters are involved, the point prediction classifier used to obtain the posterior probabilities and the parameter β. For the first parameter, the choice is performed within the nine classifier presented in the Subsection 4.1 while for the second parameter the choice is performed in the interval [0, 2] with steps of 0.1. Concerning ncc, the choice of parameter s is performed within a set of 20 values S = {10 -30 , 10 -20 , 10 -15 , 10 -10 , 10 -9 , 10 -8 , 10 -7 , 10 -6 , 10 -5 , 10 -4 , 10 -3 , 10 -2 , 10 

Conclusion

In this paper we are interested in the imprecise classification. Especially, we focus on the study of the parameter β involved in the gain function used in the decision step of two imprecise classifiers. More precisely, we studied the predicted subsets depending on this parameter. We proposed a technique to choose the value of this parameter when the classifiers are involved in a classification task. Furthermore, the built classifiers give reasonable good performances related to evaluation measures for imprecise classifier.
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  nb of classes inA and recall(A) = |A∩B| nb of classes inB . Let us suppose that a posterior mass function m(.|x) is known for the sample x, the eclair classifier predicts for x the subset of candidate classes that maximize the expected gain function u β (., m(.|x)) defined as:
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 1 Fig.1. the expected gain associated to the four posterior probabilities.
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 2 Fig. 2. the gain function for some examples of masses
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 3 Fig.3. The predictions obtained with ndc: a large size is given to the point symbols representing predictions that are errors or imprecise.

  Let us consider that the posterior probability distribution of a sample x is known. We denote this distribution by p(.|x) : Θ → [0, 1]. We consider the parameter β as a variable and we express the expected gain function in subsection 2.2 for a β ∈ [0, +∞[, A ⊆ Θ and p(.|x) as:

	3.1 The case of ndc

Table 1 .

 1 -1 , 0.2, 0.3, 0.5, 0.6, 1, 1.1, 2}. The results are presented in Table1. As one can see ndc gives the best result for the imprecise accuracy and u 80 measure which means that it is more cautious than the two others while the its accuracies are still close to those of the best classifiers. ± 2.43 ± 3.66 ± 3.72 ± 4.5 ± 7.43 ± 9.13 ± 7.63 ± 3.38 ± 4.42 ± 6.74 ndc cv 97 96.24 97.47 93.03 97.29 73.65 70.26 75.41 95.76 86.84 85.72 ± 3.03 ± 1.55 ± 2.14 ± 2.99 ± 3.27 ± 7.75 ± 6 ± 7.26 ± 2.6 ± 2.96 ± 3.96 ncc 90.73 95.47 88.53 61.97 85.71 30.35 15.26 26.63 82.86 25.44 39.41 ± 4.92 ± 2.26 ± 5.52 ± 9.14 ± 7.7 ± 20.71 ± 4.06 ± 11.57 ± 5.81 ± 6.75 ± 12.28 u50 ndc 96.60 95.70 97.44 91.17 95.82 72.07 73.92 81.83 94.75 87.33 87.03 ± 2.82 ± 1.47 ± 2.18 ± 2.03 ± 3.28 ± 4.61 ± 3.07 ± 4.77 ± 2.79 ± 2.34 ± 3.98 ndc cv 97.3 96.66 97.59 94.07 97.57 79.14 77.53 82.1 96.1 88.43 87.87 ± 2.79 ± 1.34 ± 2.05 ± 2.03 ± 2.77 ± 4.81 ± 3.18 ± 4.85 ± 2.57 ± 2.34 ± 3.36 ncc 93.6 96.02 92.6 75.3 89.45 36.74 55.32 59.34 87.07 53 57.92 ± 3.47 ± 1.63 ± 3.84 ± 5.14 ± 5.11 ± 13.24 ± 1.96 ± 2.17 ± 4.24 ± 2.51 ± 6.74 u65 ndc 97.06 96.22 97.91 93.18 96.05 77.26 78.22 84.56 95.44 88.96 87.9 ± 2.66 ± 1.32 ± 1.84 ± 1.7 ± 3.06 ± 4.53 ± 3.17 ± 4.72 ± 2.78 ± 2.01 ± 3.45 ndc cv 97.39 96.79 97.62 94.38 97.66 80.81 79.71 84.1 96.2 88.91 88.52 ± 2.77 ± 1.34 ± 2.05 ± 1.89 ± 2.66 ± 4.74 ± 3.18 ± 4.87 ± 2.6 ± 2.31 3.38± ncc 94.51 96.19 94.07 79.3 90.65 39.65 67.34 69.15 88.38 61.83 63.9 ± 3.25 ± 1.51 ± 3.27 ± 4.78 ± 4.75 ± 9.88 ± 1.74 ± 3.79 ± 4.04 ± 2.08 ± 5.94 u80 ndc 97.52 96.73 98.38 95.18 96.27 82.45 82.52 87.29 96.12 90.58 88.77 ± 2.58 ± 1.29 ± 1.6 ± 1.56 ± 2.95 ± 4.93 ± 4.6 ± 5.15 ± 2.86 ± 1.96 ± 3.22 ndc cv 97.48 96.91 97.66 94.7 97.74 82.48 81.89 86.11 96.3 89.39 89.16 ± 2.76 ± 1.36 ± 2.06 ± 1.85 ± 2.57 ± 5.17 ± 3.72 ± 5.29 ± 2.64 ± 2.37 ± 3.49 ncc 95.43 96.36 95.54 83.3 91.84 42.56 79.36 78.97 89.7 70.66 69.87 ± 3.2 ± 1.43 ± 2.77 ± 5.05 ± 4.72 ± 6.99 ± 1.89 ± 6.81 ± 4.05 ± 2.76 ± 6.03 imprAcc ndc 98.13 97.42 99 97.86 96.57 90.95 88.26 90.93 97.05 93.18 89.97 ± 2.62 ±1.44 ± 1.53 ± 1.74 ± 2.97 ± 6.31 ± 7.24 ± 6.29 ± 3.1 ± 2.31 ± 3.5 ndc cv 97.6 97.08 97.71 95.11 97.86 84.85 84.79 88.78 96.43 90.04 90.03 ± 2.78 ± 1.44 ± 2.08 ± 1.98 ± 2.5 ± 6.48 ± 4.95 ± 6.33 ± 2.73 ± 2.59 ± 3.79 ncc 97 96.58 99.18 88.63 93.93 60.85 95.38 92.05 91.76 87.09 81.16 ± 3.52 ± 1.41 ± 1.79 ± 6.22 ± 5.22 ± 22.49 ± 2.54 ± 11.13 ± 4.44 ± 5.38 ± 8.36 The imprecise classifiers' performances on the UCI data.

		Iris	BC Wine	IS	DBT Glass PID Sonar Seeds Forest Ecoli
		ndc 95.07 93.99 95.88 84.49 95.07 55.55 59.59 72.73 92.48 82.08 84.16
	Accuracy	± 3.76