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Abstract
In this article, we consider a modified Rosenzweig -MacArthur model in which we take into ac-
count a general variable disappearance rate of the predator, in addition to its natural constant death
rate. We show that the conditions of existence of a positive equilibrium are the same as for the
Rosenzweig -MacArthur model, but those of stability are not. We define an arc of the ascending
branch of the prey isocline out of which a positive equilibrium can be locally exponentially stable,
and the ends of which can correspond to Hopf bifurcations. We apply our geometrical interpreta-
tion to the Bazykin’s model for which the disappearance rate depends only on the predator density,
and to the Variable-Territory model for which the disappearance rate depends on both densities.
Theoretical predictions are illustrated by numerical simulations.

Keywords
Rosenzweig -MacArthur model; General disappearance rate; Bazykin’s model; Variable-territory
model.

I INTRODUCTION

The aim of this work is to extend the well-known results of the Rosenzweig -MacArthur model
(RMA) to the modified RMA model (MRMA) where a general disappearance term is added in
the the equation of the prey. What is notable with this modification that already appeared in the
literature for specific disappearance terms (see for example [2, 3, 5]), is that one can have one
or more positive attractive equilibria even on the ascending branch of the prey isocline. This
never occurs for the RMA model. Indeed, recall that the RMA model [4, 8] takes the form{

ẋ = rx
(
1− x

K

)
− axy

c+x
,

ẏ =
(
e ax
c+x

−m
)
y,

(1)

where x(t) and y(t) are the density of prey and predator species respectively, at time t and the
dot represents the derivative with respect of time : ẋ = dx

dt
, ẏ = dy

dt
. The parameters r, K, a, c,

e and m are all positive biological parameters. It is well known that the solutions of (1), with
non-negative initial conditions, are non-negative and bounded. Moreover, besides the boundary
equilibria E1 = (0, 0) and E2 = (K, 0) that always exist, the system (1) can have a positive
equilibrium E∗ = (x∗, y∗), where x∗ = x1 and y∗ = h(x∗), where x1 and h are given by

x1 =
mc

ea−m , h(x) := r
aK

(K − x)(c+ x). (2)

1

mailto:


The positive equilibrium E∗ exists if and only if 0 < x1 < K. Note that the curve y =
h(x), together with the semi axis x = 0, constitute the prey isocline and the vertical line x =
x1, together with the semi axis y = 0, constitute the predator isocline. Hence, E∗ is at the
intersection of the isoclines x = x1 and y = h(x), while E1 is at the intersection of the isoclines
x = 0 and y = 0 and E2 is at the intersection of the isoclines y = 0 and y = h(x). Finally,
we recall the main result on the stability of the equilibria : E1 is a saddle point, E2 is locally
exponentially stable (LES) if and only if x∗ > K, and it is a saddle point if x∗ < K. If
0 < x∗ < K, then E∗ exists and it is LES if and only if h′(x∗) < 0, i.e. x∗ > x̂, where

x̂ := K−c
2

(3)

is the abscissa of the maximum of the function h. Therefore, if E∗ lies in the ascending part
of the prey isocline y = h(x), then it is unstable. If it lies in the descending part of the prey
isocline y = h(x), then it is LES. Our contribution is mainly to define, for the MRMA model,
an arc of the ascending part of the prey isocline out of which eventual positive equilibria can
be asymptotically stable and to get a geometrical reading of the stability properties of such
equilibria. Further results will be developed in a forthcoming paper. The article is organized as
follows : in Section II, we make sure that the MRMA is biologically well-posed (Proposition1)
and we give the local stability properties of the equilibria (Theorem 2 and Proposition2). We
then apply our results for specific choices of d(x, y), by considering Bazykin’s and Variable-
Territory models in SectionIII. A conclusion is given in Section IV. Finally, we illustrate our
theoretical predictions with numerical simulations in Appendices A and B.

II MODIFIED ROSENZWEIG -MACARTHUR MODEL

Contrary to the system (1) where the mortality rate of predators m is considered as a constant,
we consider a prey-predator model in which, we take into account, in addition to the natural
mortality, the disappearance of predator caused by competition or intraspecific interaction of
the predators. The model is given by{

ẋ = rx
(
1− x

K

)
− axy

c+x
,

ẏ =
(
e ax
c+x

− d(x, y)−m
)
y,

(4)

with the assumptions

d(x, y) ≥ 0, d(x, 0) = 0, dy(x, y) ≥ 0, dx(x, y) ≤ 0. (5)

2.1 Positivity and boundedness of the solutions, isoclines and equilibria

The next result deals with the positiveness and the boundedness of the solutions of (4).

Proposition 1:
The solutions of (4) with nonnegative initial conditions are nonnegative and bounded.

Proof. The axes x = 0 and y = 0 being invariant for the model (4), the positive cone is
invariant. We put σ := x+ y

e
and we calculate the derivative

σ̇ = rx
(
1− x

K

)
− m+d(x,y)

e
y =

[
r
(
1− x

K

)
+m

]
x−mσ − d(x,y)

e
y.
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The maximum of
[
r
(
1− x

K

)
+m

]
x is M := (r+m)2K

4r
. Then, we obtain σ̇ +mσ ≤ M . Using

the comparison lemma, we can prove that

lim sup
t→+∞

σ(t) ≤M.

Therefore, x(t) and y(t) are uniformly bounded.

As for the RMA model, the prey isocline ẋ = 0 is the union of the semi axis x = 0 and the
curve y = h(x) where h is given in (2). For the MRMA model, the predator isocline ẏ = 0 is
the union of the semi axis y = 0 and the curve x = ψ(y) of equation

e aψ(y)
c+ψ(y)

− d(ψ(y), y)−m = 0. (6)

Using the implicit function theorem, we deduce that

ψ′(y) =
dy(ψ(y), y)(c+ ψ(y))2

eac− dx(ψ(y), y)(c+ ψ(y))2
(7)

From assumptions (5), ψ′(y) ≥ 0, ∀y ≥ 0. Therefore, ψ is a non-decreasing function. Replac-
ing y by 0 in (6) and using assumptions (5), we obtain that ψ(0) = x1, where x1 is given in (2).
Hence, ψ is a non-negative function such that

∀y ≥ 0, ψ(y) ≥ x1. (8)

Therefore, besides the boundary equilibria E1 = (0, 0) and E2 = (K, 0) that always exist, the
system (4) can have positive equilibria E∗ = (x∗, y∗) as an intersection of the curves y = h(x)
and x = ψ(y), that is x = x∗ is a solution of x = ψ(h(x)) and y∗ = h(x∗). The following theo-
rem gives indeed a necessary and sufficient condition for the existence of a positive equilibrium,
which is the same condition as for the RMA model.

Theorem 1:
Suppose that assumptions (5) are satisfied. A positive equilibriumE∗(x∗, y∗) of (4) exists if and
only if 0 < x1 < K where x1 = mc/(ea−m).

Proof. We have that h(x) > 0 if and only if 0 < x < K. According to equation (8), we
have ψ(h(x∗)) = x∗ ≥ x1 Then, for the existence of a positive equilibrium, it is necessary that
0 < x1 < K in which case x1 < x∗ < K . To show that such an x∗ exists in [x1, K), we can
apply the Intermediate Value Theorem to the continuous function A(x) := x − ψ(h(x)) : on
one hand, according to equation (8), we have A(x1) = x1 − ψ(h(x1)) ≤ 0. On the other hand,
A(K) = K − ψ(h(K)) = K − ψ(0) = K − x1 > 0.

Note that, if A(x1) = 0, then x∗ = x1. It is the case for RMA model. If dy ̸= 0, the predator
isocline x = ψ(y) can also be given as the graph of the function y = φ(x) which verifies

eax

c+ x
− d(x, φ(x))−m = 0. (9)
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Model d Predator isocline
RMA d(x, y) = 0 x = x1
Bazykin d(x, y) = αy φ(x) = 1

α
(ea−m)x−mc

c+x
, for x ≥ x1

V-T d(x, y) = αy
δ+x

φ(x) = δ+x
α

(ea−m)x−mc
c+x

, for x ≥ x1

Table 1: The predator isocline of RMA, Bazykin and V-T models, where x1 =
mc

ea−m .

2.2 Stability of equilibria

In the next theorem, we give the conditions of stability of the boundary and positive equilibria.

Theorem 2:
Suppose that assumptions (5) are satisfied. Then E1(0, 0) is a saddle point and E2(K, 0) is LES
if and only if x1 > K, and it is a saddle point if x1 < K. If a positive equilibrium E∗ exists and
dy ̸= 0, then E∗ is LES if and only if

h′(x∗) < φ(x∗) and H(x∗) < G(x∗), (10)

where h(x) is defined by equation (2), φ(x) is the solution of (9), and H(x) and G(x) are given
by

H(x) := ax
c+x

h′(x)
h(x)

= ax(K−c−2x)
(K−x)(c+x)2 , G(x) = dy(x, h(x)). (11)

For the RMA model, for which dy = 0, E∗ is LES if and only if h′(x∗) < 0, or equivalently,
x∗ > x̂, where x̂ is defined by (3).

Proof. The Jacobian matrix of (4) is given by

J (x, y) =

(
r
(
1− 2x

K

)
− ac

(c+x)2
y −ax

c+x(
eac

(c+x)2
− dx(x, y)

)
y eax

c+x
− d(x, y)−m− dy(x, y)y

)
.

For E1 = (0, 0), and according to (5), we obtain the Jacobian matrix

J (0, 0) =

(
r 0
0 −m

)
,

the eigenvalues of which are r and −m. Hence, E1 is a saddle point. According to (5), the
Jacobian matrix at E2 is given by

J (K, 0) =

(
−r −aK

c+x

0 eaK
c+K

−m

)
,

the eigenvalues of which are −r and eaK
c+K

−m. Hence, E2 is LES if and only if eaK
c+K

< m, i.e.
x1 > K, where x1 is given in (2). If x1 < K, then it is a saddle point. Since E∗(x∗, y∗) verifies

eax∗

c+ x∗
− d(x∗, y∗)−m = 0,

where y∗ = h(x∗), and h(x) is defined in (2), and noting that

r

(
1− 2x∗

K

)
− ac

(c+ x∗)2
h(x∗) = r

(
1− 2x∗

K

)
− cr

K(c+ x∗)
(K − x∗)

=
ax∗

c+ x∗

[ r

aK
(K − c− 2x∗)

]
=

ax∗

c+ x∗
h′(x∗),
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the Jacobian matrix at E∗ can be written

J (x∗, y∗) =

(
ax∗

c+x∗
h′(x∗) −ax∗

c+x∗(
eac

(c+x∗)2
− dx(x

∗, h(x∗))
)
h(x∗) −dy (x∗, h(x∗))h(x∗)

)
.

Therefore, the determinant is given by

detJ (x∗, y∗) = ax∗

c+x∗
h(x∗)

(
eac

(c+x∗)2
− dx (x

∗, h(x∗))− h′(x∗)dy (x
∗, h(x∗))

)
.

If d = 0 (the RMA model), then the determinant is detJ (x∗, y∗) = ax∗

c+x∗
h(x∗) eac

(c+x∗)2
, which is

always positive. If, in assumptions (5), dy ̸= 0, then the derivative with respect to x of equation
(9), satisfied by the predator isocline y = φ(x), gives

eac
(c+x)2

− dx (x, φ(x))− dy (x, φ(x))φ
′(x) = 0.

Since x∗ satisfies φ(x∗) = h(x∗), we have

φ′(x∗) =

eac
(c+x∗)2

− dx (x
∗, h(x∗))

dy (x∗, h(x∗))
.

Therefore, the determinant can be written

detJ (x∗, y∗) = ax∗

c+x∗
h(x∗)dy (x

∗, h(x∗)) (φ′(x∗)− h′(x∗)) .

From assumptions (5), detJ (x∗, y∗) > 0 if and only if φ′(x∗) > h′(x∗). The trace is given by

trJ (x∗, y∗) =
ax∗

c+ x∗
h′(x∗)− dy(x

∗, h(x∗))h(x∗) = h(x∗)(H(x∗)−G(x∗)),

where H(x) and G(x) are defined by (11). Consequently, trJ (x∗, y∗) < 0 if and only if
H(x∗) < G(x∗). Hence, if and only if the two conditions of (11) hold, then the eigenvalues
have negative real parts, henceE∗ is LES. For the RMA model, we haveG(x) = 0. This second
condition reduces to H(x∗) < 0, that is to say h′(x∗) < 0, or equivalently, x∗ > x̂, where x̂ is
defined by (3).

Let us denote by
A = {(x, h(x)), H(x) ≥ G(x)},

the subset of the ascending branch of the prey isocline y = h(x), such that if E∗ is in the
interior of A, then E∗ is unstable. Therefore, the positive equilibrium E∗ is LES if and only
if E∗ /∈ A and, in addition, the slope of h at E∗ is smaller than the slope of φ, which is
the condition h′(x∗) < φ′(x∗) in Theorem 2. As a consequence of Theorem 2 we obtain the
following geometrical description of the stability of a positive equilibrium :

Proposition 2:
Let E∗ be a positive equilibrium of (4).

• If E∗ /∈ A and in addition h′(x∗) < φ′(x∗), then E∗ is a stable focus or node.
• If E∗ is in the interior of A and in addition h′(x∗) < φ′(x∗), then E∗ is an unstable focus

or node.
• If h′(x∗) > φ′(x∗), then E∗ is a saddle point.

Proof. Let J be the Jacobian matrix at E∗. From the proof of Theorem 2 it is seen that the
condition h′(x∗) < φ′(x∗) is equivalent to det(J ) > 0, while the condition H(x∗) < G(x∗) is
equivalent to tr(J ) < 0.
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Figure 1: The graphs of the functions H and G for (a) Bazykin model : K = 5, r = 0.19, a = 0.6,
α = 0.43 and c = 0.3; (b) V-T model : K = 5, r = 0.19, a = 0.6, α = 0.27, c = 0.3 and δ = 0.25.

III SOME APPLICATIONS

We will restrict our attention to two cases which where considered in the literature (see Ta-
ble 1). The first one is Bazykin’s model [1, 3, 9] in which the regulation was introduced by
intraspecific mechanisms, that is a competition among predators for resources other than prey.
To do this, Bazykin subtracted a quantity αy, called a self-limitation term, from the predator
equation. The term 1/α can be considered as a constant carrying capacity of the predators, d is
depending only on the predator density and it is given by d(x, y) = αy, with α ≥ 0. The second
one is variable-territory model in which α in Bazykin’s model is made inversely proportional
to resource availability, that is α = b/x. The dynamics are described by the so-called variable-
territory model (V-T) [5–7] because it can be derived by assuming that the territory size changes
in response to food availability : the carrying capacity of the predator is now inversely propor-
tional to the density of the prey. Note that the V-T model in Table 1, where by/x is replaced by
by/(δ + x) (actually, we used the letter α instead of b) is a biologically justified modification
of the model of Turchin-Batzli [5] proposed by Jiang and Wang [7], to make limited the self-
limitation term of the predator by/(δ + x) when x → 0. In the Variable-Territory model (V-T),
d depends on both densities x and y, and it is given by d(x, y) = αy

δ+x
, with α ≥ 0 and δ > 0.

In Table 1, we also give the expression of the function φ for Bazykin’s and V-T models. For
Bazykin’s and V-T models, the equation H(x) = G(x) where H and G are defined by (11), can
have two positive real roots xL and xR in [0, x̂] (see Figure 1). Therefore, A is the closed arc

A = {(x, h(x)), xL ≤ x ≤ xR}.

Remark 1:
In Bazykin’s and V-T models, when α → 0, then xL → 0 and xR → x̂. Therefore, the stability
condition x /∈ [xL, xR] reduces to x > x̂, which is the condition of stability for the RMA model.

3.1 Applications to Bazykin’s model

Bazykin’s model is given by{
ẋ = rx

(
1− x

K

)
− axy

c+x
,

ẏ =
(
e ax
c+x

− αy −m
)
y,

(12)
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Figure 2: Hopf and Saddle-Node bifurcations in Bazykin model (12) with the parameter values of Fig-
ure 1, and e = 0.58. The curve y = h(x), in blue, and the curves y = φ(x), in green. Stable equilibria
are plotted in blue dots. Non-hyperbolic equilibria are plotted in black.The values of m correspond to
Hopf bifurcations for the cases (1),(2) and Saddle-Node bifurcations for cases (3),(4).

In Figure 2 we plot the prey and predator isoclines of system (12). Note that the prey isocline
y = h(x) does not depend on m, while the predator isocline y = φ(x) does. When the param-
eter m increases, different values of bifurcations are to be considered. If the predator isocline
passes through the point (xL, h(xL)) [resp. (xR, h(xR))], with m increasing, the positive equi-
librium can move from stable to unstable (resp. unstable to stable) equilibrium. This leads to the
appearance of a Poincaré-Andronov-Hopf bifurcation. Furthermore, Saddle-Node bifurcations
can be observed when the isoclines become tangent to each other. More precisely, we consider
m as a bifurcation parameter and we consider the bifurcation values ofm depicted on the figure.
These bifurcations values are obtained as follows:

1. The values xL and xR are obtained by solving the equation H(x) = α, with respect to
x. It is an algebraic equation of degree 3. We keep only its positive roots. We obtain
xL = 0.2 and xR ≈ 0.338.

2. The corresponding bifurcation valuesmL andmR are obtained by solving equationφ(xi) =
h(xi) , i = L,R, with respect to m. We obtain mL ≈ 0.074 and mR ≈ 0.103. Actually,
these bifurcation values correspond to Poincaré-Andronov-Hopf bifurcations.

3. The values xSN1 and xSN2 are obtained by solving the equation h′(x) = φ′(x), with respect
to x. Which leads to solving an algebraic equation of degree 3 given by

−27.00008721 + 20.90000000x+ 27.70833334x2 − 15.83333334x3 = 0.

We keep only its positive roots. We obtain xSN1 ≈ 2.11 and xSN2 ≈ 0.819.
4. The corresponding bifurcation values mSN

1 and mSN
2 are obtained by solving equation

φ(xSNi ) = h(xSNi ), i = 1, 2, with respect to m. We obtain mSN
1 ≈ 0.114 and mSN

2 ≈
0.127. Actually, these bifurcation values correspond to Saddle-Node bifurcations.

Using Proposition 2 we can make the following conclusions :
• If 0 ≤ m < mL or mR < m < mSN

1 or m > mSN
2 , then the system has a unique positive

equilibrium satisfying E∗ /∈ A and in addition φ′(x∗) > h′(x∗). Therefore, E∗ is LES.
Actually, it is a stable focus or node.
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• If mL < m < mR, then the system has a unique positive equilibrium E∗ which is in the
interior of A and in addition φ′(x∗) > h′(x∗). Therefore, E∗ is unstable. Actually, it is
an unstable focus or node which is surrounded by a stable limit.

• If mSN
1 < m < mSN

2 , then the system has three positive equilibria, one being unstable
and the two others being LES. Actually, the unstable equilibrium is a saddle whose stable
manifolds separate the positive cone in the basins of attraction of the stable equilibria.

We give in Appendix A some plots illustrating the above mentioned behaviors.

3.2 Application to V-T model

V-T model is given by
ẋ = rx

(
1− x

K

)
− axy

c+x
,

ẏ =

(
e ax
c+x

− α

δ + x
y −m

)
y,

(13)

In Figure 3 we plot the prey and predator isoclines of system (13). We consider m as a bi-
furcation parameter and we consider the bifurcation values of m depicted on the figure. These
bifurcations values are obtained as follows:

1. The values xL and xR are obtained by solving the equation H(x) = G(x), with respect
to x. It is an algebraic equation of degree 3. We keep only its positive roots. We obtain
xL ≈ 0.4 and xR ≈ 1.285.

2. The corresponding bifurcation valuesmL andmR are obtained by solving equationφ(xi) =
h(xi) , i = L,R, with respect to m. We obtain mL ≈ 0.114 and mR ≈ 0.216. Actually,
these bifurcation values correspond to Poincaré-Andronov-Hopf bifurcations.

Figure 3: Hopf bifurcation in VT model (13) with the parameter values of Figure 1, and e = 0.58. The
curve y = h(x), in blue, and the curves y = φ(x), in green. Non-hyperbolic equilibria are plotted in
black. The values of m correspond to Hopf bifurcations.

Using Proposition 2 we can make the following conclusions :
• If 0 ≤ m < mL or m > mR, then the system has a unique positive equilibrium satisfying
E∗ /∈ A and in addition φ′(x∗) > h′(x∗). Therefore, E∗ is LES. Actually, it is a stable
focus or node.

• If mL < m < mR, then the system has a unique positive equilibrium E∗ which is in the
interior of A and in addition φ′(x∗) > h′(x∗). Therefore, E∗ is unstable. Actually, it is
an unstable focus or node which is surrounded by a stable limit cycle.

We give in Appendix B some plots illustrating the above mentioned behaviors.
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IV CONCLUSION AND REFERENCES

We considered the modified RMA prey-predator model (4) obtained by adding to the natural
mortality m of the predator a non-constant disappearance rate d(x, y). We first showed the
positiveness and the boundedness of the solutions with non-negative initial conditions. In ad-
dition to the boundary equilibria E1(0, 0) and E2(K, 0) that always exist and for which the
stability conditions are as for the RMA model where d(x, y) = 0, we showed that the modified
model can have positive equilibria. The condition of existence of a positive equilibrium is the
same as for the RMA, that is x1 < K where x1 is given by (2). The main stability properties
are, when E∗(x∗, y∗) exists, that the boundary equilibria E1 and E2 are saddle points, and E∗

is LES if and only if inequalities (10) are verified (Theorem 2). Then, We defined a closed
subset A of the ascending branch of the prey isocline such that, if E∗ ∈ A, then E∗ is unsta-
ble. We gave a geometrical description of the stability of a positive equilibrium which mainly
says that E∗ is LES if and only if E∗ /∈ A and the slope at E∗ of the x-isocline y = h(x) is
smaller than the slope of the y-isocline y = φ(x). If the slope at E∗ of the x-isocline is larger
than the slope of the y-isocline E∗ is a saddle point. We applied then our study to two cases
which were considered in the literature : the Bazykin’s model for which the disappearance rate
d(x, y) := αy depends only on the predator density, and the variable territory model (V-T)
for which the disappearance rate d(x, y) := αy

δ+x
depends on both densities. We noticed that

the set A for Bazykin’s and V-T models is a closed arc with ends the points (xL, h(xL)) and
(xR, h(xR)) where 0 < xL < xR < x̂ := (K − c)/2. Since the prey isocline y = h(x) does
not depend on m, while the predator isocline y = φ(x) does, we could obtain in Figures 2 and
3 for Bazykin’s and V-T models respectively, and for increasing values of m, different values
of bifurcations, namely Poincaré-Andronov-Hopf bifurcations and Saddle-Node bifurcations.
Notice that one can have multiple positive equilibria and bistability. Using Theorem2, we could
give a description of the local properties of both models near the equilibria. We confirmed our
results by numerical simulations.

REFERENCES

Publications

[1] A. D. Bazykin. “Volterra’s system and the Michaelis-Menten equation”. In: Problems in
mathematical genetics. USSR Academy of Science, Novosibirsk, USSR (1974), pages 103–
142.

[2] M. Cavani and M. Farkas. “Bifurcations in a predator-prey model with memory and dif-
fusion II: turing bifurcation”. In: Acta Mathematica Hungarica 63.4 (1994), pages 375–
393.

[3] A. D. Bazykin. Nonlinear dynamics of interacting populations. World Scientific, 1998.
[4] M. Kot. Elements of mathematical ecology. Cambridge University Press, 2001.
[5] P. Turchin and G. O. Batzli. “Availability of food and the population dynamics of arvicol-

ine rodents”. In: Ecology 82.6 (2001), pages 1521–1534.
[6] S. Strohm and R. Tyson. “The effect of habitat fragmentation on cyclic population dynam-

ics: a numerical study”. In: Bulletin of mathematical biology 71.6 (2009), pages 1323–
1348.

[7] H. Jiang and L. Wang. “Analysis of Steady State for Variable-Territory Model with Lim-
ited Self-Limitation”. In: Acta Applicandae Mathematicae 148.1 (2017), pages 103–120.

9



[8] C. Lobry. The Consumer-Resource Relationship: Mathematical Modeling. Wiley - ISTE,
2018.

[9] S. Wang and H. Yu. “Stability and bifurcation analysis of the Bazykin’s predator-prey
ecosystem with Holling type II functional response”. In: Math. Biosci. Engin 18 (2021),
pages 7877–7918.

A NUMERICAL SIMULATIONS FOR BAZYKIN’S MODEL
We give in this section some plots illustrating our results. We consider the numerical values of the parameters used
in Section 3.1 and we plot the isoclines for typical values of m, see Figure 4. For m = 0.04 or m = 0.22, see
Figure 4(1,4), the system has a unique positive equilibrium E∗ satisfying the following properties: E∗ /∈ A (the
red arc of the prey isocline) and, in addition, at E∗ the slope of the predator isocline is larger than the slope of
the prey isocline. Therefore, according to Proposition 2, the equilibrium E∗ is LES. Actually it is a stable focus
for m = 0.04, see Figure 5(1) and a stable node for m = 0.221, see Figure 5(4). For m = 0.089, see Figure

Figure 4: Bazykin’s model with the parameter values of Figure 1, and e = 0.58. The curve y = h(x), in
blue, and the curves y = φ(x), in green. Stable [resp. unstable] equilibria are plotted in blue [resp. red]
dots. Saddle point is plotted in black dot.

4(2), the system has a unique positive equilibrium E∗ satisfying the following properties: E∗ is in the interior of
A and, in addition, at E∗ the slope of the predator isocline is larger than the slope of the prey isocline. Therefore,
according to Proposition 2, the equilibrium E∗ is unstable. Actually it is an unstable focus, surrounded by a stable
limit cycle as shown in Figure 5(2). For m = 0.119, see Figure 4(3), the system has three positive equilibria E∗

3 ,
E∗

4 and E∗
5 , satisfying the following properties: E∗

j /∈ A, for j = 3, 4, 5 and, in addition, at E∗
3 and E∗

5 , the slope
of the predator isocline is larger than the slope of the prey isocline, while at E∗

4 , the slope of the predator isocline
is smaller than the slope of the prey isocline. Therefore, according to Proposition 2, the equilibrium E∗

4 is a saddle
point, while E∗

3 and E∗
5 are LES. Actually E∗

3 is a stable focus and E∗
5 is a stable node, as shown in Figure 5(3).

The figure shows that the stable manifold Ws of E∗
4 separate the positive cone into the basins of attraction of E∗

3

and E∗
5 .

B NUMERICAL SIMULATIONS FOR V-T MODEL
We give in this section some plots illustrating our results. We consider the numerical values of the parameters used
in Section 3.2 and we plot the isoclines for typical values of m, see Figure 6. For m = 0.04 or m = 0.24, see
Figure 6(1,3), the system has a unique positive equilibrium E∗ satisfying the following properties: E∗ /∈ A (the
red arc of the prey isocline) and, in addition, at E∗ the slope of the predator isocline is larger than the slope of
the prey isocline. Therefore, according to Proposition 2, the equilibrium E∗ is LES. Actually it is a stable focus
as shown in Figures 7(1,3). For m = 0.089, see Figure 6(2), the system has a unique positive equilibrium E∗

satisfying the following properties: E∗ is in the interior of A and, in addition, at E∗ the slope of the predator
isocline is larger than the slope of the prey isocline. Therefore, according to Proposition 2, the equilibrium E∗ is
unstable. Actually it is an unstable focus, surrounded by a stable limit cycle as shown in Figure 7(2).
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Figure 5: Some phase portraits of Bazykin model with the parameter values of Figure 1 with e = 0.58.
(1) and (4) : E∗ of abscissa x∗ = 0.13 and x∗ = 4.14 respectively is LES. (2) : E∗ of abscissa x∗ = 0.26
is unstable, surrounded by a limit cycle. (3) : E∗

4 of abscissa x∗4 = 1.46 is a saddle point, while E∗
3 and

E∗
5 of abscissa x∗3 = 0.49 and x∗5 = 2.45 respectively are LES.

Figure 6: V-T model with the parameter values of Figure 1, and e = 0.58. The curve y = h(x), in blue,
and the curves y = φ(x), in green. Stable [resp. unstable] equilibrium is plotted in blue [resp. red] dot.
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Figure 7: Some phase portraits of V-T model with the parameter values of Figure 1 with e = 0.58. (1)
and (3) : E∗ of abscissa x∗ = 0.18 and x∗ = 1.74 respectively is LES. (2) : E∗ of abscissa x∗ = 1.04
is unstable, surrounded by a limit cycle.
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