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Abstract

Recently, independent groups of researchers have presented algorithms to compute a maximum match-
ing in Õ(f(k) ·(n+m)) time, for some computable function f , within the graphs where some clique-width
upper bound is at most k (e.g., tree-width, modular-width and P4-sparseness). However, to the best of
our knowledge, the existence of such algorithm within the graphs of bounded clique-width has remained
open until this paper. Indeed, we cannot even apply Courcelle’s theorem to this problem directly, because
a matching cannot be expressed in MSO1 logic.

Our first contribution is an almost linear-time algorithm to compute a maximum matching in any
bounded clique-width graph, being given a corresponding clique-width expression. We also present how
to compute the Edmonds-Gallai decomposition in almost linear time by using the same framework. For
that, we do apply Courcelle’s theorem but to the classic Tutte-Berge formula, that can easily be expressed
as a CMSO1 optimization problem. Doing so, we can compute the cardinality of a maximum matching,
but not the matching itself. To obtain with this approach a maximum matching, we need to combine
it with a recursive dissection scheme for bounded clique-width graphs and with a distributed version of
Courcelle’s theorem (Courcelle and Vanicat, DAM 2016) – of which we present here a slightly stronger
version than the standard one in the literature.

Finally, for the bipartite graphs of clique-width at most k, we present an alternative Õ(k2 · (n+m))-
time algorithm for the problem. The algorithm is randomized and it is based on a completely different
approach than above: combining various reductions to matching and flow problems on bounded tree-
width graphs with a very recent result on the parameterized complexity of linear programming (Dong et.
al., STOC’21). Our results for bounded clique-width graphs extend many prior works on the complexity
of Maximum Matching within cographs, distance-hereditary graphs, series-parallel graphs and other
subclasses.

∗Results of this paper were partially presented at the IPEC’21 conference [28].
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1 Introduction

For any undefined graph terminology, see [7, 24]. Throughout the paper, for any graph G = (V,E), let
n := |V | be its order (number of vertices) and m := |E| be its size (number of edges). Recall that a matching
in a graph is a set of pairwise end-disjoint edges. A maximum matching is one of maximum cardinality. The
matching number of G, denoted by ν(G), is the cardinality of a maximum matching of G. Matchings
(possibly, with additional constraints) are ubiquitous in scheduling, markets, resource allocation schemes
and even chemistry [73]. We refer to [47, 59] for a compendium of matching problems and their applications.
This paper is about the (parameterized) complexity of Maximum Matching in graphs. Unsurprisingly, a
lot of research in Computer Science has been devoted to this question. The first polynomial-time algorithm
for Maximum Matching was proposed by Edmonds [32]. Later, Micali and Vazirani presented the state-of-
the-art O(m

√
n)-time algorithm for this problem [64], that has remained unchallenged since forty years. We

study Maximum Matching in the context of “Fine-Grained Complexity in P” (see [77] for a survey of this
blossoming field). Specifically, can a maximum matching be computed in (almost) linear time? There are a
few reasons to believe that it is indeed the case. For instance, unlike for the diameter problem and other
fundamental graph problems, for which over the last decades, conditional superlinear lower bounds were
obtained, it is known [8] that proving such lower bound for Maximum Matching would falsify the so-called
Nondeterministic Strong Exponential Time Hypothesis (NSETH). Furthermore, computing a maximum
matching is related to Maximum Flow [76], that is sometimes conjectured to be solvable in linear time.

The idea of using tools and concepts from parameterized complexity in the context of polynomial-time
solvable problems has been scarce [51]. In part motivated by the recent “SETH-hardness” results, and
other conditional lower bounds for such problems [78], a richer theory of “FPT in P” has started to emerge
recently [1, 5, 34, 39, 48]. In its simplest form, the former is about the existence of O(f(k)·(n+m)1+o(1))-time
algorithms for various graph problems when some fixed parameter is at most k 1. As far as we are concerned
here, such running times were obtained in [13, 31, 30, 39, 48, 52, 53, 55, 63] for Maximum Matching, for
different parameterizations. For instance, for the graphs of tree-width at most k, Fomin et. al [39] presented
a randomized Õ(k4 · n)-time algorithm for computing a maximum matching 2. This was later improved by
Iwata et. al. [53], who designed a deterministic Õ(k2 · n)-time algorithm for that problem. – We recall the
definition of tree-width in Sec. 2.2. – Remarkably, the parameterized study of Maximum Matching has
led to the development of many nice techniques in this area, which brought Mertzios et. al. [63] to nickname
the problem the “drosophilia” of the study of the FPT algorithms in P.

Clique-width is one of the most studied graph parameters. It is a rough estimate of the closeness of a
graph to a cograph (a.k.a., P4-free graph). We refer to Sec. 2.1 for a formal definition. Note that unlike for
the tree-width, there exist dense graphs of bounded clique-width (e.g., the complete graphs and the complete
bipartite graphs). The applications of clique-width to NP-hard problems, including Courcelle’s theorem [17]
and some general algorithmic frameworks [33], are now rather well understood [36, 37, 38]. However, the
study of its applications to polynomial-time solvable problems is comparatively much more recent and, so
far, limited to cycle problems [5, 13] and distance problems [13, 20, 29, 56]. Parameterized almost linear-
time algorithms for Maximum Matching are known for the important subclasses of bounded tree-width
graphs [39, 53], graphs of bounded modular-width [13, 55], and some others [13, 30, 31]. However, as far as
we know, the complexity of this problem on bounded clique-width graphs has been open until this article.
Indeed we stress that, even allowing a super-polynomial dependency on the clique-width in the running time,
the existence of an almost linear-time (parameterized) algorithm for Maximum Matching does not follow
from Courcelle’s theorem, because a matching cannot be expressed in MSO1 logic. This is in sharp contrast
with bounded tree-width graphs, for which we can apply Courcelle’s theorem for the stronger MSO2 logic
(allowing quantification over subsets of edges), and so, in particular in order to express a matching [14].
– We refer to Sec. 3 for a reminder about MSO logic. – Furthermore if we consider the related problem
Maximum-Weight Matching, then it has been observed [55] that it is as hard on bounded clique-width

1More generally, the goal is, for some problem solvable in O(mq+o(1)) time on arbitrary m-edge graphs, to design an
O(f(k) ·mp+o(1))-time algorithm, for some p < q, within the class of graphs where some fixed parameter is at most k.

2The Õ() notation suppresses poly-logarithmic factors.
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weighted graphs as on general weighted graphs under O(n2)-time reductions. Again, this differs from the
case of bounded tree-width graphs, for which an Õ(k2n)-time algorithm also exists for this problem [53].

Beyond the study of the FPT algorithms in P, it also makes sense to study Maximum Matching on
restricted graph classes, both as a way to better understand the hard instances for this problem, and to
better model some of its real-life applications (see [49] for an example of the latter). In this respect, a
considerable amount of positive results have been proved [9, 23, 27, 41, 40, 49, 58, 62, 65, 79, 81, 80]. Many
such classes, starting from the cographs [19], are known to have bounded clique-width. Therefore, having at
hands an almost linear-time algorithm for Maximum Matching on bounded clique-width graphs, one can
unify and generalize many prior works in this area.

1.1 Our results

Recall that a graph has clique-width at most k if and only if it admits a k-expression [19]. Such a k-
expression can be computed in linear time on many interesting subclasses of bounded clique-width graphs:
ranging from cographs [19], switched cographs [11], distance-hereditary graphs [50], (q, q − 3)-graphs [61],
and graphs of either bounded tree-width [12], modular-width [19] or split-width [70]. Until recently, the
best-known approximation algorithms for clique-width on general graphs had a running-time in O(n3), that
is slower than the state-of-the-art algorithm for Maximum Matching [67]. However, this has been recently
improved to O(n2) for constant clique-width graphs [35].

Hereafter, we use the notation Õx1,x2,...,xt
(n +m) for a running time in Õ(f(x1, x2, . . . , xt) · (n +m)),

for some computable function f . The following theorem is our first main result in the paper:

Theorem 1. Given a graph G and a corresponding k-expression, one can compute a maximum matching
for G in deterministic Õk(n+m) time.

To the best of our knowledge, this is the first almost linear-time algorithm for Maximum Matching on
bounded clique-width graphs. The Õk() notation hides huge constants in k due to our use of Courcelle’s
theorem. Indeed, while we cannot express a matching in MSO1 logic, we can write a Counting MSO1

formula in order to evaluate the matching number (Theorem 5). For that, we use the well-known Tutte-
Berge formula [6]. This alone does not lead to an efficient computation of a maximum matching, but only
of its size. However, by carefully evaluating our formula for the matching number on various subgraphs,
obtained by removing specific vertex- and edge-subsets, one can compute a maximummatching incrementally.
A similar approach also works for computing the Edmonds-Gallai decomposition [32, 45, 46], which encodes
the structure of all the maximum matchings in a graph (Theorem 7). The main difficulty here is that the
number of subgraphs on which we need to evaluate our formula can be linear in the size of the graph. Thus,
applying Courcelle’s theorem to each subgraph separately would result in a quadratic running time. We
overcome this issue by using a distributed version of this theorem [21]. In doing so, after we computed the
matching number of a bounded clique-width graph G in linear time, it becomes possible to evaluate our
formula on any subgraph H in time roughly proportional to the number of basic operations needed to obtain
H from G.

It seems that improving the dependency on k in the running time will require new techniques. Our
second main result is that it can be done for bipartite graphs of bounded clique-width:

Theorem 2. Given a bipartite graph G and a corresponding k-expression, one can compute a maximum
matching for G in randomized Õ(k2 · (n+m)) time.

Let us sketch below the main lines of our approach toward proving Theorem 2. We first reduce Maximum
Matching on bounded clique-width graphs to a related problem on the graphs of bounded tree-width.
The reduction preserves the property for a graph to be bipartite. Its intuition goes as follows. Roughly,
graphs of bounded tree-width can be recursively disconnected by some small balanced vertex-separators. By
comparison, graphs of bounded clique-width can be recursively disconnected by some balanced edge-cuts of
small “neighbourhood diversity” (partitionable in a small number of complete joins) [16]. To reduce to the
bounded tree-width case, we propose a transformation of edge-cuts of small neighbourhood diversity into
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small vertex-separators (Sec. 5.1). The transformation forces us to deal with a more general problem than
Maximum Matching, sometimes called Maximum b-Matching and well-studied on its own [4, 43, 44,
60, 68, 69]. We thus exchange Maximum Matching for a more complex problem, but on a structurally
simpler graph class. Furthermore, because we restrict ourselves to bipartite graphs, we can solve Maximum
b-Matching as a linear program. To the matrix representation of any such linear program, one can associate
various graphs. Then, it becomes possible to define the tree-width of a linear program. In [39], Fomin et.
al. asked whether all linear programs of bounded tree-width could be solved in almost linear time. Very
recently, Dong et. al. gave a positive answer [26]. – This is where we need randomization. – We apply this
nice result to the problem Maximum b-Matching within bipartite graphs. Here, some final technicalities
arise due to the algorithm of Dong et. al. only outputting an approximate fractional b-matching whereas we
aim at computing an exact integral solution. This can be overcome by using the close connection between
Maximum Flow and Maximum b-Matching on bipartite graphs, along with a nice result from Madry to
apply rounding to a fractional flow [60].

1.2 Related work

There are several meta-theorems deduced from Courcelle’s theorem in the literature. Indeed, Courcelle’s
approach not only applies to decision problems, but also to counting [15] and optimization problems [17].
We actually use in our proof the optimization version of his theorem. In [18], Courcelle and Mosbah designed
a very general framework in order to evaluate some function over the satisfying set of a CMSO1 formula.
It is unclear whether we could express a maximum matching within their framework as the result of some
suitable evaluation over the certificates that satisfy the Tutte-Berge formula (at the very least, we cannot
do so by using the evaluation structures presented in [18, Sec. 4]). Applications to the design of distance-
labelling schemes were proposed in [21], and later refined in [20, 29] using alternative techniques. However,
insofar most applications of Courcelle’s theorem are about NP-hard problems. Indeed, Abboud et. al. [1]
observed that its use leads to huge dependencies on the parameter involved, that can often be sharpened by
preferring other techniques (their observation, on the other hand, also remains valid for NP-hard problems).
What we find intriguing in our case is, first, the nontrivial use we need to make of Courcelle’s theorem for a
polynomial-time solvable problem, and second, that we currently do not see any other way to obtain a quasi
linear-time algorithm for Maximum Matching on the bounded clique-width graphs. This is evidence, we
believe, that Courcelle’s theorem could help in expanding the nascent field of “FPT in P”.

The proof of our Theorem 1 also has several aspects that, we think, are equally intriguing. For one,
we avoid computing augmenting paths, and we do not need the Tutte matrix [74] either. Both concepts
are the cornerstone of almost all maximum matching algorithms in the literature. At the core of our
approach is a new algorithmic application of the Tutte-Berge formula. The latter also got used in [8],
but the algorithm in this related work was non-deterministic. Our repeated use of this formula in order
to compute a maximum matching is not unlike the celebrated result of Anari and Vazirani that reduces
the efficient parallel computation of such matching to the design of an oracle for a decision version of the
problem [3]. Nevertheless, both results have fairly different proofs.

About Theorem 2, we note that different reductions fromMaximum Matching toMaximum b-Matching
have already been considered for graphs of bounded modular-width [55] or bounded split-width [30], that
are subclasses of bounded clique-width graphs. However, from the algorithmic point of view, the instances of
Maximum b-Matching outputted by these former reductions are of bounded size, a much more restricted
case than bounded tree-width. To our best knowledge, the Maximum b-Matching problem has only been
solved in almost linear time on subclasses of graphs of tree-width at most two [31]. We left open the pa-
rameterized complexity of Maximum b-Matching within the graphs of bounded tree-width. For general
graphs, the so-called “Russian method” starts from the linear relaxation of this problem (written as an
integer program) and it repeatedly adds “blossom constraints” that are violated by the current solution until
it finds an optimal integral outcome [68]. These blossom constraints are deduced from the good characteri-
zation of the b-matching polytope by Edmonds and Pulleyblank [69]. It seems, however, that a super-linear
(but polynomial) number of linear programs needs to be solved on general graphs. See also Anstee [4] and
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Gabow [43] for alternative algorithms.

1.3 Organization of the paper

In Sec. 2, we introduce some basic notations and terminology, as well as the two graph parameters considered
in this article. Sec. 3 is devoted to Courcelle’s theorem for bounded clique-width graphs. We need a
distributed version of this theorem, for optimization functions, of which a proof by Courcelle and Vanicat
can be found in [21] but, unfortunately, for a more restricted setting than what we need. While it is not
excessively difficult to check that Courcelle and Vanicat’s proof indeed works in the broader setting that
is here needed, the proof is fairly long and it has several intermediate steps, which is why we found it
better to write it down almost completely. Then, in Sec. 4, we apply this result in order to compute the
matching number, a corresponding maximum matching, and the Edmonds-Gallai decomposition, within
bounded clique-width graphs. Sec. 5 is devoted to the proof of Theorem 2. We then conclude in Sec. 6.

2 Preliminaries

First we complete the basic graph terminology given in Sec. 1. By a graph, we mean a finite, simple,
unweighted undirected graph. Let G = (V,E) be such a graph. The (open) neighbourhood of a vertex v is
defined as NG(v) := {u ∈ V | uv ∈ E}. Its closed neighbourhood is defined as NG[v] := NG(v) ∪ {v}. Let
dG(v) := |NG(v)| be the degree of vertex v. Similarly, for a vertex-subset S, let NG(S) :=

⋃
v∈S NG(v) \ S

denote its (open) neighbourhood and letNG[S] := S∪NG(S) denote its closed neighbourhood. We sometimes
omit the subscript if the graph G is clear from the context.

2.1 Clique-width

A k-labeled graph is a graph G = (V,E) equipped with a labeling function ℓ : V → {1, 2, . . . , k}. A
k-expression is an algebraic expression where the four allowed operations are:

• i(v): we add a new isolated vertex with label ℓ(v) = i;

• G1 ⊕G2: we make the disjoint union of two k-labeled graphs;

• ηi,j : for some distinct labels i and j, we add an edge uv for each pair (u, v) of a vertex u of label i and
a vertex v of label j. Doing so, we create a join (complete bipartite subgraph) whose respective sides
are the subset of vertices of label i and the subset of vertices of label j.

• ρi→j : for some distinct labels i and j, for all vertices v s.t. ℓ(v) = i, we set ℓ(v) = j.

The generated graph is the one obtained from the k-expression by ignoring all the labels. The clique-width
of a graph G, denoted by cw(G), is the least k such that it is the graph generated by some k-expression [19].

It is useful to see a k-expression as a rooted tree. Namely, the leaves of this tree are labeled by the operations
i(v) for vertex-creation. The internal nodes are labeled by the other operations, with the degree of each such
node being the arity of the corresponding operation: 1 for the join operations and the relabeling operations,
and 2 for the disjoint union operations. See Fig. 1 for an example. We call this tree representation the parse
tree of the k-expression.

The size of a k-expression is its number of operations (= number of nodes in its parse tree). Throughout
the remainder of the paper, we assume each given k-expression for a graph to be of linear size O(n +m).
Note that it is always the case if we restrict ourselves to a subclass where a k-expression can be computed in
linear time, that is anyway the most relevant case for which our results in this paper could be applied. More
generally, any k-expression can be transformed into an equivalent k-expression of size O(n +m) [42]. This
transformation can be done in time O(L) where L denotes the size of the input k-expression (see Lemma 7
in the paper). In [17], the authors remarked that any k-expression of size L can be transformed in Ok(L)
time into an equivalent k-expression of size Ok(n). However, they left unspecified the dependency on k, both
in the runtime of this transformation and in the size of its output.
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η1,2

⊕

2(d)ρ2→3

η1,2

⊕

1(c)ρ1→3

η1,2

⊕

1(a) 2(b)

Figure 1: The parse tree of some 3-expression of P4.

2.2 Tree-width

A tree decomposition (T,X ) of G = (V,E) is a pair consisting of a tree T and of a family X = (Xt)t∈V (T ) of
subsets of V indexed by the nodes of T and satisfying:

•
⋃
t∈V (T )Xt = V ;

• for any edge e = {u, v} ∈ E, there exists t ∈ V (T ) such that u, v ∈ Xt;

• for any v ∈ V , the set of nodes {t ∈ V (T ) | v ∈ Xt} induces a subtree Tv of T .

The sets Xt are called the bags of the decomposition. The width of a tree decomposition is the size of a
largest bag minus one. Finally, the tree-width of a graph G, denoted by tw(G), is the least possible width
over its tree decompositions. We only use tree-width in Sec. 5.

3 Courcelle’s theorem

We refer to [15] for a thorough treatment of graph logics and their algorithmic applications. Recall that in
monadic second-order logic (for short, MSO logic), we are given first-order variables x (written in lower-
case), and set variables X (written in upper-case). We allow atomic formulas of the form x ∈ X, expressing
the membership of x to a set X. The counting MSO (for short, CMSO) further allows atomic formulas
of the form Cardp,q(X), expressing that |X| ≡ p (mod q) and sometimes called counting predicates. – We
here assume p and q to be fixed constants, but it should be noted that in the general case, the complexity of
CMSO model checking also depends on the values of p and q. – The CMSO logic is stronger than MSO
logic: for instance, there is no MSO formula expressing that a set has even cardinality [15]. In Sec. 4, we
will need the counting predicates of CMSO logic in order to express the Tutte-Berge formula. Before that,
we need to define CMSO optimization functions.

Let φ be some CMSO formula whose set of free variables is arbitrarily split in two disjoint subsets of
respective sizes r and s. Let also a1, a2, . . . , as be fixed integers. Let Z1, Z2, . . . , Zr be fixed subsets of
the domain of the first-order variables. We define ψ(Z1, Z2, . . . , Zr) as the minimum value

∑s
i=1 ai · |Xi|

amongst all subsets X1, X2, . . . , Xs such that φ(Z1, Z2, . . . , Zr, X1, X2, . . . , Xs) is true. Then, ψ is a CMSO
optimization function of arity r. We define the size of ψ as |ψ| = r+ s (a.k.a., as the arity of the underlying
CMSO formula φ).

To a c-labelled graph G = (V,E, ℓ), we can associate the relational structure ⟨V, {adj, lab1, lab2, . . . , labc}⟩
where the vertex-set V is the domain of first-order variables, the binary operator adj : V ×V → {0, 1} asserts
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whether two vertices are adjacent in G and, for each i, labi : V → {0, 1} asserts whether the label of a given
vertex equals i. The (C)MSO1 logic on graphs is the above (C)MSO logic restricted to such structures.
We define CMSO1 optimization functions in the exact same way. There is a more general (C)MSO2 logic,
where we also allow variables to represent edges, but it is not discussed here. Finally, define the underlying
graph of G as the graph obtained from G by removing all its labels.

The following Theorem 3 should not be considered as completely new. Indeed, it was first proved by
Courcelle and Vanicat [21], but only forMSO1 whereas we prove it here for CMSO1 logic. Another difference
between the following Theorem 3 and the original result of Courcelle and Vanicat is that, in [21], the authors
restricted their study to optimization functions where all but one free variables must be fixed (with our
notations, the latter corresponds to the case s = 1). Still, their proof also applies to the more general case
presented below. We note that a proof of Theorem 3 could also be deduced from the heavy machinery
from [15]. Our presentation marginally differs from these previous works, while it avoids using explicitly
some logic concepts such as MSO transductions.

Theorem 3. Let ψ be a CMSO1 optimization function on c-labelled graphs, for some fixed constant c, and
of arity r. For every c-labelled graph G of clique-width at most k, if a k-expression is given for the underlying
graph of G, then after a pre-processing in Õk,|ψ|(n +m) time, for every vertex-subsets Z1, Z2, . . . , Zr of G,

we can compute the value ψ(Z1, Z2, . . . , Zr) in Õk,|ψ|

(∑r
j=1 |Zj |

)
time.

In order to prove Theorem 3, roughly, we rewrite a CMSO1 formula on a c-labelled graph as a longer
CMSO formula on the parse tree of its clique-width expression. Then, we make this parse tree of logarithmic
depth, using a modified centroid decomposition, updating the CMSO formula along the way. We end up
designing a dynamic programming procedure on this parse tree, using prior work of Doner [25] and Thatcher
and Wright [72] on tree automata.

Proof of Theorem 3. We start from the given k-expression, which we transform into a kc-expression whose
output is the c-labelled graph G. For that, roughly, we encode in the label of each vertex its former label
in the original k-expression and its final label in G. See [17, Lemma 30]. Consider the parse tree T of the
resulting expression. Let ψ be defined by a CMSO1 formula φ of arity r + s and by integers a1, a2, . . . , as.

As an intermediate step toward proving the theorem, we now define a term as a node-labelled binary tree
where the labels of the leaves are taken from some finite set of constants C and the labels of the internal nodes
are taken from some some finite set F of binary functions. To each term T ′, we can associate a relational
structure ⟨V (T ′), {left, right} ∪ {labα | α ∈ F ∪C}⟩ and define CMSO formulas. Here, the node-set V (T ′)
is the domain of first-order variables, left : V (T ′) × V (T ′) → {0, 1} asserts whether the first given node is
the left child of the second node, right : V (T ′)× V (T ′) → {0, 1} does the same for the right child relation,
and finally, for each α ∈ F ∪ C, labα : V (T ′) → {0, 1} asserts whether the label of a given node equals α.
In general, a parse tree T is not a term, because it is not a binary tree. Indeed, nodes labelled by either a
relabelling or join operation have arity equal to one. However, to each such node, one may simply attach a
new leaf with a special label equal to 0. We call T ′ the resulting term.

Claim 1. Consider the structure associated to T ′. The following properties can be expressed by a MSO
formula for this structure (whose length depends on k and c):

1. whether two given vertices of G are adjacent;

2. whether a given vertex of G has label i, for any i.

Proof. We first define child(x, y) := left(x, y)∨ right(x, y) as a shorthand to determine whether x is a child
of node y in T ′. Then, we define a MSO formula desc(x, y) to determine whether x is a descendant of y:

desc(x, y) :=∃P (x ∈ P ∧ y ∈ P ∧ ∀z ∈ P (

z ̸= x⇐⇒ ∃z′ ∈ P (child(z′, z)) ∧ z ̸= y ⇐⇒ ∃z′′ ∈ P (child(z, z′′))))
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where P represents the path from x to y. We also define leaf(x) := ¬(∃z(child(z, x))) and root(x) :=
¬(∃z(child(x, z))) to determine whether a node x is a leaf or the root of T ′, respectively. Now, let v be
a node of T ′. It is a vertex of G if it satisfies the MSO formula vertex(v) := leaf(v) ∧ ¬lab0(v). Fix an
ancestor x of v. It represents a kc-subexpression. We can determine whether, in the subgraph output by
this subexpression, vertex v has label j, by keeping track in some subset of nodes X of all the relabelling
operations which involve vertex v. Note that all such operations label nodes of T ′ on the path from v to x.
Let ordered(X) := ∀y, y′ ∈ X(desc(y, y′) ∨ desc(y′, y)) to determine whether all nodes in X lie on a path
from a leaf to the root. Let. also anc(X,x) = ∀z ∈ X(desc(z, x)) to determine whether x is an ancestor of
all nodes in X. We will need to compare every two “consecutive” operations stored in X. For that, let us
define the formula:

succ(z, z′, X) :=z ̸= z′ ∧ desc(z, z′) ∧ ∀z′′ ∈ X(

(z′′ ̸= z ∧ z′′ ̸= z′) =⇒ (¬desc(z, z′′) ∨ ¬desc(z′′, z′)))

If X is a subset of nodes on the path from a leaf to the root, then it associates to a node z its closest ancestor
node z′ in X.

Let relabin(z, i) :=
∨k
j=1 labρi→j (z) be satisfied if, for some j, all vertices with label i are assigned label

j (we say that a relabelling operation for label i occurs at node z). In the same way, let relabout(z, j) :=(∨k
i=1 labρi→j

(z)
)
∨ labj(z) be satisfied if either we create a new vertex with label j or, for some i, all vertices

with label i are assigned label j. Informally speaking, we use relabin(z, i) (resp., relabout(z, j)) in order to
keep track of the label of vertex v before (resp., after) each relabelling operation; the initial creation of vertex
v is abusively considered the same as a relabelling operation.

The MSO formula:

no− relab(z, z′, i) := ∀y((desc(z, y) ∧ desc(y, z′) ∧ y ̸= z′) =⇒ ¬relabin(y, i))

asserts that there is no relabelling operation for label i that occurs from node z (included) to z′ (excluded)
in T ′. Let

next(z, z′) :=

k∨
i=1

(relabout(z, i) ∧ no− relabel(z, z′, i) ∧ relabin(z′, i))

to check whether at z some more vertices get assigned label i (as a result of either the creation of a new
vertex, or a relabelling operation) and z′ is the next relabelling operation for i after z. Informally speaking,
in our final formula we use next(z, z′) as a way to check whether z, z′ are two consecutive changes of label
for vertex v. Finally, let

final(z, x, j) := relabout(z, j) ∧ (z = x ∨ (no− relab(z, x, j) ∧ ¬relabin(x, j)))

to check that the label of vertex v stays unchanged from z. We are now ready to check the label of v in the
graph outputted by the subexpression:

label(v, x, j) := ∃X(v ∈ X ∧ ordered(X) ∧ anc(X,x)
∧ ∀z ∈ X(∃z′(z′ ∈ X ∧ succ(z, z′, X)) =⇒ next(z, z′)

∧ ̸ ∃z′(z′ ∈ X ∧ succ(z, z′, X)) =⇒ final(z, x, j))).

Equipped with the above formula, we can decide whether v has label i in G using the formula labG(v, i) :=
∃x(root(x) ∧ label(v, x, i)). Furthermore, we can also determine whether two vertices u and v are adjacent
in G by using the formula:

adjG(u, v) :=
∨

1≤i,j≤k

(∃x(label(v, x, i) ∧ label(u, x, j) ∧ labηi,j (x))).

⋄
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Doing so, we may now regard the CMSO1 formula φ for G as a CMSO formula φ′ for the structure
associated to T ′. Let ψ′ be the CMSO optimization function defined from φ′ and a1, a2, . . . , as in the
natural way. We stress that φ′ and ψ′ express properties of T ′ and of subsets of leaves of T ′: indeed, there
is a one-to-one mapping between the vertices of G and the leaves of T ′ with positive label. Furthermore, we
have |ψ′| = Ok,|ψ|(1).

In order to prove the theorem, it suffices to prove the following. Let ψ′ be any fixed CMSO optimization
function which expresses properties of terms and of subsets of their leaves. For any term T ′ with N nodes,
we can associate Õ|ψ′|(1)-size labels L(v) to each leaf-node v in such a way that, for each subsets of leaves
Z1, Z2, . . . , Zr, it becomes possible to compute ψ′(Z1, Z2, . . . , Zr) in O(

∑r
i=1

∑
v∈Zi

|L(v)|) time. Moreover,

all these labels can be pre-computed in Õ|ψ′|(N) time.
For that, a nice intermediate result of Courcelle and Vanicat [21, Sec. 4] is that we can always assume

the term to have logarithmic depth. Specifically, add one more binary operator ◦ to the label-set of internal
nodes, and one more constant Id to the label-set of leaves. Let T ′ be a term with N nodes and at most one
leaf whose label equals Id (note that initially, there is no such a leaf, and so, the property holds). Choose a
node w such that:

• If there is no leaf whose label equals Id, then w is a centroid of T (i.e., a node whose removal leaves
subtrees of order at most N/2). Such a node always exists by a classic theorem from Jordan [54].

• Otherwise, let u be the unique leaf labelled Id. We choose w as the deepest ancestor of u with more
than N/2 descendants.

In both cases, we can compute the node w in O(N) time by dynamic programming. Let T ′
1 be obtained

from T ′ by removing all strict descendants of w and relabelling w with the new constant Id. Let. also T
′
2, T

′
3

be the left and right subtrees of w. We create a new term whose root is labelled by the new operator ◦,
whose left subtree is T ′

1 and whose right subtree is the subtree rooted at w (i.e., with respective right-left
and right-right subtrees T ′

2 and T ′
3). Furthermore, we may repeat this process on T ′

1 and T ′
2, T

′
3 until all

the gotten subtrees have constant-depth. We may see the overall construction as a special case of centroid
decomposition. Let T ′′ be the resulting term.

Claim 2. The number of recursive steps is in O(logN). In particular, the depth of T ′′ is in O(logN) and
we can compute this term from T ′ in Õ(N) time.

Proof. By the choice of w, the subtree T ′
1 has order at most N/2, and so does at least one of T ′

2, T
′
3. The

remaining subtree T ′
i , i ∈ {2, 3} also has order at most N/2 except maybe if we fall in the second case when

there exists a leaf labelled Id and this leaf is not contained in T ′
i . Then, at the next recursive step, T ′

i falls
in the first case, and therefore, after at most two steps, all subtrees considered have order at most N/2. ⋄

Observe that there is a one-to-one mapping between the nodes of T ′ and the nodes of T ′′ with any other
label than Id, ◦. This mapping also preserves the labels and the property for a node to be a leaf. Moreover,

Claim 3. Consider the structure associated to T ′′. Given two nodes, the property for the first one to be the
left child of the second one in T ′ (resp., its right child) can be expressed by a constant-size MSO formula for
this structure.

Proof. For clarity, we shall write lab′α, left
′, right′ the operations in the structure associated to T ′, and

lab′′β , left
′′, right′′ the operations in the structure associated to T ′′.

Consider a leaf y whose label is Id (representing one step of the centroid decomposition). There is a
corresponding internal node x, labelled ◦. This node x is an ancestor of y, however after we are done with
our centroid decomposition, there may also exist intermediate nodes labelled ◦ on the xy-path. In order
to find x, we first need to observe that at any step of our recursive construction, if there exists a unique
leaf y labelled Id then, in the new term we create at this step (with root labelled ◦), this leaf y always
ends up in the right subtree. As a result, x is the closest ancestor to y labelled ◦ such that y is in its
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left subtree. Next, we characterize the relation between x and y with a MSO formula. As before, let
child(z, z′) := left′′(z, z′) ∨ right′′(z, z′). Let also

path(z, P, z′) :=(z, z′ ∈ P ) ∧ ∀u ∈ P (

(u ̸= z ⇐⇒ ∃u′ ∈ P (child(u′, u)))

∧ (u ̸= z′ ⇐⇒ ∃u′ ∈ P (child(u, u′))))

denote the property for P to be a path from z to one of its ancestors z′. We characterize the relation between
x and y by the following MSO formula:

cut(x, y) :=lab◦(x) ∧ labId(y) ∧ ∃P (path(y, P, x) ∧ ∀z ∈ P (

z = x⇐⇒ (lab◦(z) ∧ ∃z′ ∈ P (left′′(z′, z)))))

where the final line of the formula enforces x to be the only node of P with label ◦ and its left child also in
P . The original node of T ′ that is replaced by y is always the right child of x in T ′′.

Now, let u, v be nodes of T ′. By symmetry, we only need to express the property whether u is the left
child of v in T ′. If u is the left child of v in T ′′ then it is also the case in T ′. Otherwise, assume the left
child of v in T ′′ to be labelled either ◦ or Id (if it is not the case then, u cannot be the left child of v in T ′).
If the left child of v is a leaf y labelled Id then, let x be the corresponding internal node labelled ◦; in order
for u to be the left child of v in T ′, it must be the right child of x in T ′′. Finally, we consider the case when
the left child of v is an internal node x labelled ◦. Observe that at each step of our recursive construction,
the root of the term considered is put in the left subtree. Therefore, u is the left child of v in T ′ if and only
if it is reached from x by always going left until the first node whose label does not equal ◦. Consider the
following formula in order to relate the root x of some term in T ′′, whenever x is labeled ◦, to the root u of
the corresponding term in T ′:

root′(u, x) := ∃P (path(u, P, x) ∧ ∀z ∈ P (

(z ̸= x⇐⇒ ∃z′ ∈ P (left′′(z, z′)))

∧ (z ̸= u⇐⇒ lab◦(z)))).

We can express whether u is the left child of v in T ′ as follows:

left′(u, v) := left′′(u, v)

∨ ∃x, y(left′′(y, v) ∧ cut(x, y) ∧ right′′(u, x))
∨ ∃x(left′′(x, v) ∧ root′(u, x)).

⋄

It follows from the above claim that any CMSO formula on the structure associated to T ′ can be trans-
formed into an equivalent CMSO formula on the structure associated to T ′′, with constant-size overhead.
Thus, from now on, we assume without loss of generality (w.l.o.g). the depth of T ′ to be in O(logN).

Let φ′ be a MSO formula with r + s free variables, expressing properties of terms and subsets of their
leaves. A celebrated result from Doner [25] and Thatcher and Wright [72] is that for every fixed φ′, for every
term T ′ and leaf-subsets Z1, Z2, . . . , Zr+s, we can decide whether φ′(Z1, Z2, . . . , Zr+s) holds true in time
linear in the input. – Formally, these prior works only apply to terms, and not to terms and subsets of their
leaves. However, as observed by Courcelle and Vanicat [21], we may multiply the number of labels by 2r+s in
order to encode, for each leaf, its belonging to some subset Zi. – This result also holds for CMSO formulas
because, for terms and more generally for bounded-degree forests, CMSO has the same expressive power as
MSO [15, Lemma 5.27 and Proposition 5.30]. We apply this result to the formula φ′ corresponding to our
CMSO optimization function ψ′ on terms. Recall that |ψ′| = Ok,|ψ|(1), where ψ is a CMSO1 optimization
function on c-labelled graphs.

The result of Doner, Thatcher and Wright is achieved through the construction of a finite tree automaton
Aφ′ , of which the formal definition can be found, e.g., in [15, Definition 3.46]. Suffice it to say for our purpose
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that Aφ′ is a finite-state machine which, given T ′, Z1, Z2, . . . , Zr+s as input, assigns a state to each node
of T ′ using bottom-up dynamic programming. Specifically, the state of a node is determined according to
transition rules, in function of its label and of the states of its children. We say that Aφ′ accepts the input
if the state of the root is from a pre-defined set of so-called accepting states.

Note that on any input to Aφ′ , since the state of each node is computed bottom-up, it only depends on
the leaves in its rooted subtree. We denote by Fx the leaves in the subtree rooted at a node x. Then, for every
node x of T ′ and state q of Aφ′ , let M(x, q) minimize

∑s
i=1 ai|Xi| amongst all subsets X1, X2, . . . , Xs ⊆ Fx

such that, being given T ′, ∅, ∅, . . . , ∅, X1, X2, . . . , Xs as input, the state assigned to node x is q (i.e., we first
assume Z1 = Z2 = . . . = Zr = ∅ and we restrict the other sets to Fx). If x is a leaf then, each Xi is either
empty or reduced to {x}, and therefore, we are left testing 2s = O|ψ′|(1) possibilities. Otherwise, let ℓ be the
label of node x and let y, z be its children; then, by linearity, M(x, q) is the minimum of M(y, q1)+M(z, q2)
amongst all transitions (q1, q2, ℓ) → q. Overall, since there are only O|ψ′|(1) states q to consider at each
node, the whole dynamic programming can be done in O|ψ′|(N) time, where N is the number of nodes.

To each leaf v, we assign a label L(v) that contains: the automaton Aφ′ , the path Pv from v to the
root in T ′, and finally, for each x ∈ Pv \ v, all the values M(y, q) for its unique child not in Pv. Since
the depth of T ′ is assumed to be O(logN), |L(v)| = Õ|ψ′|(1). Let now Z1, Z2, . . . , Zr be arbitrary fixed
subsets. In order to compute ψ′(Z1, Z2, . . . , Zr), the same as above we could compute the minimal values
MZ(x, q) for each node x and state q, then keep the minimum such value when x is the root and q is an
accepting state. However, that would require O|ψ′|(N) time. To do that faster, let T ′

Z be the smallest
subtree that contains the root of T ′ and whose leaves are exactly the nodes in Z =

⋃r
j=1 Zj . Clearly,

|V (T ′
Z)| ≤

∑
v∈Z |L(v)| ≤ Õ|ψ′|(

∑r
j=1 |Zj |). Furthermore, for every subtree of T ′ \ T ′

Z , we stored the values
M(y, q) for its root y in at least one label L(v), for some v ∈ Z. Note also that M(y, q) =MZ(y, q) because
there is no leaf from Z in its rooted subtree. Hence, using these labels, we can compute the values MZ(x, q)
for each state q and for each node x of T ′

Z , including the root, by dynamic programming on T ′
Z . It takes

O|ψ′|(|V (T ′
Z)|) = O|ψ′|(

∑r
j=1

∑
v∈Zj

|L(v)|) = Õ|ψ′|(
∑r
j=1 |Zj |) time.

As a particular case of the above Theorem 3 (for r = 0), we retrieve the optimization version of Courcelle’s
theorem for bounded clique-width graphs (see [17]). In this special case, the runtime can be improved to
linear time because we needn’t compute a modified centroid decomposition. Namely:

Theorem 4. Let φ be a CMSO1 formula on c-labelled graphs, for some fixed constant c, and with s free
variables. Let also a1, a2, . . . , as be fixed integers. For every c-labelled graph G of clique-width at most k,
if a k-expression is given for the underlying graph of G, then in Ok,|φ|(n +m) time, one can compute the
minimum value

∑s
i=1 ai · |Xi| amongst all vertex-subsets X1, X2, . . . , Xs such that φ(X1, X2, . . . , Xs) is true.

4 Algorithms: the general case

Our main result in this section (Theorem 1) is proved in Sec. 4.3. In Sec. 4.1 we first compute the matching
number, a key step toward the final proof of Theorem 1. Sec. 4.2 is devoted to computing the Edmonds-Gallai
decomposition, and it is a gentle introduction to the techniques we also use in Sec. 4.3.

4.1 Size of a maximum matching

We explain in this section how to compute the matching number of bounded clique-width graphs. For that,
we need a classic result from Matching theory:

Lemma 1 (Tutte-Berge formula [6, 7]). For any graph G = (V,E), we have:

ν(G) = min
U⊆V

1

2
(|V |+ |U | − odd(G \ U))

where odd(G \ U) denotes the number of connected components of odd size of G \ U .
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Our main insight below is that evaluating the Tutte-Berge formula can be written as a CMSO1 opti-
mization problem. We prove it next:

Theorem 5. For any graph G = (V,E) of clique-width at most k, if a k-expression is given then, we can
compute ν(G) in Ok(n+m) time.

Proof. By Theorem 4, it suffices to prove that the Tutte-Berge formula (see Lemma 1) can be written as
a CMSO1 optimization problem. For that, let us first define adj(x, y, U) := adj(x, y) ∧ x /∈ U ∧ y /∈ U in
order to suppress all edges incident to a given set U . The following formula can be used to test whether two
vertices are in the same connected component of G \ U , for a given set U : connected(x, y, U) := ∀X((x ∈
X ∧ y /∈ X) =⇒ ∃x′, y′(x′ ∈ X ∧ y′ /∈ X ∧ adj(x′, y′, U))). Then, we can relate a vertex to its connected
component of G \ U as follows: comp(x,X,U) := ∀y(y ∈ X ⇐⇒ connected(x, y, U)). We are now ready to
define our formula for computing ν(G). It has two free variables.

TutteBerge(U,W ) :=∀x ∈W (x /∈ U ∧ ∃X(comp(x,X,U) ∧ Card1,2(X)))

∧ ∀x, y ∈W (x = y ∨ ¬connected(x, y, U)).

This above formula expresses that all vertices of W are in pairwise different odd components of G \ U . The
first line ensures that every vertex of W is in an odd component of G \U . The second line ensures that two
distinct vertices of W are in different components of G \U . If we set a1 = 1, a2 = −1, the objective becomes
to minimize |U |− |W |. Therefore, we get as solution δ = minU⊆V (|U | − odd(G \ U)). By Lemma 1, we have
ν(G) = 1

2 (n+ δ).

We stress that by using Courcelle’s optimization theorem, an optimal certificate U for the Tutte-Berge
formula could also be computed. However, this approach does not lead to an efficient computation of a
maximum matching. For all that, the CMSO1 formula in this above Theorem 5 is the cornerstone of all the
remainder of Sec. 4.

4.2 Edmonds-Gallai decomposition

We continue with a known structural result about maximum matchings in a graph. Recall that a graph is
hypomatchable if the removal of any one vertex results in a graph with a perfect matching.

Theorem 6 (Edmonds-Gallai [32, 45, 46]). Let G = (V,E) be a graph, and let A ⊆ V be the set of all vertices
v so that there is a maximum matching of G that does not cover v. Set B = NG(A) and C = V \ (A ∪ B).
Then:

• Every odd component H of G \B is hypomatchable and it has V (H) ⊆ A;

• Every even component H of G \B has a perfect matching and it has V (H) ⊆ C;

• For every non-empty X ⊆ B, the set N(X) contains vertices in > |X| odd components of G \B.

The partition (A,B,C) is called the Edmonds-Gallai decomposition of G.

In [10], the author proposes a randomized O(nω)-time algorithm for computing the Edmonds-Gallai
decomposition of an n-vertex graph, where ω < 2.37286 [2] denotes the exponent of square matrix multi-
plication. We improve this result to deterministic almost linear-time for all classes of bounded clique-width
graphs (under the standard assumption in the field that a corresponding clique-width expression is given in
the input):

Theorem 7. For any graph G = (V,E) of clique-width at most k, if a k-expression is given then, we can
compute its Edmonds-Gallai decomposition in Õk(n+m) time.
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Proof. If we are given the set A of all vertices left exposed by at least one maximum matching then, by
Theorem 6, the sets B and C can be computed in additional O(n+m) time. Recall (see Theorem 5) that there
exists a CMSO1 formula TutteBerge(U,W ) to express that all vertices of W are in pairwise different odd
components of G\U . Let EdmondsGallai(X,U,W ) := TutteBerge(U ∪X,W ). It is also a CMSO1 formula
since the union of two subsets can be easily expressed inMSO [15]. Then, for anyX, let ψ(X) be the problem
of minimizing |U | − |W | among all the subsets U,W such that EdmondsGallai(X,U,W ) is true. Observe
that ψ is a CMSO1 optimization function. We apply Theorem 3 to ψ. Then, we claim that v ∈ A if and only
if ψ({v}) = 2ν(G)+1−n. Indeed, by construction we have ψ({v}) = minU⊆V \{v}(|U |−odd(G\ ({v}∪U))),

and therefore by Lemma 1, ν(G \ {v}) = 1
2 (n− 1 + ψ({v})). Then:

v ∈ A⇐⇒ν(G) = ν(G \ {v}) ⇐⇒ ν(G) =
1

2
(n− 1 + ψ({v}))

⇐⇒2ν(G) = n− 1 + ψ({v}) ⇐⇒ ψ({v}) = 2ν(G) + 1− n.

Computing ν(G) can be done in Ok(n + m) time (Theorem 5). Computing ψ({v}) takes Õk(1) time per
vertex v up to an Õk(n+m)-time pre-processing (Theorem 3). As a result, we can compute the set A, and
so, the Edmonds-Gallai decomposition, in Õk(n+m) time.

4.3 Computation of a maximum matching

Let us first recall our main result in this section:

Theorem 1. Given a graph G and a corresponding k-expression, one can compute a maximum matching
for G in deterministic Õk(n+m) time.

Let us sketch our strategy to prove this above result. Given a graph G = (V,E), we first recall that an
edge-cut is, for some non-empty proper subset A, the set of all edges between A and V \ A. It is balanced
if we further have max{|A|, |V \ A|} ≤ 2n/3. Roughly, we compute a balanced edge-cut for G, we compute
a subset of edges of the cut to be included in some maximum matching of G, then we recurse on subgraphs
of G[A] and G[V \A] separately.

Computing a balanced edge-cut

The computation of a balanced edge-cut in Õ(k · (n + m)) time follows from prior works [16, 29]. We
need to introduce some additional terminology. A width-k partition tree is the parse tree of a k-expression
where we iteratively contracted all internal nodes of degree two. Such trees have a purely combinatorial
characterization, that can be found in [16]. A representation graph is a compact encoding of a partition
tree (i.e., in O(kn) space if the width of the partition tree is at most k). Roughly, for every node y in
the partition tree, we add in the representation graph one new vertex for every non-empty label class in the
labeled subgraph Gy that corresponds to its subtree. For every child z of y and for every labels i and j, we
add an arc from (y, j) to (z, i) if and only if all vertices of label i in Gz are of label j in Gy.

Lemma 2 ([16]). There is an algorithm that transforms a k-expression into the representation graph of a
width-k partition tree in O(k · (n+m)) time.

For a graph G = (V,E), let (U,W = V \ U) be a cut. We call its left side U an ℓ-module if it can be ℓ-
partitioned into U1, U2, . . . , Uℓ such that, for each 1 ≤ i ≤ ℓ and ui, u

′
i ∈ Ui, we have NG(ui)\U = NG(u

′
i)\U .

Note in particular that there is a join between Ui and NG(Ui). Finally, the neighbourhood diversity of a cut
(U,W ) is the least ℓ such that U is an ℓ-module. An easy observation (see [29, Lemma 2]) is that for every
node y in a width-k partition tree of G, the vertex-subset V (Gy) is an ℓ-module where ℓ ≤ k is the number
of non-empty label classes in Gy. Based on this observation and the standard computation of a centroid
node in a tree, an algorithm is proposed in the proof of [29, Theorem 2] in order to compute a balanced
cut of neighbourhood diversity at most k. In a nutshell, for some centroid node c of the partition tree this
algorithm starts from the non-empty label classes of Gc, as vertices in the representation graph. Then, it

13



computes the intersection of each label class with all leaves in the subtrees rooted at some children nodes of
c. For that, it is sufficient to traverse the arcs in the representation graph until we reach all possible sinks.
We summarize this above discussion in the following lemma.

Lemma 3 ([29]). Let G be a graph, with some representation graph of a width-k partition tree. One can
compute in O(k · n) time a cut (U,W ) s.t. max{|U |, |W |} ≤ 2n/3, and the representation graphs of some
width-k partition trees for the subgraphs G[U ] and G[W ]. Furthermore, U is an ℓ-module of G, for some
ℓ ≤ k, and one can also compute in O(k · n) time a corresponding ℓ-partition U1, U2, . . . , Uℓ.

We reuse this above Lemma 3 also in Sec. 5.1. Note that a weaker version could also be deduced from [21,
Lemma 3], but at the price of a higher (exponential) dependency on the clique-width in both the construction
time and the neighbourhood diversity of the output cut.

Handling of a join

An important property for the cut computed using Lemma 3 is that it can be edge-partitioned into at most
k joins. We handle each join separately. For that, both Lemma 4 and Lemma 5 below apply Theorem 3
(distributed Courcelle’s theorem).

Lemma 4. Let X,Y be the two sides of a join in a graph G = (V,E), where |X| ≤ |Y | and cw(G) ≤ k. If
a k-expression is given, then in Õk(n+m) time, we can compute an inclusion-wise minimal subset X ′ ⊆ X
such that, in some maximum matching of G:

1. every vertex of X ′ is matched to some vertex of Y ;

2. no vertex of X \X ′ is matched to a vertex of Y .

Proof. The idea is similar to Theorem 7 but, instead of removing subsets of vertices, we simulate the removal
of some edges of the join. While we cannot express a subset of edges in CMSO1 logic, such removal can
be expressed in MSO1 if we add vertex-labels. Specifically, let GY = (V,E, ℓ) be the 2-labelled graph such
that: ℓ(y) = 1 for every y ∈ Y ; and ℓ(v) = 2 for every v ∈ V \ Y . Through the formula

adj(u, v, Z) := adj(u, v) ∧ (u /∈ Z ∨ ¬lab1(v)) ∧ (v /∈ Z ∨ ¬lab1(u))

we ignore all edges between a given subset Z and Y . Take the formula TutteBerge(U,W ) of Theorem 5
and, for some new free variable Z, replace all occurences of adj(u, v) in this formula by adj(u, v, Z). Doing
so, we get a new CMSO1 formula φ(Z,U,W ). Let ψ(Z) minimize |U | − |W | among all subsets U,W such
that φ(Z,U,W ) is true. If we denote E(Z, Y ) the set of edges between Z and Y then, by Lemma 1, we have
ν(G \ E(Z, Y )) = 1

2 (n+ ψ(Z)).
We start from Z := ∅ and we consider all vertices x ∈ X sequentially. We add x in Z if and only if

ν(G) = 1
2 (n+ψ(Z ∪{x})). Finally, after we are done scanning X, we claim that we can choose X ′ = X \Z.

Indeed, by construction Z is an inclusion-wise maximal subset of X such that ν(G) = ν(G \ E(Z, Y )).
Consider a maximum matching M with no edge between Z and Y . By maximality of Z, all the vertices of
X ′ needs to be matched to some vertex of Y , thus proving the claim. Overall, we need to compute ψ(Z) for
|X| different subsets Z, each of cardinality at most |X|. By Theorem 3, we can do all these computations
in time Õk(n +m + |X|2) = Õk(n +m + |X∥Y |) = Õk(n +m), where the last two equalities follow from
|X| ≤ |Y | and the fact there is a join between X and Y .

Lemma 5. Let X,Y be the two sides of a join in a graph G = (V,E), where |X| ≤ |Y | and cw(G) ≤ k. We
are given a subset X ′ ⊆ X as stated in Lemma 4. If a k-expression is given then, in Õk(n +m) time, we
can compute the intersection of the edges of the join with some maximum matching of G.

Proof. Let G′ = (V,E, ℓ) be the 4-labelled graph such that: ℓ(x) = 1 for every x ∈ X ′; ℓ(u) = 2 for every
u ∈ X \X ′; ℓ(y) = 3 for every y ∈ Y ; ℓ(v) = 4 for every v ∈ V \ (X ∪ Y ). Consider the following formula:

adj(u, v, Z) := adj(u, v)

∧ (lab2(u) =⇒ ¬lab3(v)) ∧ (lab2(v) =⇒ ¬lab3(u))
∧ (u ∈ Z =⇒ lab1(v)) ∧ (v ∈ Z =⇒ lab1(u)).
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The second line excludes all edges between Y and X \X ′. The third line restricts to X ′ the neighbourhoods
of the vertices in a given subset Z. As for the previous Lemma 4, we take the formula TutteBerge(U,W )
of Theorem 5 and, for some new free variable Z, we replace all occurences of adj(u, v) in this formula by
adj(u, v, Z). Doing so, we get a new CMSO1 formula φ(Z,U,W ). Let ψ(Z) minimize |U | − |W | among all
subsets U,W such that φ(Z,U,W ) is true.

We start from Z = ∅ and we consider each vertex y ∈ Y sequentially until we get |Z| = |X ′|. We add y into
Z if and only if we have ν(G) = 1

2 (n+ψ(Z ∪{y})). Finally, we output any perfect matching between X ′ and
Z. Before proving correctness of the algorithm, let us discuss its time complexity. Computing ν(G) can be
done in Ok(n+m) time by Theorem 5. We also need to evaluate ψ(Z) for up to |Y | different subsets Z, each
having size at most |X ′| ≤ |X|. By Theorem 3, we can do that in total time Õk(n+m+ |X∥Y |) = Õk(n+m),
where the last equality follows from the fact there is a join between X and Y .

To prove correctness, let Z ⊆ Y be of cardinality ≤ |X ′|. We claim that, if ν(G) = 1
2 (n + ψ(Z)), then

there exists a maximum matching of G where all the vertices of Z are matched to some vertices of X ′. To
see that, observe first that by Lemma 1, 1

2 (n+ψ(Z)) is the cardinality of a maximum matching in the graph
HZ : obtained from G by removing all edges between Y and X \ X ′ and all edges between Z and V \ X ′.
Let M be a maximum matching of HZ . Since ν(HZ) = ν(G), it is also a maximum matching of G. Assume
that in M , there is a z ∈ Z not matched to a vertex of X ′. Then, z is left exposed by M (i.e., because
NHZ

(z) ⊆ X ′ by construction). By the pigeonhole principle, there exists a x ∈ X ′ that is not matched in M
to any vertex of Z. We remove from M any edge incident to x, which we replace by xz. The claim follows
by repeating this process for all z ∈ Z until each such vertex is matched to some vertex of X ′.

Note that a Z as above for which we have ν(G) = 1
2 (n+ ψ(Z)) always exists, namely, we can set Z = ∅.

Indeed, by Lemma 4 we have ν(G) = ν(H∅). Assume now the set Z to be inclusion-wise maximal and suppose
for the sake of contradiction |Z| < |X ′| (i.e., our algorithm would stay blocked). Let M be a maximum
matching of HZ with all vertices of Z being matched to some vertices of X ′. Since HZ is a subgraph of H∅
and ν(HZ) = ν(G) = ν(H∅), M is also a maximum matching of both H∅ and G. By minimality of X ′ (see
Lemma 4) the vertices of X ′ must be matched to some vertices of Y in any maximum matching of H∅, and
so, in M . Let Z ′ ⊆ Y, Z ∩ Z ′ = ∅ such that the vertices of Y that are matched in M to the vertices of X ′

are exactly Z ∪ Z ′. We get ν(HZ∪Z′) = ν(H∅) = ν(G), thus contradicting the maximality of Z.
Overall, we may assume |Z| = |X ′|. Since there is a join between Z and X ′, any perfect matching

between Z and X ′ is included in a maximum matching M of HZ , and so, of both G and H∅. Recall that all
edges between Y and X \X ′ got removed in H∅. As a result, the intersection of M with the join is a perfect
matching between Z and X ′.

We stress that if we apply Lemma 4 and Lemma 5 to two different joins X1, Y1 and X2, Y2, then doing
so we may compute their respective intersections with two different maximum matchings of the graph.
Therefore, we need to remove from the graph the end-vertices of all edges in the intersection between the
join X1, Y1 considered and some maximum matching before we can process another join X2, Y2 of the graph.
However, this is still not enough in order to ensure the compatibility of multiple applications of Lemma 4
and Lemma 5. The reason is that there may exist a maximum matching with an even larger intersection
with the join X1, Y1. Indeed, the subset X ′

1 of Lemma 4 is only inclusion-wise minimal. Hence, if we now
apply Lemma 4 and Lemma 5 to another join X2, Y2, then doing so we may compute the intersection of the
latter with some maximum matching with an even larger intersection with X1, Y1 than the one we previously
computed. Our approach in order to prevent such complications from happening consists in removing all
edges from the join X1, Y1. The resulting subgraph is not induced, but it still has bounded clique-width (see
Lemma 6 below for a proof).

Updating the k-expression

Finally, once we computed from a join a subset of edges to be added into a maximum matching, all other
edges of the join can be removed from the graph (and in fact they must be removed, as we discussed it
above). We must also remove all the end-vertices of the edges included into the matching. Doing so, we
need the following two lemmas in order to update the k-expression of the graph considered.
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Lemma 6. Let G = (V,E) be a graph, let (U,W ) be a cut of G, and let U ′ ⊆ U . If cw(G) ≤ k then the
graph H, obtained from G by removing all edges between U ′ and W ′ := N(U ′)∩W , has clique-width at most
3k. Furthermore, we can compute a 3k-expression of H from a k-expression of G in O(n+m) time.

Proof. Fix a k-expression of G. We replace all operations in it as follows:

• Creation of a vertex v with label i: we assign to vertex v the label i if v ∈W , the label i+ k if v ∈ U ′,
and the label i+ 2k otherwise.

• Disjoint union: unchanged.

• Relabelling ρi→j : we perform three consecutive relabelling operations, namely, ρi→j , ρi+k→j+k and
ρi+2k→j+2k.

• Addition of a join ηi,j : we add 7 different joins, namely, ηi,j , ηi,j+2k, ηi+k,j+k, ηi+k,j+2k, ηi+2k,j ,
ηi+2k,j+k, and ηi+2k,j+2k. Since we excluded from this above list the joins ηi,j+k and ηi+k,j , we do not
add any edge between the subsets U ′ and W .

Overall, we just need to scan the k-expression once and replacing each of its operations by at most seven
new operations, and so, the running time is linear in its size.

Lemma 7. Let G = (V,E) be a graph and let H = (X,EX) be an induced subgraph of G. If a k-expression
of G is given, then in O(n+m) time, we can compute a k-expression of H of size O(|X|+ |EX |).

Proof. We present a transformation of any k-expression of G into a k-expression of H of size at most
2|X|+ |EX |. The runtime of the transformation is shown to be in O(L) if the k-expression of G has size L.
Recall that a k-expression of size L = O(n +m) always exists and that we assume to be given one for our
algorithms. Therefore, this aforementioned transformation will prove the lemma.

Let us call a k-expression irredundant if for any join operation ηi,j in it, there was previously no edge
between the vertices labelled i and the vertices labelled j. Being given a k-expression of size L, we can
compute an irredundant k-expression in O(L) time [19]. Thus, from now on, we assume to be given an
irredundant k-expression of G of size O(L). We transform the parse tree T of this irredundant k-expression
of G into the parse tree T ′ of an irredundant k-expression of H. For that, we remove some nodes with at
most one child from T . Note that, in what follows, whenever we remove such a node that is neither a leaf
nor the root, we implicitly reconnect its unique child to its father.

The algorithm works in two phases, that we describe next. During the first phase of the transformation,
we perform a post-order traversal. For every operation y, considered as a node of T , let p(y) denote its
post-order number. Let also s(y) denote the size of its rooted subtree. Before we start the traversal we
precompute the values p(y) and s(y), for every operation y, in total O(L) time. Furthermore, as we traverse
the tree we store some vertices in X in k different stacks, according to their respective labels. In what
follows, a vertex v is identified with the operation i(v) of creating this vertex. We keep the vertices in the
stacks totally ordered with respect to their respective post-order numbers. In particular at any moment
during the traversal, for every 1 ≤ i ≤ k, the top entry of the ith stack is the vertex in X of current label i
with maximum post-order number. Let us now describe how to process every operation y:

1. Case y = i(v) for some i. We remove the node if v /∈ X. Otherwise, we push vertex v in the ith stack.

2. Case y = ⊕. We remove the node if it has at most one child, or equivalently if at least one of the
subgraphs G1, G2 of which we take the disjoint union does not contain a vertex of X.

3. Case y = ηi,j for some distinct i and j. If either the ith stack or the jth stack is empty, then we
remove the node. Otherwise, let vi and vj denote the respective top entries of the ith and the jth

stacks. We remove the node if and only if at least one of vi, vj is not in the subtree rooted at y. It
can be checked in constant time by verifying whether p(y) − s(y) + 1 ≤ p(vi) ≤ p(y), resp. whether
p(y) − s(y) + 1 ≤ p(vj) ≤ p(y). Indeed, recall that nodes in the subtree rooted at y are post-ordered
consecutively.
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4. Case y = ρi→j for some distinct i and j. If either the ith stack is empty or its top entry is not in the
subtree rooted at y, then we remove the node. If either the jth stack is empty or its top entry is not
in the subtree rooted at y, then we mark this node. Indeed, such an operation is useless because it
is just a local permutation of the labels i and j. However in order to remove this operation we may
need to rewrite several other operations, and therefore we postpone its removal to the next phase of
the algorithm. If we do not remove y (that also includes the sub-case when we mark this operation),
then we pop the respective top entries of the ith stack and (if it exists) the jth stack, pushing back in
the jth stack the vertex with maximum post-order number. Then, we iteratively pop vertices from the
ith stack until either the former is empty or its top entry is not in the subtree rooted at y.

By taking as our potential function the cumulative sizes of all stacks, we can observe that we can process
every operation in amortized constant time. Therefore, the total runtime is in O(L).

During the second phase of the transformation, we perform a DFS traversal in order to remove the marked
nodes. We further need to rewrite some unmarked operations, that is done depending on some permutation
σ over the labels which we dynamically update during the traversal. Initially, σ is the identity function. We
store a k-size array that map each label i to σ(i). Let us now describe how to process every node y during
the traversal:

1. Case y is unmarked. If y = ⊕, then we leave this node unchanged. However, if y = i(v) for some label
i and some v ∈ X, then we rewrite the operation as i′(v), where i′ = σ(i). Similarly, if y = ηi,j (resp.,
y = ρi→j) for some distinct i and j, then we rewrite the operation as ησ(i),σ(j) (resp., as ρσ(i)→σ(j)).
Note that we only need to rewrite an unmarked node at most once, namely, at the first time it is visited
during the DFS traversal.

2. Case y is marked. Let y = ρi→j for some distinct i and j, and let z denote its unique child. Recall
that we marked y because there is no vertex of label j in Hz, where Hz denotes the labelled subgraph
output by the k-sub-expression whose subtree rooted at z is the parse tree. In order to suppress this
operation, it suffices to switch the labels i and j for every operation in the subtree rooted at z. This
is done in two steps. If we visit node y for the first time, then we actualize the permutation σ into τ
so that: τ(i) = σ(j), τ(j) = σ(i). Then, we can process the subtree rooted at y. If we visit the node
for the last time, then we go back from τ to σ, and then we can delete this node.

The runtime of this second phase, and so the runtime of the whole algorithm, is in O(L).

It remains to prove that indeed, the output k-expression of H has size at most 2|X| + |EX |. We first
observe that it is an irredundant k-expression ofH because it is constructed from an irredundant k-expression
of G and we remove useless join operations. Then, let T ′ denote in what follows its parse tree. Recall that
for each node y of T ′, we denote by Hy the labelled subgraph output by the k-sub-expression whose subtree
rooted at y is the parse tree. We define Φ(y) := |V (Hy)|+ |E(Hy)|+ n⊕(y)− |ℓ(Hy)| where n⊕(y) denotes
the number of disjoint union operations in the subtree rooted at y and ℓ(Hy) is the set of labels assigned
to the vertices of Hy. Let C(y) be the set of children of y (of cardinality at most two). We have that
Φ(y) >

∑
z∈C(y) Φ(z) (otherwise, the k-expression would not be irredundant, or some more operations could

be discarded). In particular, if r is the root of T ′, we have that Φ(r) is an upper bound on the number of
nodes. Since for any y we have 0 ≤ Φ(y) ≤ 2|X|+|EX | (where the upper bound also follows from the fact that
the k-expression is irredundant), the total number of nodes in T ′ is at most 2|X|+ |EX | = O(|X|+ |EX |).

Divide-and-conquer algorithm

We are now ready to prove the main result in this section:

Proof of Theorem 1. Compute from the k-expression of G some width-k partition tree (Lemma 2) and then,
from the latter, some balanced cut (U,W ) as in Lemma 3. It takes O(k · (n+m)) time. For some partition
U1, U2, . . . , Uℓ of U , for some ℓ ≤ k, the edges of the cut are partitioned into ℓ joins, with respective sides Ui
and Wi = N(Ui) ∩W for every i (we allow the side Wi to be empty, that may happen for at most one i).
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We consider these ℓ joins sequentially, from i = 1 to i = ℓ. At each step i, we are given a subgraph
Gi of G such that cw(Gi) ≤ 3k and a corresponding 3k-expression is given (initially, G1 := G). We apply
Lemmas 4 and 5 in order to compute the intersection of a maximum matching of Gi with the join with sides
Ui,Wi. It takes Õk(n +m) time. Denote Fi ⊆ Ui ×Wi the set of edges in this intersection, and let V (Fi)
be the set of vertices incident to an edge of Fi. We obtain Gi+1 from Gi by removing the vertices in V (Fi)
and then removing all remaining edges between Ui \ V (Fi) and Wi \ V (Fi).

Let Mi :=
⋃i
j=1 Fj be the matching constructed so far, and let V (Mi) be the set of vertices incident to

it. Let also Xi :=
⋃i
j=1 Uj . By induction, the union of Mi with a maximum matching of Gi+1 is a maximum

matching of G. Also by induction, Gi+1 is obtained from G\V (Mi) by removing all edges between Xi\V (Mi)
andW \V (Mi). Therefore, we can apply Lemma 7 (for X = V \V (Mi)) then Lemma 6 (for U ′ = Xi\V (Mi))
to compute a 3k-expression of Gi+1. It takes O(n+m) time. Note that since we always apply Lemma 6 to
G, and not to the Gi’s, there is no blow-up of the clique-width value, i.e., the clique-width of any Gi is at
most 3k.

Since all edges between U and W eventually got removed, we are left with computing a maximum
matching in G[U \ V (Mℓ)] and in G[W \ V (Mℓ)] respectively. Apply Lemma 7 to compute k-expressions for
both subgraphs, then call our above algorithm recursively in order to compute a maximum matching. Since
the cut is balanced, the recursive depth is in O(log n).

5 Algorithms: the bipartite case

We present in this section an alternative to Theorem 1, with polynomial dependency on the clique-width,
but only for bipartite graphs (see Theorem 2). The structure of bipartite graphs of bounded clique-width
can be quite complex. For instance, let G = (V,E) be any graph and let V ′ = {v′ | v ∈ V } be a disjoint
copy of V . We can define the bipartite graph BG = (V ∪ V ′, {u′v | uv ∈ E}) and, if G has clique-width at
most k, then BG has clique-width at most 2k. Some classes of monogenic bipartite graphs are also known to
have bounded clique-width [22]. In general, bipartite graphs have bounded clique-width if and only if their
corresponding binary matroids have bounded branch-width [66].

5.1 Reduction to Maximum b-matching

We define N to be the set of non-negative integers. Let G = (V,E) be a graph and let b : V → N assign a non-
negative capacity to each vertex. We say that x : E → N is a b-matching if we have

∑
u∈NG(v) xuv ≤ b(v) for

each vertex v. Observe that a matching is a b-matching for the trivial function b(v) = 1 for each v ∈ V . The
cardinality of a b-matching is defined as ∥x∥1 =

∑
e∈E xe. We denote by ν(G, b) the cardinality of a maximum

b-matching in G. Let also ∥b∥1 =
∑
v∈V b(v) be the sum of all the vertex capacities. For every vertex-subset

S, let b(S) =
∑
v∈S b(v). Given a b-matching x and a vertex v, let dx(v) :=

∑
u∈NG(v) xuv ≤ b(v).

We start with the following reduction rule:

Lemma 8. Let (G, b) be some instance of Maximum b-Matching, and let U and W be disjoint vertex-
subsets such that there is a join between U and W . Consider the new instance (G′, b′) obtained from (G, b)
by removing all edges between U and W , adding two new vertices u,w /∈ V (G) and edges {uw} ∪ {uv | v ∈
U} ∪ {wv′ | v′ ∈ W}, and finally setting b′(u) = b′(w) = min{b(U), b(W )}. Then, we have ν(G′, b′) =
ν(G, b) + min{b(U), b(W )}.

Moreover, if G is bipartite, then so is G′.

Proof. We refer to Fig. 2 for an illustration. First, let x be any b-matching for (G, b). Observe that we
have

∑
v∈U,v′∈W xvv′ ≤ min{b(U), b(W )}. We transform it into a b-matching x′ for (G′, b′), such that:

x′uv =
∑
v′∈W xvv′ for every v ∈ U ; x′wv′ =

∑
v∈U xvv′ for every v′ ∈ W ; and x′uw = min{b(U), b(W )} −∑

v∈U,v′∈W xvv′ . Notice that, ∥x′∥1 = ∥x∥1+min{b(U), b(W )}. Hence, ν(G′, b′) ≥ ν(G, b)+min{b(U), b(W )}.
Conversely, let x′ be any maximum b-matching for (G′, b′). Without loss of generality,

∑
v∈U x

′
uv ≤∑

v′∈W x′wv′ . In particular, x′uw = min{b(U), b(W )} −
∑
v′∈W x′wv′ (otherwise, x

′ could not be maximum).

18



3 3

Figure 2: Transformation of Lemma 8.

Let y : U ×W → N such that:
∑
v′∈W yvv′ = x′vu for every v ∈ U (in particular, ∥y∥1 =

∑
v∈U x

′
uv); and∑

v∈U yvv′ ≤ x′v′w for every v′ ∈ W . Such a b-matching (for the bipartite graph with sides U,W ) always
exists because there is a complete join between U and W . We now construct x from x′ (restricted to E)
by adding to it the b-matching y. Doing so, ∥x∥1 = ∥x′∥1 −

(
x′uw +

∑
v∈U x

′
vu +

∑
v′∈W x′v′w

)
+ ∥y∥1 =

∥x′∥1 −
(
min{b(U), b(W )}+

∑
v∈U x

′
vu

)
+

∑
v∈U x

′
uv = ∥x′∥1 − min{b(U), b(W )}. As a result, ν(G, b) ≥

ν(G′, b′)−min{b(U), b(W )}.
Finally, let us further assume G to be bipartite. The sides U,W of the join must be in different colour

classes. To obtain a proper bicolouring of G′, we include vertices u and w, respectively, in the same colour
class as the vertices in W and U , respectively.

We stress that the transformation of Lemma 8 holds even if either side U or W of the join is empty.
Indeed, in this degenerate situation we only add to G two new adjacent vertices u and w with zero capacity.
By repeatedly applying Lemma 8 to some special balanced edge-cuts, we obtain:

Proposition 1. There is an O(k · (n+m) log n)-time reduction from Maximum Matching on graphs with
clique-width at most k (if a k-expression is known) to Maximum b-Matching on graphs with tree-width
O(k log n). For the resulting instance (H, b), the algorithm also outputs a corresponding tree decomposition.
Furthermore, |V (H)| ≤ ∥b∥1 ≤ O(min{n+m,n log n}), and if G is bipartite, then so is H.

Proof. We assume in what follows the input graph G to be given with some b : V → N. Initially, b(v) = 1
for every vertex v ∈ V . Let us further assume |V (G)| > k + 1 (otherwise, tw(G) ≤ k and there is nothing
to be done). We apply Lemma 2, then Lemma 3, and call (U,W ) the resulting balanced cut. It takes
O(k · (n + m)) time. Recall that U is an ℓ-module of G, for some ℓ ≤ k, and that we also computed a
corresponding ℓ-partition U1, U2, . . . , Uℓ. For every 1 ≤ i ≤ ℓ, let Wi := NG(Ui) ∩W . Since all the Ui’s are
disjoint, one can compute all the Wi’s in O(m) time. We then apply Lemma 8, for the join with sides Ui and
Wi, calling ui, wi the two new vertices created by this transformation. Notice that, in the intermediate graph
H0 obtained after our ℓ applications of Lemma 8, the vertices u1, w1, u2, w2, . . . , uℓ, wℓ disconnect U from
W . We apply Lemma 7 to compute k-expressions of G[U ] and G[W ], then we call our reduction recursively
to both subgraphs. Let (HU , bU ) and (HW , bW ) be the resulting instances, and let (TU ,XU ) and (TW ,XW )
be their tree decompositions. The final instance (H, b) is such that:

• V (H) = V (HU ) ∪ V (HW ) ∪ {u1, w1, . . . , uℓ, wℓ};

• HU , HW are induced subgraph of H and, for each 1 ≤ i ≤ ℓ, the edges of {uiwi} ∪ {uivi | vi ∈
Ui} ∪ {wiv′i | v′i ∈Wi} are in H;

• b(v) = bU (v) for each v ∈ V (HU ); b(v
′) = bW (v′) for each v′ ∈ V (HW ); b(ui) = b(wi) = min{|Ui|, |Wi|}

for each 1 ≤ i ≤ ℓ.

We get a tree decomposition for H by adding an edge between a bag of (TU ,XU ) and a bag of (TW ,XW ), then
adding vertices u1, w1, u2, w2, . . . , uℓ, wℓ to all the bags. Correctness of the reduction follows from Lemma 8
(applied to all the cuts considered, at each recursive stage of the reduction, that are pairwise edge-disjoint).
In particular, if G is bipartite then so is H. Since max{|U |, |W |} ≤ 2n/3 (Lemma 3), there are O(log n)
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recursive stages, and so, the running time is in O(k · (n+m) log n). Similarly, since the treewidth increases
by at most 2k at each stage, tw(H) = O(k log n).

We can always ensure |V (H)| ≤ ∥b∥1 by removing vertices with null capacity. At the start of the
reduction, ∥b∥1 = n. Then, we observe that for each 1 ≤ i ≤ ℓ, the vertices ui, wi replace some edge
between Ui,Wi (if no such edge exists, then b(ui) = b(wi) = |Wi| = 0, and we may discard ui, wi from
H). In particular, b(ui) = b(wi) = min{|Ui|, |Wi|} ≤ |Ui| · |Wi|, that is the number of edges part of the
join. Since all the cuts considered throughout the reduction are edge-disjoint, we increase the sum of all
vertex-capacities by at most 2m in total, and so, ∥b∥1 ≤ n + 2m. Alternatively, observe that we have∑ℓ
i=1(b(ui)+ b(wi)) ≤ 2|U | ≤ 4n/3, and therefore, the sum of all capacities increases by O(n) at each stage.

It thus also follows that ∥b∥1 = O(n log n).

5.2 Reduction to Linear Programming

The Maximum b-Matching problem is a classic example of an integer linear program. It is well-known
that for the special case of Maximum Matching within bipartite graphs, we can drop the condition for all
variables to be integers, thus reducing the computation of the matching number to the solving of a linear
program [59]. Because of Tutte’s quasi-polynomial reduction from Maximum b-Matching to Maximum
Matching [75], this is also true for Maximum b-Matching within bipartite graphs. Very recently, Dong
et. al. [26] answered an open question from Fomin et. al. [39] about bounded tree-width linear programs.
We restate below their main result:

Theorem 8 ([26]). Given a linear program maxMx=b,ℓ≤x≤u c
⊺x 3, where M ∈ Rd×n is a full-rank matrix

with d ≤ n, define the dual graph GM to be the graph with vertex-set {1, 2 . . . , d}, such that ij ∈ E(GM )
if there is a column r such that Mi,r ̸= 0 and Mj,r ̸= 0.

Suppose that a tree decomposition of GM with width τ is given, and R is the diameter of the polytope,
namely, for any ℓ ≤ x ≤ u with Mx = b, we have ∥x∥2 ≤ R.

Then, for any 0 < ε ≤ 1, we can find ℓ ≤ x∗ ≤ u such that

c⊺x∗ ≥ max
Mx=b,ℓ≤x≤u

c⊺x− ε · ∥c∥2 ·R and ∥Mx∗ − b∥2 ≤ ε · (∥M∥2 ·R+ ∥b∥2)

in expected time Õ(n · τ2 log (1/ε)).

Dong et. al. [26] referred to [71] and [57] for a detailed discussion about converting an approximate
solution to an exact solution. We give a direct proof for Maximum b-Matching within bipartite graphs.
For that, we combine a folklore reduction to Maximum Flow with a nice rounding technique by Madry [60].

Proposition 2. The Maximum b-Matching problem within bipartite graphs of tree-width at most τ can
be solved in expected Õ(nτ2log ∥b∥1) time, if a corresponding tree decomposition is given in the input.

Proof. Let G = (V0 ∪ V1, E) be a bipartite graph and let b : V0 ∪ V1 → N. The incidence matrix of G is the
n ×m matrix M such that Mv,e = 1 if v is an end-vertex of edge e and Mv,e = 0 otherwise. Let also c be
the all-one vector. To compute the cardinality of a maximum b-matching for G, it suffices to solve the linear
program maxMx≤b c

⊺x. We slightly modify this above program so that we fit in the conditions of Theorem 8.
First, if we let ℓ, u ∈ Rm such that ℓ is all-zero and uvv′ = min{b(v), b(v′)} for each edge vv′ ∈ E, then we
must now solve maxMx≤b,ℓ≤x≤u c

⊺x. If we further add n new variables (xv)v∈V such that 0 ≤ xv ≤ b(v)
for each v ∈ V , then we can replace all constraints by xv +

∑
vv′∈E xvv′ = b(v) for each vertex v ∈ V , thus

getting a new linear program maxM ′x=b,ℓ′≤x≤u′ c′
⊺
x to solve, where M ′ ∈ Rn×(m+n) and we obtain c′ from

c by completing the latter with n zero coordinates for the slack variables (xv)v∈V .
Note that, since we constructed M ′ from M by adding n new columns with exactly one nonzero value

each, we have GM ′ = GM = G. Furthermore, an easy upper bound on the diameter R of the polytope is
R ≤ ∥b∥2 ≤ ∥b∥1. We also have ∥c′∥2 =

√
m and ∥M ′∥2 ≤

√∑
v(1 + d(v))2 ≤ n3/2.

3The result is stated in [26] for minimization problems. Since we only consider it here for Maximum b-Matching, we rather
write it as a maximization problem.
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Assume G to be given with a tree decomposition of width at most τ , and apply Theorem 8 to the above
linear program with ε = 1/(4 · ∥b∥1 · n2). We denote by x∗ its output. Set all variables x∗v, v ∈ V to 0.
Then, for all vertices v such that

∑
vv′∈E x

∗
v′v > b(v), we decrease the variables x∗v′v of incident edges until

we reach equality. In doing so, we obtain a fractional b-matching y. By construction:

∥x∗∥1 − ∥y∥1 ≤
∑
v

max{0, (M ′x∗)v − b(v)} ≤ ∥M ′x∗ − b∥1 ≤
√
n · ∥M ′x∗ − b∥2

≤ ε
√
n · (∥M ′∥2 ·R+ ∥b∥2) ≤ ε

√
n · ∥b∥1 · (n3/2 + 1) ≤ 2εn2 · ∥b∥1 ≤ 1/2.

We now construct a network D from G by adding two new vertices s and t, an arc (s, u) for every u ∈ V0,
an arc (v, t) for every v ∈ V1, and finally by orienting all the edges of G from V0 to V1. The capacities
of the arcs are defined as follows: κ(s, v) = b(v) for every v ∈ V0; κ(v

′, t) = b(v′) for every v′ ∈ V1;
κ(v, v′) = min{b(v), b(v′)} for every vv′ ∈ E such that v ∈ V0, v

′ ∈ V1. Then, we construct a fractional
st-flow as follows: fy(s, v) =

∑
vv′∈E yvv′ for every v ∈ V0; fy(v

′, t) =
∑
vv′∈E yvv′ for every v′ ∈ V1; and

fy(v, v
′) = yvv′ for every vv

′ ∈ E such that v ∈ V0, v
′ ∈ V1. Note that the value of this flow is exactly ∥y∥1.

Let f ′y be an integral st-flow of value ⌊∥y∥1⌋. It can be constructed from fy in Õ(m) = Õ(τn) time [60,
Corollary 3.4]. There is a one-to-one mapping between b-matchings in G and integral st-flows in D. In
particular, the maximum value of a st-flow is exactly ν(G, b). Furthermore,

∥y∥1 ≥ ∥x∗∥1 − 1/2 ≥ ν(G, b)− ε · ∥c∥2 ·R− 1/2 ≥ ν(G, b)− 1.

Therefore, we can transform f ′y into a maximum st-flow fz by computing at most one augmenting path in
the residual graph Df ′

y
. It can be done in O(m) = O(τn) time. The resulting b-matching is maximum: for

every vv′ ∈ E with v ∈ v0, v
′ ∈ V1, we set zvv′ = fz(v, v

′).

We are finally ready to prove our second main result in this paper:

Theorem 2. Given a bipartite graph G and a corresponding k-expression, one can compute a maximum
matching for G in randomized Õ(k2 · (n+m)) time.

Proof. The result follows from the combination of Proposition 1 with Proposition 2.

6 Conclusion

We left open whether an Õ(kc ·(n+m))-time algorithm exists for computing a maximum matching within the
graphs of clique-width at most k, for some constant c. Recall that our algorithm in the paper runs in almost
linear time, but that it has a super-polynomial dependency on the clique-width. Relatedly, we left open the
complexity of Maximum b-Matching within bounded tree-width graphs. It follows from Proposition 1 that
an Õ(kc · (n +m))-time algorithm for this problem within the graphs of tree-width at most k would imply
a similar algorithm for Maximum Matching within graphs of clique-width at most k.
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