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NDT-PSO, a New NDT based SLAM Approach using Particle Swarm Optimization

This paper deals with the problem of simultaneous localization and mapping (SLAM). Providing both accurate environment's map and pose estimation is necessary to correctly navigate, which is a key issue for a mobile robot interacting with human beings. It is a line of research that is always active, offering various solutions to this issue. Nevertheless, among many SLAM methods, Normal Distributions Transform (NDT) has shown high performances, where numerous works have been published up to date and many studies demonstrate its efficiency wrt to other methods. In this paper a new NDT based SLAM method using Particle Swarm Optimization called NDT-PSO is proposed. The main contribution is to invest the bioinspired approach PSO to solve pose estimation problem based on iterative NDT maps. Real experiments have been performed on a car-like mobile robot to confirm the performances of NDT-PSO approach and its efficiency in both static and dynamic environments.

I. INTRODUCTION

Today, mobile robots are present in our daily life and they become more and more autonomous. Indeed, thanks to the ability to locate and map its environment, the robot can plan trajectories and navigate in a real world in order to perform various tasks without human intervention. This ability is known as Simultaneous Localization And Mapping (SLAM) problem [START_REF] Khairuddin | Review on simultaneous localization and mapping (slam)[END_REF], [START_REF] Singandhupe | A review of slam techniques and security in autonomous driving[END_REF], [START_REF] Cadena | Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age[END_REF]. It consists of estimating the robot position while building the map of the environment. Most developed SLAM approaches are under the Filtering [START_REF] Choi | Hybrid map-based slam with rao-blackwellized particle filters[END_REF], [START_REF] Zhang | Convergence and consistency analysis for a 3-dinvariant-ekf slam[END_REF], [START_REF] Lee | Efficient ekf-slam algorithm based on measurement clustering and real data simulations[END_REF] or scan matching [START_REF] Li | Feature-based laser scan matching and its application for indoor mapping[END_REF], [START_REF] Wang | Accurate mix-norm-based scan matching[END_REF], [START_REF] Zahran | Enhancement of real-time scan matching for uav indoor navigation using vehicle model[END_REF] paradigms but share the same main steps, namely; mapping and pose estimation. The improvement of the earliest approaches in the two categories is still ongoing despite their existence for more than two decades.

Indeed, in recent years, Particle Swarm Optimization (PSO) is increasingly exploited in SLAM-based methods to eliminate the problems of insufficiency and inaccuracy of priori information for Kalman filter methods [START_REF] Zhu | Research and application on fractionalorder darwinian pso based adaptive extended kalman filtering algorithm[END_REF] and impoverishment of particles for particle filter methods [START_REF] Lee | PSO-FastSlam: An improved FastSlam framework using particle swarm optimization[END_REF], [START_REF] Liu | An improved FastSlam framework based on particle swarm optimization and unscented particle filter[END_REF], [START_REF] Wu | FastSlam method based on gaussian particle swarm optimization[END_REF]. In [START_REF] Zhu | Research and application on fractionalorder darwinian pso based adaptive extended kalman filtering algorithm[END_REF], the fuzzy adaptive extended Kalman filtering method was improved by introducing the fractional-order Darwinian particle swarm optimization (PSO) to compute an accurate priori noise model. Lee et al. [START_REF] Lee | PSO-FastSlam: An improved FastSlam framework using particle swarm optimization[END_REF] proposed 1 Sara Bouraine is with Center for development of advanced technologies (CDTA), cite 20 Aout 1956, Baba Hassen, Algiers, Algeria s bouraine@yahoo.fr 2 Abdelhak Bougouffa was with Center for development of advanced technologies (CDTA), cite 20 Aout 1956, Baba Hassen, Algiers, Algeria abdelhak.bougouffa@universite-paris-saclay.fr 1 Ouahiba Azouaoui is with Center for development of advanced technologies (CDTA), cite 20 Aout 1956, Baba Hassen, Algiers, Algeria oazouaoui@cdta.dz a FastSLAM framework where the robot position is estimated using Rao-Blackwellized particle filter. FastSLAM is known to degenerate over time in terms of accuracy due to the particle depletion in re-sampling phase. To prevent degeneration, a particle swarm optimization is employed to solve the problem by means of particle cooperation. Another improvement of the Fast-SLAM is the work of Liu et al. [START_REF] Liu | An improved FastSlam framework based on particle swarm optimization and unscented particle filter[END_REF] where PSO and unscented particle filter are introduced to reduce drastically the number of particles thanks to PSO for pose estimation and to improve map estimation accuracy thanks to unscented particle filter. In Wu et al. [START_REF] Wu | FastSlam method based on gaussian particle swarm optimization[END_REF], to solve the degeneration of particles and the position inaccuracy (due to the need of a large number of particles) problems, the Gaussian particle swarm optimization algorithm is used in the particle filter process.

In the second category, namely scan-matching methods, most of the methods use a nonlinear least-square optimization to determine the robot pose, but it is subject to the local minima problem which leads to not guaranteeing the algorithm convergence particularly in the presence of dynamic objects or fast movement of the robot. These few last years, some works have been conducted to prevent and improve the scan-matching-based methods. In [START_REF] Zahran | Enhancement of real-time scan matching for uav indoor navigation using vehicle model[END_REF], the ICP and Hector SLAM algorithms are improved using the system model as an initialization step followed by the ICP or Hector as alignment step. The work in [START_REF] Li | Feature-based laser scan matching and its application for indoor mapping[END_REF] introduces in the ICP algorithm both a 2D laser scan matching method based on point and line features as an initialization phase and the lq-norm (0 < q < 1) metric as a pose estimation to filter the outliers. In Wang et al. [START_REF] Wang | Accurate mix-norm-based scan matching[END_REF], a mixture of exponential power (MoEP) distributions is proposed to approximate the residual error distribution. The optimization of the scan matching method is iteratively achieved via two phases: an on-line parameter learning (OPL) phase to learn residual error distribution for better representation according to the likelihood field model (LFM), and an iteratively reweighted least squares (IRLS) phase to attain transformation for accuracy and efficiency. Nevertheless, among many SLAM methods, NDT has shown high performances, where numerous works have been published up to date [START_REF] Biber | The normal distributions transform: A new approach to laser scan matching[END_REF], [START_REF] Stoyanov | Fast and accurate scan registration through minimization of the distance between compact 3-d ndt representations[END_REF], [START_REF] Einhorn | Generic ndt mapping in dynamic environments and its application for lifelong slam[END_REF], [START_REF] Wolcott | Robust lidar localization using multiresolution gaussian mixture maps for autonomous driving[END_REF], [START_REF] Schmiedel | Iron: A fast interest point descriptor for robust ndt-map matching and its application to robot localization[END_REF] also many studies demonstrate its efficiency wrt to other methods [START_REF] Saarinen | Normal distribution transform monte-carlo localization (ndt-mcl)[END_REF], [START_REF] Pang | 3d scan registration based localization for autonomous vehicles -a comparison of ndt and icp under realistic conditions[END_REF]. However, to solve the optimization problem, most NDT-based methods use Newton Algorithm (like [START_REF] Morita | Point-cloud mapping and merging using mobile laser scanner[END_REF], [START_REF] Li | Efficient laser-based 3d slam for coal mine rescue robots[END_REF]). Few works have been interested in the problem of optimization; in [START_REF] Saarinen | Normal distribution transform monte-carlo localization (ndt-mcl)[END_REF], [START_REF] Schmiedel | Iron: A fast interest point descriptor for robust ndt-map matching and its application to robot localization[END_REF], pose estimation is performed using Monte Carlo Localization (MCL). In [START_REF] Einhorn | Generic ndt mapping in dynamic environments and its application for lifelong slam[END_REF], the best fitting alignment between two sets of point samples is found through the minimization of the L2 distance between NDT models. Moreover, in other works, the optimal transformation to solve the scan matching problem is directly formulated as a maximum likelihood estimate of Gaussian mixture maps [START_REF] Wolcott | Robust lidar localization using multiresolution gaussian mixture maps for autonomous driving[END_REF].

In this paper a new NDT-based SLAM method called NDT-PSO is proposed, where the scan matching process is based on PSO method. Experiments performed on a carlike mobile robot confirm the performances of NDT-PSO approach and its efficiency in both static and dynamic environments.

This paper is organized as follows: section 2 presents the proposed approach, where the scan matching problem is formalized before presenting NDT-PSO algorithm. Validations in real experiments are given in section 3. Finally, section 4 provides a summary and a conclusion of the paper.

II. PROPOSED APPROACH: NDT-PSO

To solve a SLAM problem, the proposed solution is based on a bio-inspired approach dubbed Normal Distributions Transform Particle Swarm Optimization (NDT-PSO). Like any SLAM problem, two key issues to answer are environment mapping and pose estimation. The following sections answer these two issues.

A. Environment Representation

In this paper, a NDT-based representation is used so as to deal with uncertainties and environment constraints. Proposed by Biber and Strasser [START_REF] Biber | The normal distributions transform: A new approach to laser scan matching[END_REF], NDT is based upon a grid discretization of the space, where each 2D laser scan of the collected data is modeled as a set of cells, where a probability of measurement is associated with a 2D scan point contained in a cell.

Let M = {q j }, j = 1, ..., N M a points set of a given laser scan, with q j ∈ R 2 a scan point, j its indice and N M the number of scan points. These raw data are transformed to NDT-based representation by the following steps:

• As the space is partitioned into a set of cells, each cell with ID "c" will be assigned a sub-set of points m c containing N m c points, i.e. m c = {q i }, i = 1, ..., N m c , where m c ⊂ M . • For each grid cell with ID c, the mean µ c and the covariance Ω c should be computed to determine the corresponding normal distribution. They have the form:

µ c = 1/N m c N m c i=1 q i ( 1 
)

Ω c = 1/N m c N m c i=1 (q i -µ c )(q i -µ c ) t (2) 
With

µ c ∈ R 2 and Ω c ∈ R 2 × R 2
The NDT map is therefore represented by a set of local normal distributions.

B. Pose Estimation

To solve the pose estimation problem, scan matching approaches, including NDT use gradient based approaches such as Newton method [START_REF] Ypma | Historical development of the newton-raphson method[END_REF] with major drawbacks to be computationally expensive and sensitive to the choice of departure position, which is a frequent problem [START_REF] Olson | Real-time correlative scan matching[END_REF], [START_REF] Walter | Numerical methods and optimization: A consumer guide[END_REF]. In this paper, the proposed approach NDT-PSO is based on PSO, which is commonly used to solve several optimization problems due to its efficiency and simplicity and it is more likely to fall on the global minimum without position initialization [START_REF] Venkatarao | Mechanical design optimization using advanced optimization techniques[END_REF].

Developed by Kennedy and Eberhart [START_REF] Kennedy | Particle swarm optimization[END_REF], PSO is a stochastic population-based approach inspired from an animal behaviour, namely fish schooling and bird flocking. The swarm movement is a very intelligent behaviour similar to an optimization problem where each individual is a possible solution dubbed particle, and it is formalized as follows:

V τ +1 (p) = n F n (p, w n ) (3) 
with p a given particle, X ∈ R D its position vector, V ∈ R D its velocity vector, and D the search space dimension. From equation 3, V τ +1 (p) is the velocity of p at the iteration τ + 1 of the optimization process expressed according to the functions F n , n = 1, ..., 3 representing different attractive forces affecting the particle motion and the parameters w n , n = 1, ..., 3 depicting weighting factors balancing the importance of each force. The first function represents the momentum behaviour expressed by forces attracting the particle to keep its current motion and has the form:

F m = w m V τ (p) (4) 
with w m the momentum weighting factor and V τ particle's current velocity.

The second function F c represents the cognitive behaviour depicting forces constraining the particle to consider its own experience by biasing its motion toward the personal best position denoted P best. It has the form:

F c = w c |rand 1 |(P best τ (p) -X τ (p)) ( 5 
)
where rand1 is a random variable uniformly distributed in the range [0, 1], w c is the cognitive weighting factor and X τ is the current position of the particle. The third function F s concerns the social behaviour where the particle considers the swarms experience by adjusting its motion according to the global best position denoted Gbest. It represents the best position found so far in the swarm, such that:

F s = w s |rand 2 |(Gbest τ -X τ (p)) (6) 
With rand2 is a random variable and w s is the social weighting factor. w c and w s are also known as acceleration coefficients. The velocity of each particle in the swarm is updated thanks to equation 3, which in turn is used to update the particle's position according to the following equation:

X τ +1 (p) = X τ (p) + V τ +1 (p) (7) 
In NDT-PSO, pose estimation problem is solved by encoding the geometric transformation T (translation (T x , T y ) and rotation θ) between two scans into a particle:

X(p) = T = (T x , T y , θ) (8) 
Let M k-1 and M k two successive scans at iterations k -1 and k. A 2D point q j ∈ M k can be represented in the coordinate frame of the scan M k-1 thanks to:

q j = T (q j , X) (9) 
such that:

q xj q yj = cos θ -sin θ sin θ cos θ q xj q yj + T x T y ( 10 
)
The particles represent possible solutions to the scan matching problem. The optimal solution should be selected with respect to the best matching between the two scans M k-1 and M k . Therefore, it is evaluated by summing the normal distributions P of all points q j given the transformation expressed by X(p). Therefore, the particles are optimized by maximizing the following objective function:

f (p) = N M j=1 P (q j ) (11) 
P (q j ) of each mapped point q j is determined by a simple lookup in the built map MAP k-1 . After attributing each scan point q j to its corresponding cell c, the measurement probability P of q j is computed thanks to:

P (q j ) = exp(-(q j -µ c ) t Ω c -1 (q j -µ c )/2) (12) 

C. NDT-PSO Algorithm

The overall process of NDT-PSO approach for a given iteration k is depicted in algorithm 1. Based on two successive scans M k-1 and M k and given a swarm with N p particles, NDT-PSO computes the geometric transformation T ran between M k-1 and M k and accordingly updates environment's global map GMAP. These parameters are respectively inputs and outputs of the algorithm. In the first step of the algorithm, the scan M k-1 is mapped given equations 1 and 2 (thanks to the function BUILD MAP). It results a local normal distributions based map denoted MAP k-1 (line # 1, algorithm 1), which is used to compute the transformation T ran. Next, the swarm is initialized for the first optimization process iteration (τ = 0). During this step, the whole particles are randomly initialized according to the function RANDOM INITIALIZATION, where each particle is defined by its X τ and V τ vectors. Based on X τ =0 , the personnel best P best τ is initialized and the set of the scan points M k is mapped according to the function MAPPING SCAN. This function proceeds mainly in two steps; (1) Determine the transformation of the points set q j ∈ M k into the coordinate frame of scan M k-1 according to equation 10 (line #37, algorithm 1). (2) Compute the normal distribution P of each mapped point q j according to equation 12 (line #38, algorithm 1). Based on P (q j ) of the whole scan, the objective function f τ for each particle is evaluated and consequently the global best particle Gbest τ is determined. Given P best τ and Gbest τ , X τ +1 and V τ +1 are updated (lines #13 and #17, algorithm 1). Therefore, the scan points q j ∈ M k are re-mapped according to X τ +1 (line #18, algorithm 1) and f τ +1 is computed based on updated parameters. Given the maximization criterion, P best τ +1 and Gbest τ +1 are computed. This process is repeated for a given iteration number iteration max . At the end, the best solution corresponding to Gbest is assigned to T ran, and correspondingly, GMAP is updated with M k , such that M k = {q j ∈ M k /q j = T (q j , T ran) ∧ T ran = Gbest}.

III. RESULTS

To demonstrate and validate the performances of NDT-PSO algorithm, it has been implemented and tested on an experimental platform in static and dynamic, indoor and outdoor environments. The implementation has been done under the operating system ROS1 (Robot Operating System) using C++ language. ROS Computation graph of the NDT-PSO algorithm is depicted in Fig. 1. Fig. 1: ROS Computation graph generated by rqt graph. ndt pso node communicates with /laser and /odom topics to get sensors data and with /pose and /map topics to publish robot position and constructed map.

A. Experimental platform

It is a standard car-like vehicle called Robucar, with two fixed rear wheels and two orientable front wheels (see Fig. 2). The Robucar is equipped with a laser range finder LMS511 placed in front of the robot, with an 80m maximum range and 190 • field of view.

B. NDT-PSO at work

NDT-PSO algorithm has been tested in two scenarios: [START_REF] Khairuddin | Review on simultaneous localization and mapping (slam)[END_REF] the CDTA-hall-scenario that shows NDT-PSO performances in indoor structured environment, and (2) the CDTA-urbanscenario, which is an outdoor unstructured environment. The swarm size is set to 70 particles, the maximum number of optimization process iterations is 70. The acceleration coefficients in equation 5 and 6 are defined w c = w s = 2 given refs. [START_REF] Shi | A modified particle swarm optimizer[END_REF], [START_REF] Kennedy | Particle swarm optimization[END_REF]. The particles are randomly initialized for each particle p=1 to N p do 13: Gbest τ +1 = X τ +1 (Gbest index ); //Transform q j into coordinate frame of the scan M k-1 using equation 10 37: q j = T (q j , X);

V τ +1 (p) = V τ (p) + w c |rand 1 |(P best τ (p) - X τ (p)) + w s |rand 2 |(Gbest τ -X τ (p)); 14: if |V τ +1 (p)| > V pmax then 15: V τ +1 (p) = V pmax ; 16: end if 17: X τ +1 (p) = X τ (p) + V τ +1 (p);

38:

Compute P (q j ); //The normal distribution of q j according to equation 12 39: end for 40: EndProcedure in a limited area around the previously estimated pose within a radius of 1m according to the cartesian coordinates and an angle of π/8 according to the orientation.

1) CDTA hall scenario: This dataset has been recorded in the CDTA hall scenario, in the presence of static objects of different natures (see Fig. 3a and Fig. 3b). The resulting map and robot trajectory are depicted in Fig. 3c. The map has been faithfully rebuilt and robot trajectory correctly estimated even in closing loop. 2) CDTA urban scenario: The second scenario has been carried out in an urban environment at CDTA represented in Fig. 4, in the presence of arbitrary shaped objects (ex. trees, shrubs, buildings, persons, etc.). Fig. 5 illustrates the resulting map and estimated trajectory for different robot paths. These experiments show the performance of NDT-PSO in an outdoor environment. Furthermore, with only 70 particles, Fig. 4: CDTA urban scenario. NDT-PSO can find the best particle while avoiding local minima even when closing loop (see Fig. 5 at the bottom). Moreover, in the case of Fig. 6, NDT-PSO has been tested when the robot is performing three loops while maintaining a constant steering angle. The resulting robot trajectories seem perfectly superposed.

In Fig. 7, NDT-PSO has been tested in a more challenging environment conditions to evaluate how it tackles moving objects with arbitrary trajectories. The experiments carry out in CDTA urban scenario in the presence of four pedestrians moving arbitrary in different directions. Objects movement appears clearly by the blue traces. Environment and robot's displacement are respectively correctly mapped and estimated, and moving objects does not affect the accuracy of the results.

The NDT-based representation has already been evaluated against other SLAM methods to demonstrate its performances, like in ref. [START_REF] Magnusson | Evaluation of 3D registration reliability and speed-A comparison of ICP and NDT[END_REF]. Furthermore, from an optimization perspective, PSO method is known for its fast convergence and its ability to find a global optimum [START_REF] Bouraine | Safe motion planning based on a new encoding technique for tree expansion using particle swarm optimization[END_REF], which justifies the above results and the effectiveness of NDT-PSO method.

C. Algorithm Performances

NDT-PSO algorithm is a function of some parameters: mainly the swarm size N p and the number of optimization process iteration iteration max . In the above experiments, these parameters were set to fixed values, however, to more understand their effects on NDT-PSO, the algorithm has been assessed accordingly. The tables I and II give respectively running times of NDT-PSO wrt N p and iteration max . From the obtained results, it can be stated that the computation time complexity grows linearly with N p and iteration max , mainly due to for loop line # 12 and while loop line # 11 of algorithm 1. These running times are encouraging. After many tests, it has been noted that a swarm of 70 particles and a process of 70 iterations are largely sufficient to have good results.

IV. CONCLUSIONS

In this paper, NDT-PSO a bio-inspired stochastic approach has been proposed to solve a scan matching based SLAM problem. Even though this issue has been largely addressed in literature, most proposed approaches lack fast convergence and the simplicity of the optimization algorithm. The primary contribution of this paper has been to propose a new approach to solve the optimization problem using PSO method. The solution is encoded as the best particle in the swarm representing the best transformation between two successive NDT maps. The obtained results demonstrate the performances of NDT-PSO in real situations in both TABLE I: Average running time of NDT-PSO wrt the number of particles in the swarm (N p ), for iteration max = 70 (tests carried out in Fig. 7). The resulting map and estimated positions remain accurate even in closing loop situations and scenarios crowded with moving objects. It has been also demonstrated that the algorithm converges rapidly and it is very suitable for real time applications. This work could be extended by comparing NDT-PSO algorithm with other SLAM methods to better show its performances, which is ongoing. Furthermore, this algorithm should be tested in very large scale environments for an intelligent transportation application.

Algorithm 1

 1 NDT-PSO process. Input: M k-1 (laser scan corresponding to previous iteration), M k (laser scan corresponding to current iteration), number of particles N p . Output: T ran geometric transformation between two scans (at k and k +1), GMAP. 1: MAP k-1 ← BUILD MAP(M k-1 ); //Map construction given equations 1 and 2 2: //Particles initialization (optimization iteration τ = 0) 3: for each particle p=1 to N p do 4: (X τ (p), V τ (p)) ← RANDOM INITIALIZATION(); 5: P best τ (p) = X τ (p);

6 :

 6 MAPPING SCAN(M k ,X τ (p)); 7: compute f τ (p); // the objective function according to equation 11 8: end for 9: Gbest index = argmax p=1,...,Np f τ (p); //index of the particle corresponding to the global best 10: Gbest τ = X τ (Gbest index ); 11: while τ < iteration max do 12:

18 :

 18 MAPPING SCAN(M k ,X τ +1 (p)); 19: compute f τ +1 (p); // the objective function according to equation 11 20: if f τ +1 (p) > f τ (p) then 21: P best τ +1 (p) = X τ +1 (p); //update personal best 22: if max p=1,...,Np f τ +1 (p) > max p=1,...,Np f τ (p) then 26: Gbest index = argmax p=1,...,Np f τ +1 (p);27:

  end while 30: T ran = Gbest τ +1 ; 31: GMAP ← UPDATE GLOBAL MAP(T ran,M k ); 32: return T ran,GMAP 33: 34: Procedure MAPPING SCAN(M k ,X) 35: for each 2D point q j ∈ M k do 36:

Fig. 2 :

 2 Fig. 2: Experimental platform Robucar.

Fig. 3 :

 3 Fig. 3: NDT-PSO at work in the CDTA hall scenario; (a) CDTA hall from different view angles. (b) CDTA hall plan (the red trajectory is generated by NDT-PSO). (c) NDT-PSO generated map and trajectory for 70 particles and 1m map resolution.

Fig. 5 :

 5 Fig. 5: NDT-PSO at work in the CDTA urban scenario for different situations (for 70 particles and 1m map resolution).

Fig. 6 :

 6 Fig. 6: NDT-PSO at work in a closing loop situation.

Fig. 7 :

 7 Fig. 7: NDT-PSO at work in the presence of moving objects in the CDTA urban scenario (see text).

TABLE II :

 II Average running time of NDT-PSO wrt the number of iterations of the optimization process (iteration max ) during one NDT-PSO iteration, (for N p = 70, tests carried out in Fig.7).

	Number of iterations (iterationmax)	Running time (s)
	10	0.0369800877
	20	0.0579088445
	30	0.0718727725
	40	0.0883877902
	50	0.1078476976
	60	0.1250863987
	70	0.1457493524
	80	0.1607982934
	90	0.1786244514
	100	0.1990917095
	indoor and outdoor environments, either static or dynamic.
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