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Abstract. In some sensitive domains where data imperfections are present,
standard classification techniques reach their limits. To avoid misclassi-
fication that has serious consequences, recent works propose cautious
classification algorithms to handle the problem. Despite of the presence
of uncertainty, a point prediction classifier is forced to decide which single
class to associate to a sample. In such a case, a cautious classifier pro-
poses the appropriate subset of candidate classes that can be assigned to
the sample in the presence of imperfect information. On the other hand,
cautiousness should not override relevance and a trade-off has to be made
between these two criteria. Among the existing cautious classifiers, two
classifiers propose to manage this trade-off in the decision step of the
classifier algorithm by the mean of a parametrized objective function.
The first one is the non-deterministic classifier (ndc) proposed within the
framework of probability theory and the second one is eclair (evidential
classifier based on imprecise relabelling) proposed within the framework
of belief functions. The theoretical aim of the mentioned parameter is to
control the size of predictions for both classifiers. This paper proposes to
study this parameter in order to select the ”best” value in a classification
task. First the gain for each prediction candidate is studied related to
the values of the hyper-parameter. In the illustration section, we propose
a method to choose this hyper-parameter base on the training data and
we show the classification results on randomly generated data and we
present some comparisons with two other imprecise classifiers on 11 UCI
datasets based on five measures of imprecise classification performances
used in the state of the art.

Keywords: Cautious classification · Imprecise classification · Belief func-
tions · Supervised machine learning.

1 Introduction

In some sensitive applications misclassification can have serious consequences.
This is the case in applications having impacts either on people’s health or
on the environment [6], e.g., in medical diagnosis applications when a classifier
is involved to detect early-stage cancer. In such applications cautiousness is
necessary when imperfect data are present. This leads some recent works to focus
on cautious classification. Among the existing cautious classifiers, we focus, in
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this paper, on those providing a subset of candidate class labels to a new sample
to classify and we called them imprecise classifiers. Some of them, as the non-
deterministic classifier (ndc) [3], use the posterior probability when it is known
and provide the subset of classes, that minimize/maximize a risk/utility function,
as prediction (see Subsection 2.2 for more details). Other approaches, as the
Naive Credal Classifier (ncc) [12] [13] proposed in the framework of imprecise
probability, are based on a dominance relation defined on the set of classes using
the credal set representing the imprecision and uncertainty about the true class
label of a sample. Then the subset of the non-dominated classes is considered
as the prediction for the sample. The imprecise classifiers proposed within the
framework of belief functions utilise the mass function when it is known and a
decision procedure. In [7], it is proposed to generalize the utility matrix to the
subsets of classes by aggregating the single utilities that are considered as known.
The approach in [8] uses the interval dominance approach where the intervals
are represented by the values of belief and plausibility functions obtained of each
class. In [5] [4], the evidential classifier based on imprecise relabelling (eclair)
uses a generalisation of the gain function proposed in [3] to the case of belief
functions framework. An imprecise classifier proposes the appropriate subset of
candidate classes that can be assigned to the sample in the presence of imperfect
information. But cautiousness should not override relevance and a trade-off has
to be made between these two criteria. On one hand, a classifier that predicts
always the whole set of the candidate classes is cautious but its predictions are
not relevant. On the other hand, a classifier that predicts always a single class
for difficult samples is relevant when the prediction is good but it is not cautious.
Most of imprecise classifiers cannot control this trade-off except ndc and eclair.
Indeed, the gain function implemented in the decision step of both classifiers
ndc and eclair has an hyper parameter β that is used to control the trade-off
between relevance and cautiousness. This hyper parameter is considered as a
user-modifiable parameter for the use of these two classifiers and its theoretical
aim is to control the size of the predicted subset of classes. The choice of β
depends on the level of cautiousness required in the application in which the
classifier is going to be used. This paper proposes to study this parameter in
the case of the two classifiers and aims to propose a suggestion for the choice
of the parameter value in the case of classification task. In the first experiment
results, we show, on simulated data, the impact of the selected parameter value
on the prediction of the two classifiers when faced to difficult samples, i.e., to
which the standard classifiers failed to predict the true class labels. While in
the second experiment part, we present some comparison of the ndc classifier
tuned using our proposition with other imprecise classifiers of the state of the art
conduct on 11 UCI data and based on five measures from the state of the art that
are usually used to compare imprecise classification performances. The paper is
organised as follows. In the second section, the reminders about the decision
step in the classifiers eclair and ndc and the measures of imprecise classification
performances are given. The third section presents a study of the expected gain
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function introduced in the decision step of the two classifiers. Finally, the fourth
section presents the experiment results.

2 Reminders and notations

The imprecise classifiers eclair and ndc are based on the results of the standard
point prediction classifiers to provide respectively the posterior mass function
and the posterior probability function for a sample to classify. We focus in this
paper on the decision step of those two classifiers that involves these two func-
tions and a gain function that is the Fβ score. In this section we give some
reminders about the Fβ score and it exploitation in the case of imprecise predic-
tions by the two classifiers. Finally, five measures from the state of the art used
to evaluate the imprecise classification performances are presented. To simplify
notations, we adopt the following notations for the subsets in the rest of the
paper: θi := {θi}, θij := {θi, θj}.

2.1 Fβ measure

The Fβ score used in the decision step of eclair and ndc to predict a subset
of candidate classes is an adaptation of the Fβ score introduced in information
retrieval and classification to imprecise classification. In the context of binary
point prediction for classification, the Fβ score is defined as:

Fβ =
(1 + β2) recall · precision

(β2 · precision) + recall
, (1)

where precision = true positive
true positive+false positive and recall = true positive

true positive+false negative
are two known performance measures in information retrieval and machine learn-
ing.

2.2 The decision step in ndc

The principle of ndc is very simple, a posterior probability is determined using
a classification method for point prediction and then a decision rule is applied
to determine the imprecise prediction. This subsection presents the decision rule
applied in the decision step. The decision step with ndc consists in providing
for a sample x a subset of classes as prediction, i.e., precise predictions are
given as singletons, by considering as input the posterior probability p(.|x). The
predicted subset of classes is the one maximizing the expected gain where the
gain associated to each subset of classes is defined using the Fβ measure. More
precisely, let us consider a set of n class labels Θ = {θ1, . . . , θn}. Each subset of
candidate classes A ⊆ Θ is evaluated as the good prediction for x using the Fβ
measure as follows:

Fβ(A,x, θ) =
(1 + β2) · 1A(θ)

β2 + |A|
. (2)
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The quantity Fβ(A,x, θ) is interpreted as the gain obtained when predicting
the subset of class labels A for the sample x when its true class label is θ. The
Formula in (2) is analogue to the one in (1) where the quantities precision and

recall are redefined as precision(A) = 1A(θ)
nb of classes inA and recall(A) = 1A(θ) but

do not have the same meaning. Indeed, in (1) the case of binary classification,
the two measures are quantified related to a data test set while in the case of
imprecise classification the two measures are quantified related to a subset of
classes that is a potential prediction. We can note that when the values of β
are close to 0, Fβ(A,x, θ) becomes close to precision(A) thus the size of A is
disadvantageous. On the other hand, when β is high, Fβ(A,x, θ) becomes close
to recall(A) and in this case the size of A is an advantage. Let us suppose that
a posterior probability distribution p(.|x) is known for the sample x, the non-
deterministic classifier ndc predicts for x the subset of candidate classes that
maximize the expected gain function uβ(., p(.|x)) defined as:

uβ(A, p(.|x)) =

n∑
i=1

Fβ(A,x, θi) · p(θi|x). (3)

Finally, the predicted subset δndc(x) for x using the classifier ndc is given as:

δndc(x) = argmax
A⊆Θ

uβ(A, p(.|x)). (4)

2.3 The decision step in eclair

The decision step with eclair consists in providing for a sample x a subset of
classes as prediction, by considering as input the posterior mass function m(.|x).
The predicted subset of classes is the one maximizing the expected gain where
the gain associated to each subset of classes is defined using a generalisation of
the formula (2) [5] [4]. The main change is to consider the general case where
the available information about the true class of a sample can be partial in the
form of a subset B ⊆ Θ. It is the case, for example, when data are coarse [2] [9].
This leads to the new gain function defined as follows:

Fβ(A,x, B) =
(1 + β2) · |A ∩B|
β2 · |B|+ |A|

(5)

The quantity Fβ(A,x, B) is interpreted as the gain obtained when predicting
the subset of class labels A for the sample x when its true class label is partially
known and represented by a subset of classes B. In this case, the precision
and recall analogue quantities of ones presented in (1) become: precision(A) =

|A∩B|
nb of classes inA and recall(A) = |A∩B|

nb of classes inB .

Let us suppose that a posterior mass function m(.|x) is known for the sample
x, the eclair classifier predicts for x the subset of candidate classes that maximize
the expected gain function uβ(.,m(.|x)) defined as:

uβ(A,m(.|x)) =
∑
B⊆Θ

Fβ(A,x, B) ·m(B|x) (6)
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Finally, the predicted subset δeclair(x) for x using the classifier eclair is given
as:

δeclair(x) = argmax
A⊆Θ

uβ(A,m(.|x)). (7)

2.4 Evaluation measures for the imprecise classifiers

When evaluating an imprecise classifier one ensures that the predicted subset of
classes 1) include the ”true” class and 2) they are as small as possible depending
on the sample data imperfection. Several works have studied this problem and
provide some measures to check the two conditions 1) and 2) [12],[1],[11]. Between
the least drastic one that is imprecise accuracy which checks if the prediction
contains the true class label of the sample and the most drastic one that is
classical accuracy which checks if the prediction is equal to the true class label
of the sample, one can find intermediate measure as Discounted accuracy [10]
that seems to be an interesting measure as it takes into account the size of the
predicted subset. But in order to increase the cautiousness reward to the degree
to which the decision maker prefers to fix it depending on his application and
the quality of the information obtained for the samples, a family of measure
are constructed from Discounted accuracy measure that are represented by a
function g taking its values in [0, 1] and guaranteeing g(z) ≥ z, i.e., the reward
with g is at least the same as the one given by the discounted accuracy, g(0) = 0
and g(1) = 1 (see [14] for more details).

Let us consider a dataset of test samples dst = (xl, θl)1≤l≤M where xl ∈ X
and θl ∈ Θ and an imprecise classifier δic. The five following measures are
proposed to evaluate the performance of imprecise classification and applied to
the classifier δic and the test data dst:

– the classical accuracy :

accuracy(δic, dst) =
1

M

M∑
l=1

1{θl}(δic(x
l)).

– the imprecise accuracy (imprAcc):

imprAcc(δic, dst) =
1

M

M∑
l=1

1δic(xl)(θ
l).

– the discounted accuracy (discAcc) corresponds to the function g(z) = z [10]:

discAcc(δic, dst) =
1

M

M∑
l=1

1δic(xl)(θ
l)

|δic(xl)|
,

where |A| denotes the size of the subset A. This measure is also denoted u50.
– The u65 measure that corresponds to the function g(z) = −0.6 · z2 + 1.6 · z

[14]:

u65(δic, dst) = −0.6 · [discAcc(δic, dst)]2 + 1.6 · discAcc(δic, dst).
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– The u80 measure that corresponds to the function g(z) = −1.2 · z2 + 2.2 · z
[14]:

u80(δic, dst) = −1.2 · [discAcc(δic, dst)]2 + 2.2 · discAcc(δic, dst).

3 The expected gains related to β

3.1 The case of ndc

Let us consider that the posterior probability distribution of a sample x is known.
We denote this distribution by p(.|x) : Θ → [0, 1]. We consider the parameter β
as a variable and we express the expected gain function in subsection 2.2 for a
β ∈ [0,+∞[, A ⊆ Θ and p(.|x) as:

u(β,A, p(.|x)) =

n∑
i=1

Fβ(A,x, θi) · p(θi|x) (8)

In addition, let us consider the situation where the class θi is the most likely
class of x and some times the class θi is confused with the class θj , j 6= i due
to data imperfection. The Propositions 1 and 2 give some results concerning the
predicted subset of classes for x from the three options θi, θij and Θ.

Proposition 1. Let suppose that p(θi|x) > p(θ|x), ∀θ ∈ Θ \ θi.
If p(θj |x) > 0 then it exists β1 ≥ 0 such that:{

u(β, θij , p(.|x)) ≤ u(β, θi, p(.|x)) if β ≤ β1
u(β, θij , p(.|x)) > u(β, θi, p(.|x)) if β > β1.

(9)

Elsewhere u(β,Θ, p(.|x)) < u(β, θij , p(.|x)), ∀β ≥ 0.

Proof. We have for all β ≥ 0,

u(β, θi, p(.|x)) = p(θi|x).

and

u(β, θij , p(.|x)) =
1 + β2

2 + β2
· [p(θi|x) + p(θj |x)].

On the one hand, the function u(., θij , p(.|x)) increases related to β. Thus u(β, θij , p(.|x)) ≥
1
2 (p(θi|x) + p(θj |x)), for all β ≥ 0. On the other hand, p(θi|x) > p(θj |x) then
p(θi|x) > 1

2 (p(θi|x) + p(θj |x)). So, u(., θij , p(.|x)) intersects u(., θi, p(.|x)) at
β1 ≥ 0 such that:

1 + β2
1

2 + β2
1

· [p(θi|x) + p(θj |x)] = p(θi|x).

It comes:

β1 =

√
p(θi|x)− p(θj |x)

p(θj |x)
.

�
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Proposition 2. Let suppose that p(θi|x) > p(θ|x), ∀θ ∈ Θ \ θi. If P(θi,j |x) ∈
[ 23 , 1[ then it exists β2 > 0 such that:{

u(β,Θ, p(.|x)) ≤ u(β, θij , p(.|x)) if β ≤ β2
u(β,Θ, p(.|x)) > u(β, θij , p(.|x)) if β > β2.

(10)

Proof. We have for all β ≥ 0,

u(β,Θ, p(.|x)) =
1 + β2

3 + β2
,

and

u(β,Θ, p(.|x))− u(β, θij , p(.|x)) =
(1 + β2) · (2− 3 · P(θi,j) + (1− P(θi,j) · β2))

(3 + β2) · (2 + β2)

where P(θi,j |x) = p(θi|x) + p(θj |x)]. If P(θi,j |x) < 2
3 , then u(β,Θ, p(.|x)) >

u(β, θij , p(.|x)), ∀β ≥ 0. Else, if P(θi,j |x) = 1, then u(β,Θ, p(.|x)) = 1+β2

3+β2 <
1+β2

2+β2 = u(β, θi,j , p(.|x)), ∀β ≥ 0. Otherwise, let us consider the following value
β∗ ≥ 0 such that:

β∗2 =
3 P(θi,j |x)− 2

1− P(θi,j |x)
.

We can set

β2 =

√
β∗2.

�

Example 1. Let us consider the following examples of four samples that obtain
the posterior probabilities given in Figure 1. These distribution express several
situation of sharing the masses between the three classes. For the first sample x1
the mass is uniformly distributed on the classes; for x2 the mass is totally given
to the class θ1; for x3 the mass is uniformly distributed to θ1 and θ2; and for x4
the mass distribution is as follows p(θ3|x4) < p(θ1|x4) < p(θ2|x4). As one can
see in figure 1, for the samples x1, x2 and x3, Θ, θ1, and θ1,2 are respectively
the predictions as they maximize the expected gain regardless the value of β. In
the case of x4, the prediction depends on the value of the parameter β. Indeed,

if β < β1 =
√

p(θ1|x4)−p(θ2|x4)
p(θ2|x4)

= 0.5, i.e., the value of β where the curves of

u(., θ1,x4) and u(., θ1,2,x4) intersect, then θ1 dominates all the other options.

When β2 > β > β1 (β2 =
√

3 P(θ1,2|x)−2
1−P(θ1,2|x) = 2.65), then θ1,2 dominates all the

other options. When β ≥ β2, it is the turn of Θ to dominate the other options.

3.2 The case of eclair

In this subsection, we consider that the posterior mass function of a sample x is
known. We denote this mass function by m(.|x) : 2Θ → [0, 1]. In this case, the
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Fig. 1. the expected gain associated to the four posterior probabilities.

expected gain function used as the criterion to choose the subset of classes to
associate to x is the following:

u(β,A,m(.|x)) =
∑
B⊆Θ

Fβ(A,x, B) ·m(B|x) (11)

The general multi-class case is complicate to treat directly. In this section, we
present only the case of two classes. Consequently, the multi-class case can be
treated using one-against-one prediction and then infer the final prediction by
merging all the one-against-one predictions.

Proposition 3. Let us consider the case where Θ = {θ1, θ2}. If m(θ1|x) >
m(θ2|x), then it exists β3 ≥ 0 such that:{

u(β, θ12,m(.|x)) ≤ u(β, θ1,m(.|x)) if β ≤ β3
u(β, θ12,m(.|x)) > u(β, θ1,m(.|x)) if β > β3

(12)

Elsewhere, u(β, θ12,m(.|x)) ≥ u(β, θ1,m(.|x)), ∀β ≥ 0.

Proof. In one hand, we have,

du(β, θ1,m(.|x))

dβ
= − 2β

(1 + 2β2)2
m(θ12|x)
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consequently u(., θ1,m(.|x)) decreases ∀β ≥ 0 with u(0, θ1,m(.|x))) = m(θ1|x)+

m(θ12|x) and lim
β→+∞

u(β, θ1,m(.|x))) = m(θ1|x) + m(θ12|x)
2 . In the other hand,

we have,
du(β, θ12,m(.|x))

dβ
=

2β

(2 + β2)2
[1−m(θ12|x)]

consequently u(., θ12,m(.|x)) increases ∀β ≥ 0 with u(0, θ12,m(.|x))) = 1
2 +

m(θ12|x)
2 and lim

β→+∞
u(β, θ12,m(.|x))) = 1. Obviously, if u(0, θ1,m(.|x))) > u(0, θ12,m(.|x)))

then u(., θ1,m(.|x)) and u(., θ12,m(.|x)) intersect, elsewhere u(β, θ12,m(.|x)) ≥
u(β, θ1,m(.|x)), ∀β ≥ 0. The inequality u(0, θ1,m(.|x))) > u(0, θ12,m(.|x))) cor-

responds to m(θ1|x) +m(θ12|x) > 1
2 + m(θ12|x)

2 which is verified when m(θ1|x) >
m(θ2|x). Finally, β3 is the solution of u(β, θ1,m(.|x)) = u(β, θ12,m(.|x)) which
corresponds to the solution of Equation (13):

m(θ1|x) +
1 + β2

1 + 2β2
m(θ12|x) =

1 + β2

2 + β2
+

1

2 + β2
m(θ12|x). (13)

�

Remark 1. Note that when m is a Bayesian mass function, we have the Equa-

tion (13) giving β3 that becomes: m(θ1|x) =
1+β2

3

2+β2
3
, which corresponds to

β3 = β1 =

√
m(θ1|x)−m(θ2|x)

m(θ2|x)
.

Example 2. To illustrate the different situations, we consider six mass functions
(see Figure 2). Figure 2 shows that when m(θ1|x) = m(θ2|x), e.g. m1 and m4,
regardless the mass of θ12, the option θ12 obtains the maximal gains for all β > 0.
In the other cases the higher the mass of ignorance is, the smaller β3 becomes.

4 Illustration

In this section we present the illustration of the performances of the classifiers
ndc and eclair using generated data and then we present the comparisons of the
ndc classifier tuned using our proposition with other imprecise classifiers on the
UCI data based on the five measures presented in Subsection 2.4.

4.1 Illustration using simulated data

In this first illustration, we consider a simulated data for three class labels a,
b, and c. For each class label 500 training samples of a bivariate Gaussian dis-
tribution are considered, N (µa = (0.2, 0.65), Σa = 0.01I2) for the class label a,
N (µb = (0.5, 0.9), Σb = 0.01I2) for the class label b and N (µc = (0.8, 0.6), Σc =
0.01I2) for the class label c. In addition, a testing dataset of 50 samples for
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Fig. 2. the gain function for some examples of masses

each label are generated using the same bivariate Gaussian distributions with
a Gaussian noise N (µ = (0, 0), Σ = 0.001I2). First, nine classical classifiers
are trained and tested on these data. The standard classifiers considered are
the naive Bayes (nbc), the k-Nearest Neighbour (knn), the evidential k-Nearest
Neighbour (eknn), the decision tree (cart), the random forest (rfc), linear dis-
criminant analysis (lda), support vector machine (svm) and artificial neural net-
works (ann), the logistic classifier (logistic). The obtained accuracies are: logistic,
ann: 94.67; svm, eknn: 95.33; and knn, nbc, rfc, lda, cart: 96. These classifiers
are introduced here to detect the samples that are difficult to predict, i.e., most
standard classifiers fail to predict the true class of the those samples.

The idea here for choosing the ndc hyper-parameter is to avoid misclassifi-
cation when the samples are difficult. For the samples that are ”certain”, i.e.,
the posterior probability of one of the classes is close to 1, this later class ob-
tain the maximum gain regardless the value given to β (see Subsection 3.1).
Consequently, it is more interesting to set the value of β regarding the less ”cer-
tain” samples. The proposition of this paper is to consider a fictive probability
distribution pf where the first component is the mean of the maximal proba-
bilities p1 obtained for each less ”certain” sample of the training data set using
leave-one-out technique and the second component is the mean of the second
maximal probabilities p2, and so on. Thus, pf = (p1, p2, ...). To determine the
less ”certain” sample a threshold is considered and when the maximal probabil-
ity is lower than this threshold then the sample is considered less certain. in the
illustration, this threshold is fixed to 0.99. The value of β is considered as the
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boundary behind which if the sample is less certain than the mean probabilities
of less ”certain” samples, we should predict the subset of the two first classes
with maximal probabilities. Thus,

βndc =

√
p1 − p2
p2

. (14)

In Figure 3, we present the prediction when β = 2.571 is determined as in
Equation (14). The samples that are considered as difficult to predict by the point
prediction classifier are labelled by their number in the dataset. Only the samples
number 140 and 82 are errors in the predictions of ndc and only three less (not
labelled as difficult) difficult samples are predicted as imprecise. Note that, the
example 140 is an exception as its probability is significantly above the one of the
reference probability for the wrong class label. Concerning the difficult samples,
ten samples are predicted as subsets of two classes containing the true class and
one as the whole set. For the case of eclair, we consider binary classifications

27

44

69

77
82

84

127

131

138

140

NDC beta: 2.571
a

b

a,b

c

b,c

a,b,c

True.labels a b c

Fig. 3. The predictions obtained with ndc: a large size is given to the point symbols
representing predictions that are errors or imprecise.

”a against b”, ”a against c” and ”b against c”. We apply the same reasoning
by considering the leave-one-out technique to determine m(θ1|x)), m(θ2|x)) and
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m(θ12|x)) for each example of the learning data set. Her also we consider only
less certain samples with the same threshold. From the subsection 3.2, to avoid
misclassification for difficult samples β should be heigh enough to predict θ12
when ignorance is heigh. Let us denote m12 the average of m(θ12|x)) obtained for
each less certain sample. The proposed value of β is βeclair that is the solution the
quadratic Equation (13) with m(θ12|x)) = m12 and m(θ1|x)) = 2 (1 −m12)/3.
In Figure 4, we can see that, for the case ”a against b”, two predictions are still
errors and four are imprecise. For the case of ”a against c”, we have only one
imprecise prediction. While for the case ”b against c”, we have four imprecise
predictions.

27
44

69

7782

84

ECLAIR beta: 0.457 a b a,b True.labels a b

27
44

69

77

82

84

True.labels a c ECLAIR beta: 1 a c a,c

27 44

69

77

82

84

ECLAIR beta: 0.61 b c b,c True.labels b c

Fig. 4. The predictions obtained with eclair : a large size is given to the point symbols
representing predictions that are errors or imprecise.

4.2 Illustration using UCI data

The second illustration concerns the comparison of the performances of the ndc
classifier where β is determined as in the Equation (14) to the ndc cv, i.e., clas-
sifier tuned using cross-validation, and the naive credal classifier ncc using 11
UCI data based on the performances measures presented in the Subsection 2.4.
The experimentation procedure is conduct as follows. Each dataset is split ran-
domly 50 times to obtain a learning set (80%) and a testing set (20%). The
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parameters are optimized, each time, using the cross-validation technique on
the learning dataset. More precisely, for ndc cv two hyper-parameters are in-
volved, the point prediction classifier used to obtain the posterior probabilities
and the parameter β. For the first parameter, the choice is performed within
the nine classifier presented in the Subsection 4.1 while for the second param-
eter the choice is performed in the interval [0, 2] with steps of 0.1. Concern-
ing ncc, the choice of parameter s is performed within a set of 20 values S =
{10−30, 10−20, 10−15, 10−10, 10−9, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1,
0.2, 0.3, 0.5, 0.6, 1, 1.1, 2}. The results are presented in Table 1. As one can see
ndc gives the best result for the imprecise accuracy and u80 measure which
means that it is more cautious than the two others while the its accuracies are
still close to those of the best classifiers.

Iris BC Wine IS DBT Glass PID Sonar Seeds Forest Ecoli

Accuracy

ndc 95.07 93.99 95.88 84.49 95.07 55.55 59.59 72.73 92.48 82.08 84.16
± 3.76 ± 2.43 ± 3.66 ± 3.72 ± 4.5 ± 7.43 ± 9.13 ± 7.63 ± 3.38 ± 4.42 ± 6.74

ndc cv 97 96.24 97.47 93.03 97.29 73.65 70.26 75.41 95.76 86.84 85.72
± 3.03 ± 1.55 ± 2.14 ± 2.99 ± 3.27 ± 7.75 ± 6 ± 7.26 ± 2.6 ± 2.96 ± 3.96

ncc 90.73 95.47 88.53 61.97 85.71 30.35 15.26 26.63 82.86 25.44 39.41
± 4.92 ± 2.26 ± 5.52 ± 9.14 ± 7.7 ± 20.71 ± 4.06 ± 11.57 ± 5.81 ± 6.75 ± 12.28

u50
ndc 96.60 95.70 97.44 91.17 95.82 72.07 73.92 81.83 94.75 87.33 87.03

± 2.82 ± 1.47 ± 2.18 ± 2.03 ± 3.28 ± 4.61 ± 3.07 ± 4.77 ± 2.79 ± 2.34 ± 3.98
ndc cv 97.3 96.66 97.59 94.07 97.57 79.14 77.53 82.1 96.1 88.43 87.87

± 2.79 ± 1.34 ± 2.05 ± 2.03 ± 2.77 ± 4.81 ± 3.18 ± 4.85 ± 2.57 ± 2.34 ± 3.36
ncc 93.6 96.02 92.6 75.3 89.45 36.74 55.32 59.34 87.07 53 57.92

± 3.47 ± 1.63 ± 3.84 ± 5.14 ± 5.11 ± 13.24 ± 1.96 ± 2.17 ± 4.24 ± 2.51 ± 6.74

u65
ndc 97.06 96.22 97.91 93.18 96.05 77.26 78.22 84.56 95.44 88.96 87.9

± 2.66 ± 1.32 ± 1.84 ± 1.7 ± 3.06 ± 4.53 ± 3.17 ± 4.72 ± 2.78 ± 2.01 ± 3.45
ndc cv 97.39 96.79 97.62 94.38 97.66 80.81 79.71 84.1 96.2 88.91 88.52

± 2.77 ± 1.34 ± 2.05 ± 1.89 ± 2.66 ± 4.74 ± 3.18 ± 4.87 ± 2.6 ± 2.31 3.38±
ncc 94.51 96.19 94.07 79.3 90.65 39.65 67.34 69.15 88.38 61.83 63.9

± 3.25 ± 1.51 ± 3.27 ± 4.78 ± 4.75 ± 9.88 ± 1.74 ± 3.79 ± 4.04 ± 2.08 ± 5.94

u80

ndc 97.52 96.73 98.38 95.18 96.27 82.45 82.52 87.29 96.12 90.58 88.77
± 2.58 ± 1.29 ± 1.6 ± 1.56 ± 2.95 ± 4.93 ± 4.6 ± 5.15 ± 2.86 ± 1.96 ± 3.22

ndc cv 97.48 96.91 97.66 94.7 97.74 82.48 81.89 86.11 96.3 89.39 89.16
± 2.76 ± 1.36 ± 2.06 ± 1.85 ± 2.57 ± 5.17 ± 3.72 ± 5.29 ± 2.64 ± 2.37 ± 3.49

ncc 95.43 96.36 95.54 83.3 91.84 42.56 79.36 78.97 89.7 70.66 69.87
± 3.2 ± 1.43 ± 2.77 ± 5.05 ± 4.72 ± 6.99 ± 1.89 ± 6.81 ± 4.05 ± 2.76 ± 6.03

imprAcc
ndc 98.13 97.42 99 97.86 96.57 90.95 88.26 90.93 97.05 93.18 89.97

± 2.62 ±1.44 ± 1.53 ± 1.74 ± 2.97 ± 6.31 ± 7.24 ± 6.29 ± 3.1 ± 2.31 ± 3.5
ndc cv 97.6 97.08 97.71 95.11 97.86 84.85 84.79 88.78 96.43 90.04 90.03

± 2.78 ± 1.44 ± 2.08 ± 1.98 ± 2.5 ± 6.48 ± 4.95 ± 6.33 ± 2.73 ± 2.59 ± 3.79
ncc 97 96.58 99.18 88.63 93.93 60.85 95.38 92.05 91.76 87.09 81.16

± 3.52 ± 1.41 ± 1.79 ± 6.22 ± 5.22 ± 22.49 ± 2.54 ± 11.13 ± 4.44 ± 5.38 ± 8.36

Table 1. The imprecise classifiers’ performances on the UCI data.
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5 Conclusion

In this paper we are interested in the imprecise classification. Especially, we
focus on the study of the parameter β involved in the gain function used in the
decision step of two imprecise classifiers. More precisely, we studied the predicted
subsets depending on this parameter. We proposed a technique to choose the
value of this parameter when the classifiers are involved in a classification task.
Furthermore, the built classifiers give reasonable good performances related to
evaluation measures for imprecise classifier.
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