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Prime Factors Networks

Complex networks of prime factors are obtained by using the coincidence similarity. Capable of enhanced selectivity and sensitivity, as well being markedly robust to localized features perturbation, the coincidence similarity index allows effective and detailed representation of several types of datasets. In this work, we apply this methodology to obtain networks defined by the similarity between the prime factors of non-negative integer number, considering or not their respective multiplicity. Several interesting results are presented and discussed, including the identification of a peculiar network organization involving paths radiating from an apical region which culminates in the node corresponding to the largest integer power of two.

Introduction

Basically, a prime number (e.g. [START_REF] Crandall | Prime numbers[END_REF][START_REF] Wells | Prime numbers[END_REF][START_REF] Ingham | The distribution of prime numbers[END_REF][START_REF] Da | A first glance at prime numbers[END_REF]) is an integer value that is divisible only by 1 and itself. This type of numbers have intrigued and fascinated humanity from its early beginnings -some of the earliest mentions of primes can be found in the Rhind papyrus, ca 1550 BC -mainly because of the quintessentially irregularity and unpredictability of their appearance along the sequence of non-negative integer values. The sieve illustrated in Figure 1 for the first 60 integer values was conceived by the polymath Erathostenes of Cyrenne as a method to identify prime numbers. Prime numbers have also been understood as the 'basic ingridients' from which all the other numbers are constructed. Given a generic non-negative number n, it is always possible to decompose it as a product between prime numbers, which are called the respective prime factors of n. This operation is often referred to as the prime factor decomposition of the integer number.

Among the several interesting works that have been reported about prime numbers and respective properties and interrelationship, some have approached prime numbers while considering respectively derived graphics and/or networks. For instance, Pomerance [START_REF] Pomerance | The prime number graph[END_REF] has described a prime number graph, which corresponds to the set of lattice points (n, p n ), n = 1, 2, . . ., where p n is the n-th prime number. Interestingly, the same work also proves that there are always k points that are collinear in this graph. Another type of graph of primes has been described in [START_REF] Malm | A graph of primes[END_REF], focusing on the connectivity of graphs defined by placing edges between every pair of prime numbers whose absolute valued difference is a non-negative power of 2.

A small world network of prime numbers has been suggested in [START_REF] Chandra | A small world network of prime numbers[END_REF] that takes into account the Goldbach's conjecture, that states that every even number n can be decomposed as the sum of two prime numbers p and q. The network is obtained by associating a node to each prime and, for each number n a link is placed between the two prime components p and q. This network is then experimentally shown to have the small world property. More recently [START_REF] Garcia-Perez | Complex architecture of primes and natural numbers[END_REF], the relationship between primes and composite numbers was approached in terms of complex networks and stochastic processes theory. More specifically, the relationship between composite numbers and prime factors is understood as a bipartite network, and a method is also described that is capable of generating random numbers and their relationships with composite numbers with noticeable accuracy. In another type of approach [START_REF] Shekatkar | Divisibility patterns of natural numbers on a complex network[END_REF] (see also [START_REF] Corso | Families and clustering in a natural numbers network[END_REF][START_REF] Shi | Natural number network and prime number theorem[END_REF]), integers are interconnected whenever one of the them divides the other, yielding an unweighted network (i.e. the links are either 0 or 1). It is shown, by using statistical inference, that the obtained networks are scale free but with non-stationary degree distribution. Congruence relationships between whole natural numbers in the context of multiplex networks have been studied in [START_REF] Yan | Multiplex congruence network of natural numbers[END_REF].

The present work addresses the relationship between composite numbers in terms of the quantification of the similarity between their respective prime factors. Given that the latter factors can be understood as the 'ingridients' from which composite numbers are made, the basic motivation in the present approach consists of understanding two composite numbers as being similar provided they share several common prime factors.

Corresponding to the product between the Jaccard and interiority (or overlap, e.g. [START_REF] Vijaymeena | A survey on similarity measures in text mining[END_REF]) indices, the coincidence similarity index can be used to compare any two generic mathematical structures in a particularly selective and sensitive manner (e.g. [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | On similarity[END_REF][START_REF] Da | Coincidence complex networks[END_REF][START_REF] Da | Multiset neurons[END_REF]). For these reasons, the coincidence similarity index is adopted in the present work as the means for comparing the prime factor structure between two generic composite numbers. In addition, we apply the coincidence methodology for transforming datasets represented by feature vectors into complex networks (e.g. [START_REF] Newman | Networks: An introduction[END_REF][START_REF] Barabási | Network Sience[END_REF][START_REF] Da | Characterization of complex networks: A survey of measurements[END_REF][START_REF] Da | Analyzing and modeling real-world phenomena with complex networks: a survey of applications[END_REF]) described in [START_REF] Da | Coincidence complex networks[END_REF] as a means to derive networks of prime factor relationships between non-negative integer numbers, which are henceforth calles prime factors networks. More specifically, each considered non-negative integer is represented by a respective node, while the similarity between the multiplicities of the prime factors are taken as the weights of respective edges. An alternative type of network, in which the multiplicity of the prime factors is not taken into account, is also considered here.

Several interesting results are reported and discussed, including the particularly remarkable organization of the prime factor networks, which are characterized by an apex region characterized by large node degrees and density, which starts at the largest integer power of 2 within the considered set of non-negative integers. Several paths can then be observed to emanate from this apical region, extending through progressively less intense interconnections toward the other size of the so-defined radial structure. interesting results are observed also regarding the unique prime factor networks, which are characterized by groups of nodes sharing the same prime factors.

This work starts by briefly introducing the concepts of coincidence similarity and the coincidence method for transforming datasets into networks, and then presents the procedure for generating prime factor networks. This is followed by the presentation and discussion of experimental results. Possibilities for further developments are also described.

Coincidence Similarity and Complex Networks

A wide range of concepts and methods in the physical sciences are based or require the ability to compare quantities and structures, which can be done in terms of distances (or dissimilarities) and similarities (or proximity). Though these two great families of operations are often closely related, they have often been applied in specific contexts. For instance, the Euclidean distance is intrinsically suitable for addressing situations involving positions and spatial relationships in a metric space. At the same time, similarity indices (e.g. [START_REF] Vijaymeena | A survey on similarity measures in text mining[END_REF][START_REF] Brusco | A comparison of 71 binary similarity coefficients: The effect of base rates[END_REF][START_REF] Hamers | Similarity measures in scientometric research: The jaccard index versus salton's cosine formula[END_REF][START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Kavitha | Evaluation of distance measures for feature based image registration using Alexnet[END_REF][START_REF] Leydesdorff | On the normalization and visualization of author co-citation data: Salton's cosine versus the jaccard index[END_REF]), including but by no means limited to the cosine similarity, Pearson correlation coefficient, and the Jaccard index [START_REF] Jaccard | Distribution de la flore alpine dans le bassin des dranses et dans quelques régions voisines[END_REF][START_REF]Jaccard index[END_REF] have been applied for quantifying the similarity between sets.

Because the traditional Jaccard index has been found not to be able to take into account the relative interiority between the two compared sets, a respectively enhanced index called coincidence similarity has been proposed [START_REF] Da | Further generalizations of the Jaccard index[END_REF] which corresponds to the product between the Jaccard and interiority indices. The coincidence index has been further enhanced by applying multiset concepts (e.g. [START_REF] Hein | Discrete Mathematics[END_REF][START_REF] Knuth | The Art of Computing[END_REF][START_REF] Blizard | Multiset theory[END_REF][START_REF] Blizard | The development of multiset theory[END_REF][START_REF] Mahalakshmi | Properties of multisets[END_REF][START_REF] Singh | Complementation in multiset theory[END_REF][START_REF] Da | Multisets[END_REF][START_REF] Samanthula | Secure multiset intersection cardinality and its application to Jaccard coefficient[END_REF][START_REF]Jaccard index[END_REF][START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | On similarity[END_REF]) in order to generalize its application to any generic mathematic structure.

In the present work, we limit our attention to the nonnegative real-valued coincidence similarity index, defined as:

C( x, y, D) = [J ( x, y)] D I( x, y) (1) 
where D ∈ R is a parameter controlling the selectivity and sensitivity of the comparison. The higher the value of D, the more strict the implemented comparison becomes. In addition, observe that 0 ≤ C( x, y, D) ≤ 1.

The two terms in Equation 1 correspond to the nonnegativereal-valued Jaccard and interiority indices, which can be expressed respectively as:

J ( x, y) = M i=1 min {x[i], y[i]} M i=1 max {x[i], y[i]} (2) 
and

I( x, y) = M i=1 min {x[i], y[i]} min M i=1 x[i], M i=1 y[i]
(3) with 0 ≤ J ( x, y), I( x, y) ≤ 1. The coincidence method [START_REF] Da | Coincidence complex networks[END_REF] for translating datasets into respective complex networks consists of representing each data element as a node, while the respective interconnections are defined in terms of the coincidence similarity values obtained between respective feature vectors. The so-obtained networks can be thresholded by a value T in order to obtain less cluttered visualization, which is henceforth adopted.

The Proposed Methodology

Let n be a generic positive number, with respective prime factor decomposition given as:

n = 2 m2 3 m3 5 m5 . . . P m P (4) 
where d i , i = 1, 2, . . . , M are the respective nonnegative multiplicities of the prime factors and P is the largest prime factor involved in a given problem.

Each number n can thus be represented in terms of a respective feature vector :

f n = [m 2 m 3 . . . m P ] T (5)
where the indices of the vector are associated to the increasing sequence of prime numbers.

For instance, assuming P = 20, we have that the number n = 14 = (2) 2 (5) 1 can be represented by the feature vector:

f 20 = [2 0 1 0 0] T (6) 
Observe that the above approach actually corresponds to treating each prime factor decomposition as a respective multiset.

Given the homogeneous nature of the feature elements, no respective normalization is henceforth adopted.

It is also interesting to consider another feature vector in which the multiplicities of the prime factors are not taken into account. For instance, in the case of the above example, we would have the following vector: f20 = [1 0 1 0 0] T [START_REF] Chandra | A small world network of prime numbers[END_REF] Observe that, unlike the representation with multiplicity, the above vector will no longer be enough to recover the respective number, implying in a non-invertible type of representation in which several original integer values can be mapped into the same feature vector.

Given a set of N integer positive numbers S, the respective prime factors network can be obtained by representing each of the N numbers by respective nodes, while the interconnections between a pair of numbers is taken with weight corresponding to the coincidence similarity between the respective feature vectors. Therefore, numbers which have similar prime factor decomposition will result more intensely interconnected.

In this work, we also propose an alternative network representation of S in which the multiplicity of the respective prime factors are not take into account. This type of network is henceforth called the unique prime factors network of the set S, or uprime factors network for short. A smaller threshold value is typically adopted for higher values of D because of the more strict comparison implemented in these situations.

Results and Discussion

The network obtained for D = 5 can be observed to present a more detailed identification of the interconnections between the respective nodes. This is a consequence of the enhanced selectivity and sensitivity obtained for larger values of D. Both networks are characterized by an apex containing more strongly connected nodes (larger sizes), from which a gradient of weighted interconnections can be observed to emanate, especially in case (b). Several of these radiations can be verified to correspond to paths of multiples, starting at a larger value located in the apex. Actually, the extremity of the apex corresponds to the number 128. For instance, we the sequence 128, 64, 32, . . . , 2 has special prominence, providing a kind of backbone to the prime factors network. Interestingly, the integer powers of two correspond to almost perfect numbers, in the sense that the sum of respective divisors falls one unit short of the number values.

Also of interest is the identification of successive layers of interconnections along the radiations emanating from the network apex, which indicate the presence of modules or communities in the prime factors networks.

The prime factor networks obtained for S = {1, 2, . . . , 500}, assuming D = 1 and T = 0.40 (a); and D = 5 and T = 0.03 (b); is depicted in Figure 3. Other than their increased complexity of interconnections, the obtained results are mostly similar to those obtained previously. The apex now starts with the number 256. As a consequence of the prime factors multiplicity not being taken into account, several numbers can be mapped into the same feature vector. The visualizations in Figure 4 show all these numbers in order to provide additional information about the networks, particularly the way in which the integer numbers in S share their basic prime constituent elements. Thus, the groups of nodes observed in the case of the uprime factors networks visualized in this word do not correspond to communities or modules, but to groups of nodes that mapped into the same feature vector.

The uprime factors network for S = {1, 2, . . . , 200} while adopting D = 1 and T = 0.55 (a); and D = 1 and T = 0.003 (b) is shown in Figure 5.

The marked effect of higher values of D in providing more detailed interconnections can be again verified. The networks obtained for both D = 1 and D = 5 are characterized by dominant groups of nodes referring to respectively the same feature vectors. These groups involve varying numbers of nodes, which are interrelated through a diversity of manners. The largest group corresponds to the number with the form (2) m2 (3) m3 . Another particularly significant group, involving 7 nodes in Figure 5, corresponds to numbers with formula 2) m2 (5) m5 .

Figure 5 illustrates the unique prime factors network obtained for the larger set S = {1, 2, . . . , 500} respectively to T h = 0.40 (a); and D = 5 and T = 0.03 (b). Substantially more complex groups and interconnectivity patterns can be observed, especially for the latter case.

One particularly interesting aspect of the prime factors networks concerns their respective modularity, or clustering. Figure 7 illustrates the coincidence single-linkage dendrogram obtained [START_REF] Da | A literal approach to network modularity[END_REF] for the prime factors network respective to S = {1, 2, . . . , 100} shown in Figure 6. The clusters, or modules identified from the dendrogram are identified by distinct colors in Figure 8. Interestingly, the found clusters consist of successive layers extending around the apex of the network, which is in agreement with the layered interconnections above observed for this type of networks.

Concluding Remarks

Prime numbers, with their enduring fascination on humans, are at the heart of number theory, motivating several interesting works aimed at their better understand-ing.

In the present work, we applied the concept of coincidence similarity in order to derive complex networks describing the relationship between non-negative integer numbers as revealed by the similarity between the prime factors, including or not their respective multiplicities.

More specifically, given a set S of non-negative integer values, their prime factors are identified and represented as respective feature vectors. The coincidence similarity, which is characterized by enhanced selectivity and sensitivity, is then applied as a means to quantify in a strict manner the similarity between the prime factors of each considered number. Complex networks indicating the relationship between the numbers can then be obtained by representing each of them as a node, while the weights of the respective interconnections are defined by the respective coincidence similarity between the involved prime factors.

Several interesting results have been described and discussed. In particular, the obtained prime factors networks have been found to present a 'cornucopia-like structure involving an apex, characterized by nodes with large average coincidences and strong interconnections, from which several paths emanate and proceed toward the periphery of the network through successively decreasing interconnections. The apexes are found to start at a node corresponding to the largest integer power of two among the original set of numbers. Interesting results have also been observed regarding the unique prime factors networks, which are characterized by heterogeneous interconnectivity between groups of nodes sharing the same prime factors.

In addition to the insights provided by the reported concepts and approaches regarding number theoretical aspects of the relationship between integer values, the respectively obtained networks constitute an interesting resource for researches in the area of network science (e.g. [START_REF] Newman | Networks: An introduction[END_REF][START_REF] Barabási | Network Sience[END_REF][START_REF] Da | Characterization of complex networks: A survey of measurements[END_REF][START_REF] Da | Analyzing and modeling real-world phenomena with complex networks: a survey of applications[END_REF]). For instance, these networks can be understood as a new family of networks to be considered in several complex network studies including robustness, relationship between topology and dynamics, and network classification and modularity, to mention just a few possibilities.

The concepts, methods and results reported in the present work paves the way to several further research which include but is not limited to: (i) characterizing the topological properties of the prime factors networks; (ii) comparing these networks to other model-theoretical structures including scale free, geographic and small world networks; and (iii) applying the autorrelation method [START_REF] Da | Autorrelation and cross-relation of graphs and networks[END_REF] in order to derive even more detailed representations of the relationships between the non-negative integer values. Another interesting possibility consists of obtaining net-works of the divisors of numbers in an analogous manner to that reported in the present work, and comparing them with the prime factors networks.
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 1 Figure 1: Erathostenes's sieve (for the 60 first integer numbers): An ancient predecessor of the prime factors networks described in the present work. Starting from 2, all multiples of each successively available cell are crossed-out, leaving only the prime numbers.
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 2 Figure 2 presents the prime factors network obtained for S = {1, 2, . . . , 200}, assuming D = 1 and T = 0.40 (a); and D = 5 and T = 0.03 (b).A smaller threshold value is typically adopted for higher values of D because of the more strict comparison implemented in these situations.The network obtained for D = 5 can be observed to present a more detailed identification of the interconnections between the respective nodes. This is a consequence of the enhanced selectivity and sensitivity obtained for larger values of D. Both networks are characterized by an apex containing more strongly connected nodes (larger sizes), from which a gradient of weighted interconnections can be observed to emanate, especially in case (b). Several of these radiations can be verified to correspond to paths of multiples, starting at a larger value located in the apex. Actually, the extremity of the apex corresponds to the number 128. For instance, we the sequence 128, 64, 32, . . . , 2 has special prominence, providing a kind of backbone to the prime factors network. Interestingly, the integer powers of two correspond to almost perfect numbers, in the sense that the sum of respective divisors falls one unit short of the number values.Also of interest is the identification of successive layers of interconnections along the radiations emanating from the network apex, which indicate the presence of modules or communities in the prime factors networks.
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 4 Figure 4 presents the unique prime factors networks obtained for S = {1, 2, . . . , 200} while adopting D = 1 and
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 2 Figure 2: The prime factors networks for the set S = {1, 2, . . . , 200} assuming D = 1 and T h = 0.40 (a); and D = 5 and T = 0.03 (b).The size of the nodes is proportional to their average coincidence similarity, and the width of an edge between two nodes reflects the coincidence between the respective feature vectors.
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 3 Figure 3: The prime factors networks for the set S = {1, 2, . . . , 500} assuming D = 1 and T h = 0.40 (a); and D = 5 and T = 0.03 (b).The size of the nodes is proportional to their average coincidence similarity, and the width of an edge between two nodes reflects the coincidence between the respective feature vectors.
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 4 Figure 4: The uprime factors networks for S = {1, 2, . . . , 200} with D = 1 and T = 0.55 (a); and D = 1 and T = 0.003 (b). The size of the nodes is proportional to their average coincidence similarity, and the width of an edge between two nodes reflects the coincidence between the respective feature vectors.
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 5 Figure 5: The uprime factors networks for the set S = {1, 2, . . . , 500} assuming D = 1 and T h = 0.40 (a); and D = 5 and T = 0.03 (b). The size of the nodes is proportional to their average coincidence similarity, and the width of an edge between two nodes reflects the coincidence between the respective feature vectors.
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 6 Figure 6: The prime factors network obtained for S = {1, 2, . . . , 100}, with D = 5 and T = 0.03.
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 7 Figure 7: The coincidence single linkage dendrogram of the prime factors network for S = {1, 2, . . . , 100}, with D = 5 and T = 0.03. The y-axis corresponds to 1 -coincidence.