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Abstract: Predictive maintenance can be efficiently improved by studying the sensitivity of the
maintenance decisions with respect to changes in the proposed model parameters (costs, duration
of reparation, etc.). To address this issue, we first propose an original approach that includes both
maintenance costs and maintenance risks in the same objective function to minimize. This approach
uses the RUL as an indicator of the health state of the system and supposes that the system is under
regular inspections and can only be replaced by a new system in case of serious deterioration or
failure. Then, we present a process of human decision making under uncertainty based on several
criteria. Finally, we study and analyze the influence of the model parameters and their implications
on the obtained maintenance policies. The study will lead to some recommendations that can improve
the predictive maintenance decisions and help experts better handle maintenance costs.

Keywords: predictive maintenance; sensitivity analysis; remaining useful life; cost optimization;
human decision; mechanical bearing system

MSC: 68U35

1. Introduction

Industry 4.0, initially emerged in Germany, is now attracting more and more scien-
tists and is starting to be widely adopted in modern societies [1–3]. According to [1], a
fundamental concept of industry 4.0 is “cyberphysical systems” where the physical and
the digital level merge. An example of “cyberphysical systems” is the use of process pa-
rameters (such as stress, temperature, etc...) of a mechanical system undergoing a physical
degradation [1]. These parameters are recorded digitally (mainly through sensors) and the
real conditions of the system are defined from the physical object and the parameters of its
digital process [1]. This is generally used in the area of predictive maintenance.

Predictive maintenance is a widespread maintenance practice that is based on regular
monitoring of the condition of the system in order to determine the right time to maintain
the system [1,4–7].Predictive maintenance is realized “following a forecast derived from repeated
analysis or known characteristics and evaluation of the significant parameters of the degradation of
thesystem” [6]. System condition monitoring, fault diagnosis, and fault prognosis are the
pillars of predictive maintenance. Several approaches for fault diagnosis and prognosis
are described in the literature [8–10]. These approaches can be data-driven approaches
or physical-based model approaches. Data-driven approaches use real data on the health
state of the system to predict the failure of the system while model-based approaches use
physical models in the form of physical equations when enough knowledge on the real
physical dynamics of a system are available [8,9]. In the existing literature, the health state
of the system can be evaluated using different measures [5,11–15]. We cite the “Remaining
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Useful Life” (RUL) as one of the most widely known measures [16–19]. The RUL is defined
as the expected duration left for the system before it fails [5,11–13].

Even if predictive maintenance provides more advantages than other types of mainte-
nance (such as corrective maintenance or preventive maintenance) [11,20–22], it remains
a challenging task for industry to find the optimal time for predictive maintenance. The
existing literature provides a large panel of methods to optimize the predictive maintenance
strategy [23]. A cost model considering finite repair, durations of maintenance, and costs
due to testing, repair, maintenance, and lost production or accidents was developed in [24].
The objective of the maintenance optimization is to minimize a total cost rate thanks to an
appropriate selection of two intervals: one for inspections and one for replacements [24].
The case of predictive maintenance for systems exhibiting two-phase behavior: new con-
dition and worn condition were analyzed and cost-minimizing policies were developed
in [25] in order to determine when the system should be monitored. A sequential imperfect
preventive maintenance policy was developed in [14,26], and the optimal schedule for
maintenance, which minimizes the cost rate during the system’s life cycle, was identified
in [14,26] using the reliability as a measure of the health state of the system. More recently,
a dynamic predictive maintenance policy for complex multicomponent systems was de-
veloped in order to minimize the long-term mean maintenance cost per unit time [27],
and a decision-making method based on cyber manufacturing and mission reliability state
was developed in order to identify the optimal way to maintain a production system [28].
Last but not least, an approach to jointly schedule missions and maintenance actions for a
deteriorating vehicle was described in a recent work [29]. However, maintenance optimiza-
tion may include risk minimization as described in [30,31]. According to the considered
system, the available input data and the objective to be attained, risk minimization in
maintenance can take two different types: optimization of an objective function where we
aim to minimize a risk under constraints [11,31] and comparison of the evaluated risks
with risk acceptance criteria [30].

In this work, we describe an approach for predictive maintenance optimization that
includes both maintenance costs and maintenance risks in the same objective function to
minimize. This approach uses the RUL as an indicator of the health state of the system and
supposes that the system is under regular inspections and can only be replaced by a new
system in case of serious deterioration or failure. In the context of industry 4.0, the process
of inspection is automated as the system is equipped with connected sensors that collect
instant data on the health state of the system. The process of transforming this data into a
measurable value such as RUL or reliability level of the system is conducted by machines
using techniques from artificial intelligence. Industry 4.0 has facilitated the decision making
under time constraints [32,33]. The time between the detection of a potential failure and
the time that the failure occurs can be seen as an opportunity for the decision makers to use
adapted algorithms that allow them to minimize maintenance costs [32,33]. The process of
decision making is complex, as it is dependent on the psychology of the decision maker and
on whether the decision maker is risk averse or not. This complexity of decision making
process under uncertainty has been tackled by Tversky and Kahneman in [34,35].

In this work, predictive maintenance is only performed once the RUL of the system
reaches a certain threshold called RULlim under which the system is considered as deterio-
rated. The outputs of the proposed optimization approach are then the value of RULlim
and the regular inspection step. This approach was briefly described in our previous
work [11,36]. The novelty of the paper lies in the following points:

• A detailed analysis of the influence of input parameters of our approach on the
optimization results. This study will help us understand the stakes of each input
parameter and its role in the optimization results.

• Recommendations will be drawn from the influence analysis, which can lead to better
results mainly through greater reduction of maintenance costs.
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• A proposition of several criteria (Hurwicz, Wald, optimistic, etc.) to address the
situations where the decision maker needs to make a decision on maintenance on the
basis of an interval of RULlim.

• A case study concerning a rolling-element bearing system in order to illustrate the use
of the three previous propositions.

2. Methodology Description
2.1. Assumptions

Our methodology is based on the following assumptions:

• The system under study is a unique component and it is integrated into a multicompo-
nent system. This multicomponent system has a duration of exploitation D supposed
to be known and constant.

• The system under study undergoes regular perfectly reliable inspections. An inspec-
tion informs the experts on the health state of the system. The inspection is performed
thanks to connected sensors. The connected sensors transmit information on signifi-
cant health parameters (such as, for example, temperature, pressure, etc.) to adapted
software able to use these parameters to evaluate the RUL of the system using tech-
niques inspired from artificial intelligence. An inspection gives a real estimation on the
RUL of the system. After multiple simulations, the RUL is evaluated as the expected
interval of time the system is likely to operate before it falls down. The RUL of the
system can be evaluated thanks to Equation (1) [36]:

RUL(t) = E[T − t\T > t] =

∫ ∞
t (u− t) · f (u) · du

S(t)
(1)

where T is the time of failure of the system, f is the failure density function of the
system, and S is the survival function of the system.

• At t = 0, the system is new and there is no need to maintain it. However, we consider
that an inspection at t = 0 is required. Once the system reaches the instant t = D, there
is no need to perform inspection, and the system needs to be replaced by a new one
(see Figure 1).

Figure 1. Inspection procedure.

• Between two consecutive inspections, one of these following scenarios may happen:

– Predictive maintenance scenario: The RUL of the system attains some threshold
value called RULlim under which the system is considered as deteriorated and
should then be replaced by a new one.
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– Non-predictive maintenance scenario: In this scenario, the system is not replaced
by predictive maintenance. In this case, the system may fall down or continue
to operate:

* If the system fails before inspection i + 1 knowing that he was operating at
inspection i, a corrective maintenance should be performed on the system.
The probability of occurrence of this scenario is equal to

∫ ti+1
ti ,T≥ti

f (t) · dt =∫ ti+1
ti

f (t)·dt

S(ti)
, where ti is the time of the ith inspection.

* If the system operates normally between inspections i and i + 1, this scenario
occurs with the complementary probability 1−

∫ ti+1
ti ,T≥ti

f (t) · dt.

• However, if the system reaches the duration of exploitation D without being replaced
because the deterioration zone has not been reached, it is considered as bad as old and
has to be replaced by a new one.

• Predictive and corrective replacements are assumed to have constant and known durations.
• Predictive and corrective replacements, as well as the inspection, are assumed to have

constant and known costs.

2.2. Maintenance Costs

The maintenance costs include the cost of predictive maintenance, the cost of corrective
maintenance, the cost of inspection, and the cost of operating loss due to maintenance.
These types of costs are the widely used in literature [14,15,24,25]. Maintenance costs may
include also the cost of maintenance risks. These risks can be of different types: human,
environmental, or financial [11,37]. The reader may refer to our previous work in [11].

• Predictive maintenance cost: The cost of predictive maintenance Cp during the time cycle
D can be evaluated using Equation (2):

Cp =
Nin−1

∑
i=1

cp · Ni (2)

where cp is the cost of a predictive replacement and Ni is a binary decision variable
taking the value of 1 in case of a predictive maintenance between inspections i and
i + 1 and 0 elsewhere.
Equation (2) takes into consideration the fact that predictive maintenance is not
systematic as in some cases, corrective maintenance may be preferable to predictive
maintenance.

• Corrective maintenance cost: The corrective cost for the ith inspection is paid only if
there is no predictive replacement and if the system fails before the next inspection.
Therefore, the cost of corrective maintenance during the time cycle D can be evaluated
using Equation (3):

Cc =
NIn−1

∑
i=1

cc · (1− Ni) ·
∫ ti+1

ti ,T>ti

f (t)dt + cc · (1− NNin) ·
∫ D

tNin
,T>tNin

f (t)dt (3)

where cc is the cost of a corrective replacement.
• Inspection cost: The total cost of inspection Ci during the time cycle D can be evaluated

using Equation (4):
Ci = Nin · ci (4)

where ci is the cost of an inspection.
Note that as the inspection is performed regularly on the system starting from t = 0,
the step of inspection θ is linked to the number of inspections Nin:

θ =
D

Nin
(5)
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• Operating loss cost: The operating loss cost is due to the loss of the system’s operation
capacity due to a failure of the system or due to performing a maintenance activity
on the system. The operating loss cost col contains the operating loss cost due to
predictive maintenance and the operating loss cost due to corrective maintenance
(Equation (6)):

Col =
Nin−1

∑
i=1

cdt · Dp · Ni +
Nin−1

∑
i=1

cdt · Dc · (1− Ni) ·
∫ ti+1

ti ,T>ti

f (t)dt + cdt · Dc · (1− NNin) ·
∫ D

tNin
,T>tNin

f (t)dt (6)

where Dp is the duration of a predictive replacement, Dc is the duration of a corrective
replacement, and cdt is the cost of system downtime per unit of time.

• Indirect maintenance costs: The indirect maintenance costs Cindirect include the expected
cost of human risks Rh, the expected cost of financial risks R f , and the expected cost
of ecological risks Re due to maintenance. These three types of risks can be evaluated
using the equations below [11]:

Cindirect = Rh + R f + Re (7)

Rh = (VSL ·
n

∑
j=1

pd
j ) ·

Nin

∑
i=1

(1− Ni) ·
∫ ti+1

ti ,T>ti

f (t) · dt (8)

R f = M · C ·
x ·∑Nin−1

i=1 Ni + y ·∑Nin
i=1(1− Ni) ·

∫ ti+1
ti ,T>ti

f (t) · dt

100
(9)

Re = (
m

∑
j=1

Pj ·Vj · ρj · Daj) ·
Nin

∑
i=1

(1− Ni) ·
∫ ti+1

ti ,T>ti

f (t) · dt (10)

These risk equations are established under the following assumptions:

• n persons may be affected by a potential failure of the system. The probability of
death of a person j is denoted by pd

j , and the Value of Statistical Life (VSL) is used to
evaluate the monetary loss of human life [38,39]. By way of similarities, Equation 8
can be applied to evaluate the risk of human injuries: we may consider different levels
of injuries with their corresponding compensation costs.

• A business loses x% of customers in case of predictive maintenance and y% of cus-
tomers in case of corrective maintenance.

• A failure of the system is eventually responsible for emitting m toxic pollutants with
emission probabilities (P1, P2, . . . Pm) and emission volumes (V1, V2, . . . Vm). Each pos-
sibly emitted toxic pollutant j is characterized by its density ρj and its environmental
damage cost Daj.

The indirect costs of maintenance have not been considered in the rest of this paper.
They will be treated in a future research work.

2.3. Process of Maintenance Cost Optimization

The objective function that we want to minimize is the total cost Ctot = Cp + Cc + Ci +
Col . The decision variables of the optimization program are the number of inspections Nin
and the binary variables Ni, i ∈ {1 . . . Nin}. The constraints that need to be satisfied are:

• the decision variables Ni are binary
• the number of inspections Nin should be at least equal to 1: Nin ≥ 1 as the system

requires at least one inspection in its early life (see Figure 1).

Finally, the input data of the optimization program include the duration parameters: D,
Dp, and Dc; the cost parameters: cp, cc, ci, cdt and the parameters of the Weibull distribution
characterizing the failure evolution of the system.
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Once the decision variables are evaluated, the decision maker faces one of these
possible cases:

• Ni = 1 for some i ∈ {1 . . . Nin}: a predictive maintenance should be performed as the
RUL of the system has reached some threshold RULlim. In this case, the system
should be predictively replaced at inspection i, and the cost optimization process must
be reset.

• Ni = 0: There is no predictive replacement of the system in this case. However, the
system may fail or not before the next inspection i + 1:

– If the system fails before inspection i + 1, a corrective replacement of the system
should be performed and the cost optimization process should be reset.

– If the system does not fail, we plan to perform the next inspection i + 1 on the
system at ti+1 = ti + θ.

In Figure 2, we give the global approach followed in this paper and published in our
previous work [11,36] in order to minimize the total cost of maintenance.

Figure 2. Flowchart of the optimization process for predictive maintenance planning.

3. Process of Human Decision Making under Uncertainty

Human, financial, and economic risks in maintenance as described above can be
estimated using the known probabilities and consequences of the different failure scenarios
and knowing that risks are defined in general as the product of events’ probabilities and
consequences. However, the situation where the decision maker needs to make a decision
on maintenance on the basis of an interval of RULlim is uncertain, as at each inspection
i, the expert needs to compare the real RUL of the system with the interval of RULlim
evaluated by the optimization process described above, with no prior knowledge on the
probability distribution of RULlim [40]. According to [40], the cognitive processes when
making decisions under risk are different from when making decisions under uncertainty.
In risky situations, value-based statistical thinking such as Bayesian theory is enough to
make good decisions while in uncertain situations, statistical thinking is no longer enough
and heuristic thinking is required [40]. Savage made it clear that “applying Bayesian theory
to decisions in uncertain situations would be utterly ridiculous because it is impossible to know all
the alternatives, consequences and probabilities” [40,41]. Therefore, the brain needs more than



Mathematics 2022, 10, 2153 7 of 24

just Bayes’s rule to make optimal decisions in uncertain situations [40,41], and heuristic
thinking becomes required [40].

If RULsystem ≤ RULin f , the expert has to replace the deteriorated component with a
new one. If RULsystem ≥ RULsup, the component is not yet deteriorated and can continue
to operate. The confusion comes when RULsystem is within the tolerance interval of RULlim.
The expert needs to make a decision whether to replace the system before inspection i + 1 or
let it work until inspection i + 1. In this situation, the decision D to make has two options O:

• O1: “The component is replaced at inspection i”.
• O2: “The component is not replaced at inspection i”.

For each decision option, there is a corresponding event E. In our case, two types of
events can occur:

• E1: “RULlim = RULin f ”.
• E2: “RULlim = RULsup”.

For each decision option Oi and event Ej, there is a corresponding conditional result
ri,j, where (i, j) ∈ {1, 2}, which measures the expected monetary loss of each situation.

Let us note Cti , the expected monetary loss between inspection i and i + 1. Cti can be
expressed as follow:

Cti =


cp + cdt · Dp + (cc + cdt · Dc) ·

∫ t2
t1

f (t) · dt if ri,j = r1,1

cp + cdt · Dp + (cc + cdt · Dc) ·
∫ t2

t1
f (t) · dt if ri,j = r1,2

(cc + Dc · cdt) ·
∫ ti+1

ti
f (t\RULlim = RULin f ) · dt if ri,j = r2,1

(cc + Dc · cdt) ·
∫ ti+1

ti
f (t\RULlim = RULsup) · dt if ri,j = r2,2

(11)

where f (t\RULlim = RULin f ) and f (t\RULlim = RULsup) are the respective conditional
probability densities of system failure knowing that RULlim = RULin f and RULlim = RULsup.

Table 1 gives the conditional results of the different combinations O-E. Because we
cannot obtain the probability values of events E1 and E2, we will only consider the monetary
loss of each situation.

Table 1. Conditional results of the different combinations decision option—event.

E1 E2

O1
cp + cdt · Dp + (cc + cdt.Dc) ·

∫ t2
t1

f (t) · dt +

∑
j=Nin
j=2 Ctj

cp + cdt ·Dp + (cc + cdt ·Dc) ·
∫ t2

t1
f (t) · dt +

∑
j=Nin
j=2 Ctj

O2
(cc + Dc · cdt) ·

∫ ti+1
ti

f (t\RULlim =

RULin f ) · dt + ∑
j=Nin
j=i+1 Ctj

(cc + Dc · cdt) ·
∫ ti+1

ti
f (t\RULlim =

RULsup) · dt + ∑
j=Nin
j=i+1 Ctj

3.1. Optimistic Criterion

Following Table 1, an optimistic expert would opt for the decision that maximizes the
profit/minimizes the monetary loss. This means in our case study that an optimistic expert
would prefer to believe E1 rather than E2 [42,43].

3.2. Wald Criterion

The decision-theoretic view of statistics introduced by Wald had an obvious interpre-
tation in terms of decision making under complete absence of knowledge, in which the
maximin strategy was shown to be the best response against natures’ minimax strategy.
Wald’s criterion is extremely conservative, even in a context of complete absence of knowl-
edge. However, this conservatism may sometimes make good sense [44]. The maximin
criterion is a pessimistic approach. It suggests that the decision maker considers only the
minimum payoffs of alternatives and chooses the alternative with the least bad outcome.
This criterion applies to decision makers who are cautious and who seek insurance that
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in the case of an unfavorable outcome, at least, there is a known minimum payoff. This
approach may be justified because the minimum payoffs may have a higher probability
of occurrence or the lowest payoff may lead to an extremely unfavorable outcome. A
pessimistic expert would choose the decision that has the greatest minimal profit (the “less
worse option”). This means in our case study that a pessimistic expert would prefer to
believe E2 rather than E1 [42,43].

3.3. Criterion of Minimum Regret

If we note that mj the best result associated to the event Ej: mj = min{r1,1, r1,2, r2,1, r2,2}.
It is obvious that mj = 0 in our case study. The regret corresponding to the combination
Oi − Ej is equal to the difference mj − ri,j. The expected regret resulting from the option Oi
is therefore calculated as:

E[Regret\Oi] = ∑
j

mj − ri,j (12)

Therefore, the option Oi that maximizes the expected profit by minimizing the mone-
tary loss is the one that minimizes the expected regret [42,43].

3.4. Hurwicz Criterion

This criterion is a combination between optimistic and Wald criteria. We note that
α is the optimism coefficient, m is the minimum profit, and M is the maximum profit for
each decision. For each decision, we evaluate: M · α + m · (1− α) and retain the option
with the best result [42,43]. In our context, the profit corresponds to the monetary loss
following the decision to replace or not the system. The optimism coefficient α reflects the
feedback experience of the decision maker toward similar systems under similar conditions
of operation. The lower the value of α is, the more the decision maker is considered to be
risk averse and vice versa.

The value of α reflects the cognitive process that underpins the economic decision
making. In fact, according to Kahneman and Tversky, people tend to place more impor-
tance on events that easily come to their mind and compare them relatively to a baseline
situation [34,45]. For example, brokers tend to be risk averse if they won the day before but
take more risk if they lost the day before [46]. According to [34], people often predict the
alternatives that are most representative of the input. As for example, if the description
of a company is favorable, a high profit is more representative of the situation even if the
description is unreliable or does not allow accurate prediction [34]. This constitutes an
anchoring bias, which leads to trusting the information received first in decision making.
Furthermore, we mention the work of Paul Slovic that proves that emotional judgements
in relation to a situation of uncertainty are able to predict the attitude and behavior of the
decision maker to this situation of uncertainty [47,48]. In other terms, positive and negative
perception of the same hazard can induce different choices in decision making.

The same can be applied here to our work; past experiences that come easily to the
expert’s mind will have an impact on his or her attitude to risk taking. The fact that we
focus on monetary loss and not on monetary gain is another aspect that impact the attitude
to risk taking. This obviously results in how the value of α is chosen to reflect the best the
attitude of expert to risk.

The choice of the criteria depends on the context of decision making and the feedback
experience of the decision maker. The most difficult choice remains the choice of the
adapted human decision criteria and the choice of the value of α [42,43].

4. Case Study
4.1. System Description

We consider in this work a train system, seen as a complex system: the train is
composed of several subsystems providing a set of basic functions, all contributing to
realizing the main function of the train, which is transporting passengers from point A
to point B [49] (Figure 3). The traction system contains the electric motor of the train,
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which is also considered as a complex system. Some of the components of the electric
motor are critical for the operation of the train [49] (Figure 4). For instance, we point out
the mechanical bearing system as the most faulty component in the train motor. In fact,
according to [49,50], faults arising in motors are often due to bearing faults.

A rolling-element bearing is a type of a bearing system that contains rolling elements
(such as balls or rollers) placed between two races (inner race and outer race) [50–52] as
shown in Figure 5.

The rolling-element bearing system allows rotational movement while reducing fric-
tion and stress. They resemble wheels, and they enable motor devices to roll on the motor
shaft, which reduces the friction between the surface of the bearing and the surface that it
is rolling over [50–52].

Figure 3. Train system [49].

Figure 4. Critical components of the train motor [49].

Figure 5. Mechanical rolling bearing system [49].

4.2. Main Characteristics of the System

The mechanical bearing system is the system under study. It is considered to be a
critical component of the complex system: train motor. The train motor is considered in its
turn a critical component of the complex system: train.

Table 2 summarizes the main characteristics of the mechanical bearing system. We
refer to the nomenclature table at the end of this paper to help the reader understand the
different cost parameters and the sources used to set them. The following data are realistic
and are given for information (Table 2).
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Table 2. Main characteristics of the mechanical bearing system.

Parameter Value Unit

cp 200
cc 800
ci 150
cdt 1000

D 25,000 hours
Dp 2 hours
Dc 10 hours

The failure evolution of the system follows the Weibull distribution with a constant
scale parameter λ = 27,000 and a variable shape parameter k ≥ 1 (the failure rate increases
with time). The value of the shape parameter k is equal to 1.1 at t = 0 and should be updated
at each inspection on the basis of real data coming from sensors. There are different
methods to estimate the Weibull distribution parameters. We refer for example to the work
of Pasquale Erto and Massimiliano Giorgio on how to estimate the Weibull distribution
parameters on the basis of prior consideration of λ and k [53].

4.3. Application

As Nin ≥ 1, we have run the optimization program for different values of Nin starting
from Nin = 2. For a predefined value of Nin, if the optimization results show that Ni = 1
for some i ∈ {1...Nin}, it means that RULlim has been crossed by the system between
inspections i − 1 and i, and the system should be predictively replaced at inspection i. This
provides an interval containing RULlim: in this case, RULlim should belong to the interval of
time [RULsystem(ti), RULsystem(ti−1)]. Let us call this interval of RULlim: [RULlim

in f , RULlim
sup].

Table 3 summarizes the updated values of Weibull shape parameters k at each inspec-
tion i and the values of the decision variables obtained by our optimization program. The
parameter λ is remained fixed while the parameter k has a linear dependency on (i− 1) · θ.
Therefore, the different values of ki vary according to the number of inspection Nin and
the order of inspection i. Table 3 gives only the value of Ni = 1 for some i ∈ {1 . . . Nin},
as Nj = 0 for j ∈ {1 . . . Nin}\{i}. As the failure rate of the system increases (ki ≥ 1 for
i ∈ {1 . . . Nin}, it is almost expected to have predictive maintenance in the time interval
[tNin , D] where the system is most deteriorated.

Table 3. Values of the updated shape parameters k and of the decision variables (Nin and N).

Nin k N

2 k1 = 1.1, k2 = 9.85 N2 = 1

3 k1 = 1.1, k2 = 6.93, k3 = 12.77 N3 = 1

4 k1 = 1.1, k2 = 5.47, k3 = 9.85, k4 = 14.22 N4 = 1

5 k1 = 1.1, k2 = 4.6, k3 = 8.1, k4 = 11.6, k5 = 15.1 N5 = 1

6 k1 = 1.1, k2 = 4.02, k3 = 6.93, k4 = 9.85, k5 = 12.77, k6 = 15.68 N6 = 1

7 k1 = 1.1, k2 = 3.6, k3 = 6.1, k4 = 8.6, k5 = 11.1
k6 = 13.6, k7 = 16.1 N7 = 1

8 k1 = 1.1, k2 = 3.29, k3 = 5.47, k4 = 7.66, k5 = 9.85
k6 = 12.04, k7 = 14.22, k8 = 16.41 N8 = 1

9 k1 = 1.1, k2 = 3.04, k3 = 4.99, k4 = 6.93, k5 = 8.88, N9 = 1
k6 = 10.82, k7 = 12.77, k8 = 14.71, k9 = 16.65

We have stopped the simulations at Nin = 9 because for a number of inspections
superior to 9, Ni remains equal to 0, i ∈ {1..Nin} for Nin ≥ 9 , meaning that predictive



Mathematics 2022, 10, 2153 11 of 24

maintenance becomes too expensive for all the cases, and it is then wiser to let the system
operate until failure.

The variations of Cp + Ci and Cc per Nin are illustrated in Figure 6, and the variations
of Col and Ctot per Nin are illustrated in Figure 7.

Figure 8 illustrates how the interval of RULlim varies when varying Nin.
The more Nin increases, the better experts become able to predict the failure of the

system and, therefore, the less we pay for corrective maintenance and for the loss of
operation capacity (see Figures 6 and 7). However, predictive maintenance becomes
expensive in return (see Figure 6). This cost compensation is reflected in the shape of
the curve of Ctot: Ctot seems to decrease when Nin increases until reaching a minimum of
4988.71 euros at Nin = 6, beyond which Cp + Ci become expensive and compensate the
reduction of Cc and Col (see Figures 6 and 7).

Figure 8 shows as expected that the more inspections we perform on the system, the
more we are able to estimate precisely the interval of RULlim. This is due to reduction of
the length of the interval [ti−1, ti].
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Figure 6. Variations of Cp + Ci and Cc per Nin.
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Figure 7. Variations of Col and Ctot per Nin.



Mathematics 2022, 10, 2153 12 of 24

 

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

0.00

5000.00

10,000.00

15,000.00

20,000.00

25,000.00

30,000.00
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5. Sensitivity Analysis under Variation of Cost and Time Parameters

In this section, we study the impact of variations of time and cost parameters on
the optimization results. This study aims at understanding the influence of the different
parameters on the optimization results, which cannot be done just by looking at the opti-
mization program. Identifying the most/least influencing parameters on the maintenance
strategy can be of great help for the decision maker, as it allows him to better manipulate
the parameters in order to better reduce maintenance costs.

5.1. Study of the Impact of Cost Parameters on the Optimization Results
5.1.1. Variation of ci

In this section, we have varied ci from 10 to 200, while maintaining the other parame-
ters fixed.

Figures 9–11 illustrate the variations of the optimum Ctot, the optimum Nin, and the
interval of RULlim per ci, respectively.
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Figure 9. Variations of optimum Ctot per ci.
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Figure 10. Variations of optimum Nin per ci.
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Figure 11. Variations of [RULlim
in f , RULlim

sup] per ci.

It is obvious that an increase in ci leads to an increase in the optimum of Ctot (see
Figure 9). Predictive maintenance becomes expensive, which leads to a decrease in the
optimal value of Nin (see Figure 10). In other words, the lower ci is, the better experts are
able to perform failure prognosis, and the system can be replaced predictively at its late life.
This leads obviously to decreasing the optimum of Ctot as we optimize the exploitation of
the system (see Figure 9).

The decrease in the value of Nin leads to more imprecision on the estimation of RULlim:
the length of the interval of RULlim increases as ci increases (see Figure 11).

5.1.2. Variation of cp

In this section, we have varied cp from 100 to 1500 while maintaining the other
parameters fixed.

Figures 12–14 illustrate the variations of the optimum Ctot, the optimum Nin, and the
interval of RULlim per cp, respectively.
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Figure 12. Variations of optimum Ctot per cp.
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Figure 13. Variations of optimum Nin per cp.
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Figure 14. Variations of [RULlim
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sup] per cp.

For small values of cp (cp ≤ 600), the optimum Nin is equal to 6. As soon as cp gets
higher values, the optimum Nin tumbles quickly to converge to the case where predictive
maintenance becomes expensive in comparison with corrective maintenance (see Figure 13).
This is reflected on the curve of Ctot where Ctot varies linearly as a function of cp for
cp ≤ 600, and then it increases rapidly for higher values of cp (see Figures 12 and 13). The
approximation of the RULlim follows Nin. The more cp increases, the more Nin decreases
and, therefore, the less precise becomes the estimation of RULlim (see Figure 14). We make
an exception for the case where Nin = 2 for cp ≥ 1400, as this case study is not realistic.

5.1.3. Variations of cc

In this section, we have varied cc from 100 to 1500 while maintaining the other param-
eters fixed.
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Figures 15–17 illustrate the variations of the optimum Ctot, the optimum Nin, and the
interval of RULlim per cc, respectively.
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Figure 15. Variations of optimum Ctot per cc.
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Figure 16. Variations of optimum Nin per cc.
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Figure 17. Variations of [RULlim
in f , RULlim

sup] per cc.

The parameter cc seems to have only an impact on Ctot through the cost Cc (see
Figure 15). However, it seems to have no impact on the optimal number of inspections or
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on the interval of RULlim (see Figures 16 and 17). This may be explained by the fact that
the influence of corrective maintenance on the optimization results is mainly done through
the loss of operation capacity due to corrective maintenance.

5.1.4. Variation of cdt

In this section, we have varied the parameter cdt from 500 to 2000 while maintaining
the other parameters fixed.

Figures 18–20 illustrate the variations of the optimal Ctot, the optimal Nin, and the
interval of RULlim per cdt, respectively.
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Figure 18. Variations of optimum Ctot per cdt.
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Figure 19. Variations of optimum Nin per cdt.

The more cdt is expensive, the more we should avoid the failure of the system as the
corrective maintenance becomes expensive (through the term cdt × Dc, which remains
too high comparing to the term cdt × Dp). Therefore, we should perform more inspec-
tions on the system. This leads to more precision on the approximation of RULlim (see
Figures 19 and 20).
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Figure 20. Variations of [RULlim
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Preliminary conclusions can be drawn from the study of variations of cost parameters:

• The cost parameter cdt is the most influencing parameter on the optimum Ctot.
• The parameter ccc has almost no impact on the optimization results. The main impact

of corrective maintenance on the optimization results is made through the cost of loss
of operating capacity due to corrective maintenance.

• The parameters cp and ci have almost similar impact on the optimization results: these
two parameters have an impact on the optimum of Ctot, but they have greater impact
on the optimum Nin and the interval of RULlim.

5.2. Study of the Impact of Time Parameters on the Optimization Results
5.2.1. Variation of Dp

We have varied Dp from 0.5 to 5 h while keeping the other parameters fixed.
Figures 21–23 illustrate the variations of the optimum Ctot, the optimum Nin, and the

interval of RULlim per Dp, respectively.
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Figure 21. Variations of optimum Ctot per Dp.
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Figure 22. Variations of optimum Nin per Dp.
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Figure 23. Variations of [RULlim
in f , RULlim

sup] per Dp.

The longer Dp is, the more expensive predictive maintenance becomes. This results,
therefore, in a decrease in the optimum Nin (see Figure 22) and in more imprecision on
RULlim estimation (see Figure 23). We can see from Figures 21 and 22 that the optimum
Ctot remains constant and the optimum Nin remains equal to 1 for Dp ≥ 3.5 h, meaning that
in this case, it is useless to perform predictive maintenance, as it becomes more expensive
than corrective maintenance.

5.2.2. Variation of Dc

We have varied in this section the parameter Dc from 1 to 10 h while keeping the other
parameters fixed.

Figures 24–26 illustrate the variations of the optimum Ctot, the optimum Nin, and the
interval of RULlim per Dc, respectively.
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Figure 24. Variations of optimum Ctot per Dc.
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Figure 25. Variations of optimum Nin per Dc.
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Figure 26. Variations of [RULlim
in f , RULlim

sup] per Dc.

For low values of Dc (Dc ≤ 5 h), it is more expensive to perform predictive mainte-
nance than corrective maintenance as the cost of loss of operation capacity due to corrective
maintenance becomes less expensive and comparable to the cost of loss of operation capac-
ity due to predictive maintenance. Therefore, the optimum Nin is equal to 1 (corresponding
to the fist inspection performed at t = 0) and the optimum Ctot corresponds to the total cost
of the nonpredictive maintenance scenario (see Figure 24).

For higher values of Dc, predictive maintenance becomes interesting, as it becomes
less expensive than corrective maintenance, which allows to reduce Ctot. This explains the
shape of the curve of Ctot and Nin for Dc ∈ [5, 8] h (see Figures 24 and 25).

For Dc ≥ 8 h, even if predictive maintenance remains interesting, predictive main-
tenance can no longer compensate the cost increase in corrective maintenance and the
optimal Nin then remains stable. This explains the shape of the curve of Ctot and Nin for
Dc ≥ 8 h (see Figures 24 and 25).

This result is reflected on the variations of RULlim interval: the more the optimal
Nin increases (for Dc ∈ [7, 8] h), the more precise our estimation of RULlim is through the
reduction of inspection intervals. As the optimal Nin remains stable (for Dc ≥ 8 h), the
interval of RULlim does not change (see Figure 26).

A preliminary conclusion can be drawn from the study of variations of time parameters.
If we want to minimize Ctot and have more precision on the estimation of RULlim, it is
better to have low values of Dp. However, the influence of the parameter Dc on the
optimization results seems to be less evident; this parameter needs to be considered with
more precaution, as reducing Dc does not necessarily lead to reducing Ctot (see Figure 24).
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6. Discussion

This work has allowed us to understand the implications of the different input pa-
rameters (time and cost parameters) of the proposed optimization methodology on the
different output parameters, namely the optimum Ctot, the optimum Nin, and the interval
of RULlim.

6.1. Cost Parameters

The major part of the optimum Ctot is borne by Col . Therefore, the impact of the
parameter cdt on the optimum Ctot is relatively important; a variation of cdt from 500 to 2000
leads to a variation of Ctot from 3064.51 to 8685.15 (see Figure 19), meaning that the variation
rate of the curve Ctot per cdt is equal to 3.75. The parameter ci also has an important impact
on Ctot: a variation of ci from 10 to 200 leads to a variation of the optimum Ctot from 3994.56
to 5275.30, meaning that the variation rate of the curve Ctot per ci is equal to 6.74 (see
Figure 9), followed by the parameter cp, which has a little impact on the optimum Ctot
comparing to cdt and ci (see Figure 12).

From Figures 10, 13 and 19, we can see that the optimal Nin is sensitive to ci variations
and, to a lesser extent, to cp and cdt variations.

The variations of the parameter ccc has almost no impact on the optimization results
(see Figures 16 and 17). Its only impact appears on the variations of the optimal Ctot, but it
remains insignificant in comparison with the other cost parameters (see Figure 15).

6.2. Time Parameters

Dp and Dc have inverse impact on RULlim estimation: while the increase of Dp leads
to more imprecision on the estimation of RULlim (see Figures 22 and 23), the increase of Dc,
however, allows to estimate more precisely the RULlim (see Figures 25 and 26).

While the impact of Dp on the optimum Ctot seems intuitive (an increase in the
parameter Dp leads to increasing Ctot until reaching a stable value of Ctot corresponding to
the nonpredictive maintenance scenario; see Figure 21), the impact of Dc on the optimum
Ctot is less evident (see Figure 24). The study of variations of Dc shows that there is a value
of Dc where Ctot reaches its minimal value (see Figure 24).

6.3. Recommendations

It is a challenging task to reduce the optimum Ctot and the imprecision on RULlim
estimation at the same time. The only possible way to do it is eventually through the
parameters cp and Dp. It is obvious that these two parameters are linked together as a
reduction in Dp leads to a reduction in cp. Some practical measures can be applied to
reduce Dp, such as, for example, reducing supply times by providing a backup stock of
new parts or by having more staff available for the task of maintenance.

The best way to increase the precision on the estimation of RULlim is through the
parameter ci. This will lead, however, to increasing the optimal value of Ctot.

The best way to decrease the optimum Ctot is through the parameters ci and cdt. We
can imagine an automated inspection procedure that does not involve manpower and that
is economically cheap.

To have better values of Ctot, experts need to identify the target value of Dc that allows
Ctot to reach its minimum, knowing the values of the other parameters. Practical measures
need to be implemented later in order to reach this target value of Dc. These measures may
be similar to that used to reduce Dp.

7. Conclusions

In this paper, we describe a methodology for predictive maintenance optimization
and provide an analysis of the influence of the input parameters of this methodology on
the optimization results.

First, this analysis has allowed us to classify the input parameters from most influ-
encing parameters to least influencing parameters. Second, this analysis has allowed us to
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identify the way the input parameters influence the optimization results; some parameters
have more influence on Ctot than others, and some other parameters have more influence
on the interval of RULlim than others. Finally, thanks to this study, some reflections on how
to handle the input parameters were drawn from the sensitivity analysis in order to help
experts better improve the results of the proposed optimization methodology.

The optimization approach proposed in this paper may be improved by integrating
other types of costs such as indirect costs related to maintenance risks [11] or by considering
other decision variables such as reliability or deterioration index [14,15]. The sensitivity
analysis may be improved by using the design of experiments to study the influence of two
or more parameters on the cost optimization results. Finally, we mention that in applying
the optimization methodology described in this paper, the input parameters may change
due to inherent conditions such as experience and learning effect. This learning effect
makes experts better familiar with some process (such as inspection process), which can
lead to reduction of some cost and time parameters.
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Notations
The following notations are used in this manuscript:
cc Cost of a corrective replacement
cdt Cost per hour of the system down time
cp Cost of a predictive replacement
C Cost of loss of one customer for a business
Cc Expected cost of corrective maintenance during D
Cindirect Expected cost of maintenance risks
Col Expected cost of loss of operating capacity of the system during D
Cp Expected cost of predictive maintenance during D
Cti Expected monetary loss between inspection i and i + 1
Ctot Expected total cost of maintenance during D

D
Duration of exploitation of the whole global system containing our system
under study

Da Vector of cost of damage per tonne emission of pollutants due to system failure
Dc Duration of a corrective replacement
Dp Duration of a predictive replacement
f(t) Failure probability density function at time t
k Shape parameter of Weibull distribution (to be updated at each inspection)
M Number of potential customers at the beginning of the period D
N Vector of binary decision variables: Ni = 1 in case of predictive maintenance

between inspections i and i + 1, and Ni = 0 elsewhere



Mathematics 2022, 10, 2153 22 of 24

Nin Number of inspections during D
P Vector of emission probabilities of toxic pollutants due to system failure
Re Expected cost of environmental maintenance risks
R f Expected cost of financial maintenance risks
Rh Expected cost of human maintenance risks
RUL(t) Remaining useful life of the system at t

RULlim
Threshold of RUL under which the system is considered as deteriorated and
should be replaced before failure

RULlim
in f The lower bound of the interval of RULlim

RULlim
sup The upper bound of the interval of RULlim

S(t) Survival function of the system at t
V Vector of emission volumes of toxic pollutants due to system failure
α Optimism coefficient
λ Scale parameter of Weibull distribution (constant)
ρ Density of possibly emitted toxic pollutant due to system failure
θ Inspection step

Nomenclature
The following table is a nomenclature table of all the parameters of the different cost functions used
in this manuscript:

Parameter Cost function Source
C Cindirect The evaluation of these parameters
cc Cc takes in consideration
cdt Col several aspects: cost
cp Cp of a new component, labor
ci Ci cost per hour, cost of logistics
D Cc, Ci, Col cost of bus/train ticket...
Dc Col In practice, the expertise and historical
Dp Col data on similar systems
M Cindirect help to set them
(P1, P2, . . . Pm) Cindirect
(V1, V2, . . . Vm) Cindirect
(Da1, Da2, . . . Dam) Cindirect Official reports (CAFE Program [54])
VSL Cindirect Official data (3 millions euros in France [55])
λ, ki(i = 1 . . . Nin) Cc, Col , Cindirect Sensor data
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