Guillaume Ducoffe
email: guillaume.ducoffe@ici.ro

Maximum Matching in almost linear time on graphs of bounded clique-width *

Recently, independent groups of researchers have presented algorithms to compute a maximum matching in Õ(f (k)•(n+m)) time, for some computable function f , within the graphs where some clique-width upper bound is at most k (e.g., tree-width, modular-width and P4-sparseness). However, to the best of our knowledge, the existence of such algorithm within the graphs of bounded clique-width has remained open until this paper. Indeed, we cannot even apply Courcelle's theorem to this problem directly, because a matching cannot be expressed in M SO1 logic.

Our first contribution is an almost linear-time algorithm to compute a maximum matching in any bounded clique-width graph, being given a corresponding clique-width expression. We also present how to compute the Edmonds-Gallai decomposition in almost linear time by using the same framework. For that, we do apply Courcelle's theorem but to the classic Tutte-Berge formula, that can easily be expressed as a CM SO1 optimization problem. Doing so, we can compute the cardinality of a maximum matching, but not the matching itself. To obtain with this approach a maximum matching, we need to combine it with a recursive dissection scheme for bounded clique-width graphs and with a distributed version of Courcelle's theorem (Courcelle and Vanicat, DAM 2016) -of which we present here a slightly stronger version than the standard one in the literature.

.

1 1 More generally, the goal is, for some problem solvable in O(m q+o(1)) time on arbitrary m-edge graphs, to design an O(f (k) • m p+o(1))-time algorithm, for some p < q, within the class of graphs where some fixed parameter is at most k.

2 The Õ() notation suppresses poly-logarithmic factors.

Introduction

For any undefined graph terminology, see [START_REF] Bondy | Graph theory[END_REF][START_REF] Diestel | Graph Theory[END_REF]. Throughout the paper, for any graph G = (V, E), let n := |V | be its order (number of vertices) and m := |E| be its size (number of edges). Recall that a matching in a graph is a set of pairwise end-disjoint edges. A maximum matching is one of maximum cardinality. The matching number of G, denoted by ν(G), is the cardinality of a maximum matching of G. Matchings (possibly, with additional constraints) are ubiquitous in scheduling, markets, resource allocation schemes and even chemistry [START_REF] Trinajstić | On some solved and unsolved problems of chemical graph theory[END_REF]. We refer to [47,[START_REF] Lovász | Matching theory[END_REF] for a compendium of matching problems and their applications. This paper is about the (parameterized) complexity of Maximum Matching in graphs. Unsurprisingly, a lot of research in Computer Science has been devoted to this question. The first polynomial-time algorithm for Maximum Matching was proposed by Edmonds [START_REF] Edmonds | Paths, trees, and flowers[END_REF]. Later, Micali and Vazirani presented the state-ofthe-art O(m √ n)-time algorithm for this problem [START_REF] Micali | An O(√ V E) algorithm for finding maximum matching in general graphs[END_REF], that has remained unchallenged since forty years. We study Maximum Matching in the context of "Fine-Grained Complexity in P" (see [START_REF] Williams | On some fine-grained questions in algorithms and complexity[END_REF] for a survey of this blossoming field). Specifically, can a maximum matching be computed in (almost) linear time? There are a few reasons to believe that it is indeed the case. For instance, unlike for the diameter problem and other fundamental graph problems, for which over the last decades, conditional superlinear lower bounds were obtained, it is known [START_REF] Carmosino | Nondeterministic extensions of the strong exponential time hypothesis and consequences for non-reducibility[END_REF] that proving such lower bound for Maximum Matching would falsify the so-called Nondeterministic Strong Exponential Time Hypothesis (NSETH). Furthermore, computing a maximum matching is related to Maximum Flow [START_REF] Tutte | Antisymmetrical digraphs[END_REF], that is sometimes conjectured to be solvable in linear time.

The idea of using tools and concepts from parameterized complexity in the context of polynomial-time solvable problems has been scarce [START_REF] Hagerup | Characterizing multiterminal flow networks and computing flows in networks of small treewidth[END_REF]. In part motivated by the recent "SETH-hardness" results, and other conditional lower bounds for such problems [START_REF] Vassilevska Williams | Subcubic equivalences between path, matrix, and triangle problems[END_REF], a richer theory of "FPT in P" has started to emerge recently [START_REF] Abboud | Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs[END_REF][START_REF] Bentert | Parameterized aspects of triangle enumeration[END_REF][START_REF] Fluschnik | Kernelization lower bounds for finding constant-size subgraphs[END_REF][START_REF] Fomin | Fully polynomial-time parameterized computations for graphs and matrices of low treewidth[END_REF][START_REF] Giannopoulou | Polynomial fixed-parameter algorithms: A case study for longest path on interval graphs[END_REF]. In its simplest form, the former is about the existence of O(f (k)•(n+m) 1+o (1))-time algorithms for various graph problems when some fixed parameter is at most k 1 . As far as we are concerned here, such running times were obtained in [START_REF] Coudert | Fully polynomial FPT algorithms for some classes of bounded clique-width graphs[END_REF][START_REF] Ducoffe | The use of a pruned modular decomposition for Maximum Matching algorithms on some graph classes[END_REF][START_REF] Ducoffe | The b-Matching Problem in Distance-Hereditary Graphs and Beyond[END_REF][START_REF] Fomin | Fully polynomial-time parameterized computations for graphs and matrices of low treewidth[END_REF][START_REF] Giannopoulou | Polynomial fixed-parameter algorithms: A case study for longest path on interval graphs[END_REF][START_REF] Hegerfeld | On Adaptive Algorithms for Maximum Matching[END_REF][START_REF] Iwata | On the power of tree-depth for fully polynomial FPT algorithms[END_REF][START_REF] Kratsch | Efficient and Adaptive Parameterized Algorithms on Modular Decompositions[END_REF][START_REF] Mertzios | The power of linear-time data reduction for maximum matching[END_REF] for Maximum Matching, for different parameterizations. For instance, for the graphs of tree-width at most k, Fomin et. al [START_REF] Fomin | Fully polynomial-time parameterized computations for graphs and matrices of low treewidth[END_REF] presented a randomized Õ(k 4 • n)-time algorithm for computing a maximum matching 2 . This was later improved by Iwata et. al. [START_REF] Iwata | On the power of tree-depth for fully polynomial FPT algorithms[END_REF], who designed a deterministic Õ(k 2 • n)-time algorithm for that problem. -We recall the definition of tree-width in Sec. 2.2. -Remarkably, the parameterized study of Maximum Matching has led to the development of many nice techniques in this area, which brought Mertzios et. al. [START_REF] Mertzios | The power of linear-time data reduction for maximum matching[END_REF] to nickname the problem the "drosophilia" of the study of the FPT algorithms in P.

Clique-width is one of the most studied graph parameters. It is a rough estimate of the closeness of a graph to a cograph (a.k.a., P 4 -free graph). We refer to Sec. 2.1 for a formal definition. Note that unlike for the tree-width, there exist dense graphs of bounded clique-width (e.g., the complete graphs and the complete bipartite graphs). The applications of clique-width to NP-hard problems, including Courcelle's theorem [START_REF] Courcelle | Linear time solvable optimization problems on graphs of bounded clique-width[END_REF] and some general algorithmic frameworks [START_REF] Espelage | How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time[END_REF], are now rather well understood [START_REF] Fomin | Intractability of clique-width parameterizations[END_REF][START_REF] Fomin | Almost optimal lower bounds for problems parameterized by clique-width[END_REF][START_REF] Fomin | Clique-width III: Hamiltonian Cycle and the Odd Case of Graph Coloring[END_REF]. However, the study of its applications to polynomial-time solvable problems is comparatively much more recent and, so far, limited to cycle problems [START_REF] Bentert | Parameterized aspects of triangle enumeration[END_REF][START_REF] Coudert | Fully polynomial FPT algorithms for some classes of bounded clique-width graphs[END_REF] and distance problems [START_REF] Coudert | Fully polynomial FPT algorithms for some classes of bounded clique-width graphs[END_REF][START_REF] Courcelle | Constrained-path labellings on graphs of bounded clique-width[END_REF][START_REF] Ducoffe | Optimal Centrality Computations Within Bounded Clique-Width Graphs[END_REF][START_REF] Kratsch | Efficient Parameterized Algorithms for Computing All-Pairs Shortest Paths[END_REF]. Parameterized almost lineartime algorithms for Maximum Matching are known for the important subclasses of bounded tree-width graphs [START_REF] Fomin | Fully polynomial-time parameterized computations for graphs and matrices of low treewidth[END_REF][START_REF] Iwata | On the power of tree-depth for fully polynomial FPT algorithms[END_REF], graphs of bounded modular-width [START_REF] Coudert | Fully polynomial FPT algorithms for some classes of bounded clique-width graphs[END_REF][START_REF] Kratsch | Efficient and Adaptive Parameterized Algorithms on Modular Decompositions[END_REF], and some others [START_REF] Coudert | Fully polynomial FPT algorithms for some classes of bounded clique-width graphs[END_REF][START_REF] Ducoffe | The b-Matching Problem in Distance-Hereditary Graphs and Beyond[END_REF][START_REF] Ducoffe | The use of a pruned modular decomposition for Maximum Matching algorithms on some graph classes[END_REF]. However, as far as we know, the complexity of this problem on bounded clique-width graphs has been open until this article. Indeed we stress that, even allowing a super-polynomial dependency on the clique-width in the running time, the existence of an almost linear-time (parameterized) algorithm for Maximum Matching does not follow from Courcelle's theorem, because a matching cannot be expressed in M SO 1 logic. This is in sharp contrast with bounded tree-width graphs, for which we can apply Courcelle's theorem for the stronger M SO 2 logic (allowing quantification over subsets of edges), and so, in particular in order to express a matching [START_REF] Courcelle | The monadic second-order logic of graphs. I. Recognizable sets of finite graphs[END_REF].

-We refer to Sec. 3 for a reminder about M SO logic. -Furthermore if we consider the related problem Maximum-Weight Matching, then it has been observed [START_REF] Kratsch | Efficient and Adaptive Parameterized Algorithms on Modular Decompositions[END_REF] that it is as hard on bounded clique-width weighted graphs as on general weighted graphs under O(n 2)-time reductions. Again, this differs from the case of bounded tree-width graphs, for which an Õ(k 2 n)-time algorithm also exists for this problem [START_REF] Iwata | On the power of tree-depth for fully polynomial FPT algorithms[END_REF].

Beyond the study of the FPT algorithms in P, it also makes sense to study Maximum Matching on restricted graph classes, both as a way to better understand the hard instances for this problem, and to better model some of its real-life applications (see [START_REF] Glover | Maximum matching in a convex bipartite graph[END_REF] for an example of the latter). In this respect, a considerable amount of positive results have been proved [START_REF] Chang | Algorithms for maximum matching and minimum fill-in on chordal bipartite graphs[END_REF][START_REF] Dahlhaus | Matching and multidimensional matching in chordal and strongly chordal graphs[END_REF][START_REF] Dragan | On greedy matching ordering and greedy matchable graphs[END_REF][START_REF] Fouquet | An O(n)-time algorithm for maximum matching in P 4 -tidy graphs[END_REF][START_REF] Fouquet | Bipartite graphs totally decomposable by canonical decomposition[END_REF][START_REF] Glover | Maximum matching in a convex bipartite graph[END_REF][START_REF] Liang | Finding a maximum matching in a circular-arc graph[END_REF][START_REF] Mertzios | A Linear-Time Algorithm for Maximum-Cardinality Matching on Cocomparability Graphs[END_REF][START_REF] Moitra | A parallel algorithm for maximum matching on interval graphs[END_REF][START_REF] Yu | An O(n)-time algorithm for maximum matching on cographs[END_REF][START_REF] Yuster | Maximum matching in graphs with an excluded minor[END_REF][START_REF] Yuster | Maximum matching in regular and almost regular graphs[END_REF]. Many such classes, starting from the cographs [START_REF] Courcelle | Upper bounds to the clique width of graphs[END_REF], are known to have bounded clique-width. Therefore, having at hands an almost linear-time algorithm for Maximum Matching on bounded clique-width graphs, one can unify and generalize many prior works in this area.

Our results

Recall that a graph has clique-width at most k if and only if it admits a k-expression [START_REF] Courcelle | Upper bounds to the clique width of graphs[END_REF]. Such a kexpression can be computed in linear time on many interesting subclasses of bounded clique-width graphs: ranging from cographs [START_REF] Courcelle | Upper bounds to the clique width of graphs[END_REF], switched cographs [START_REF] Cohen-Addad | Algorithmic aspects of switch cographs[END_REF], distance-hereditary graphs [START_REF] Golumbic | On the clique-width of some perfect graph classes[END_REF], (q, q -3)-graphs [START_REF] Makowsky | On the clique-width of graphs with few P 4 's[END_REF], and graphs of either bounded tree-width [START_REF] Corneil | On the relationship between clique-width and treewidth[END_REF], modular-width [START_REF] Courcelle | Upper bounds to the clique width of graphs[END_REF] or split-width [START_REF] Rao | Solving some NP-complete problems using split decomposition[END_REF]. Until recently, the best-known approximation algorithms for clique-width on general graphs had a running-time in O(n 3), that is slower than the state-of-the-art algorithm for Maximum Matching [START_REF] Oum | Approximating clique-width and branch-width[END_REF]. However, this has been recently improved to O(n 2) for constant clique-width graphs [START_REF] Fomin | Fast FPT-Approximation of Branchwidth[END_REF].

Hereafter, we use the notation Õx1,x2,...,xt (n + m) for a running time in Õ(f (x 1 , x 2 , . . . , x t) • (n + m)), for some computable function f . The following theorem is our first main result in the paper: Theorem 1. Given a graph G and a corresponding k-expression, one can compute a maximum matching for G in deterministic Õk (n + m) time.

To the best of our knowledge, this is the first almost linear-time algorithm for Maximum Matching on bounded clique-width graphs. The Õk () notation hides huge constants in k due to our use of Courcelle's theorem. Indeed, while we cannot express a matching in M SO 1 logic, we can write a Counting M SO 1 formula in order to evaluate the matching number (Theorem 5). For that, we use the well-known Tutte-Berge formula [START_REF] Berge | Sur le couplage maximum dun graphe[END_REF]. This alone does not lead to an efficient computation of a maximum matching, but only of its size. However, by carefully evaluating our formula for the matching number on various subgraphs, obtained by removing specific vertex-and edge-subsets, one can compute a maximum matching incrementally. A similar approach also works for computing the Edmonds-Gallai decomposition [START_REF] Edmonds | Paths, trees, and flowers[END_REF][START_REF] Gallai | Kritische graphen II[END_REF][START_REF] Gallai | Maximale systeme unabhangiger kanten[END_REF], which encodes the structure of all the maximum matchings in a graph (Theorem 7). The main difficulty here is that the number of subgraphs on which we need to evaluate our formula can be linear in the size of the graph. Thus, applying Courcelle's theorem to each subgraph separately would result in a quadratic running time. We overcome this issue by using a distributed version of this theorem [START_REF] Courcelle | Query efficient implementation of graphs of bounded clique-width[END_REF]. In doing so, after we computed the matching number of a bounded clique-width graph G in linear time, it becomes possible to evaluate our formula on any subgraph H in time roughly proportional to the number of basic operations needed to obtain H from G.

It seems that improving the dependency on k in the running time will require new techniques. Our second main result is that it can be done for bipartite graphs of bounded clique-width: Theorem 2. Given a bipartite graph G and a corresponding k-expression, one can compute a maximum matching for G in randomized Õ(k 2 • (n + m)) time.

Let us sketch below the main lines of our approach toward proving Theorem 2. We first reduce Maximum Matching on bounded clique-width graphs to a related problem on the graphs of bounded tree-width. The reduction preserves the property for a graph to be bipartite. Its intuition goes as follows. Roughly, graphs of bounded tree-width can be recursively disconnected by some small balanced vertex-separators. By comparison, graphs of bounded clique-width can be recursively disconnected by some balanced edge-cuts of small "neighbourhood diversity" (partitionable in a small number of complete joins) [START_REF] Courcelle | A characterisation of cliquewidth through nested partitions[END_REF]. To reduce to the bounded tree-width case, we propose a transformation of edge-cuts of small neighbourhood diversity into small vertex-separators (Sec. 5.1). The transformation forces us to deal with a more general problem than Maximum Matching, sometimes called Maximum b-Matching and well-studied on its own [START_REF] Anstee | A polynomial algorithm for b-matchings: an alternative approach[END_REF][START_REF] Gabow | Data structures for weighted matching and extensions to b-matching and f-factors[END_REF][START_REF] Gabow | Algorithms for Weighted Matching Generalizations I: Bipartite Graphs, b-matching, and Unweighted f-factors[END_REF][START_REF] Madry | Navigating central path with electrical flows: From flows to matchings, and back[END_REF][START_REF] Padberg | The Russian method for linear inequalities III: Bounded integer programming[END_REF][START_REF] Pulleyblank | Faces of Matching Polyhedra[END_REF]. We thus exchange Maximum Matching for a more complex problem, but on a structurally simpler graph class. Furthermore, because we restrict ourselves to bipartite graphs, we can solve Maximum b-Matching as a linear program. To the matrix representation of any such linear program, one can associate various graphs. Then, it becomes possible to define the tree-width of a linear program. In [START_REF] Fomin | Fully polynomial-time parameterized computations for graphs and matrices of low treewidth[END_REF], Fomin et. al. asked whether all linear programs of bounded tree-width could be solved in almost linear time. Very recently, Dong et. al. gave a positive answer [START_REF] Dong | A nearly-linear time algorithm for linear programs with small treewidth: a multiscale representation of robust central path[END_REF]. -This is where we need randomization. -We apply this nice result to the problem Maximum b-Matching within bipartite graphs. Here, some final technicalities arise due to the algorithm of Dong et. al. only outputting an approximate fractional b-matching whereas we aim at computing an exact integral solution. This can be overcome by using the close connection between Maximum Flow and Maximum b-Matching on bipartite graphs, along with a nice result from Madry to apply rounding to a fractional flow [START_REF] Madry | Navigating central path with electrical flows: From flows to matchings, and back[END_REF].

Related work

There are several meta-theorems deduced from Courcelle's theorem in the literature. Indeed, Courcelle's approach not only applies to decision problems, but also to counting [START_REF] Courcelle | Graph structure and monadic second-order logic: a language-theoretic approach[END_REF] and optimization problems [START_REF] Courcelle | Linear time solvable optimization problems on graphs of bounded clique-width[END_REF]. We actually use in our proof the optimization version of his theorem. In [START_REF] Courcelle | Monadic second-order evaluations on tree-decomposable graphs[END_REF], Courcelle and Mosbah designed a very general framework in order to evaluate some function over the satisfying set of a CM SO 1 formula. It is unclear whether we could express a maximum matching within their framework as the result of some suitable evaluation over the certificates that satisfy the Tutte-Berge formula (at the very least, we cannot do so by using the evaluation structures presented in [START_REF] Courcelle | Monadic second-order evaluations on tree-decomposable graphs[END_REF]Sec. 4]). Applications to the design of distancelabelling schemes were proposed in [START_REF] Courcelle | Query efficient implementation of graphs of bounded clique-width[END_REF], and later refined in [START_REF] Courcelle | Constrained-path labellings on graphs of bounded clique-width[END_REF][START_REF] Ducoffe | Optimal Centrality Computations Within Bounded Clique-Width Graphs[END_REF] using alternative techniques. However, insofar most applications of Courcelle's theorem are about NP-hard problems. Indeed, Abboud et. al. [START_REF] Abboud | Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs[END_REF] observed that its use leads to huge dependencies on the parameter involved, that can often be sharpened by preferring other techniques (their observation, on the other hand, also remains valid for NP-hard problems). What we find intriguing in our case is, first, the nontrivial use we need to make of Courcelle's theorem for a polynomial-time solvable problem, and second, that we currently do not see any other way to obtain a quasi linear-time algorithm for Maximum Matching on the bounded clique-width graphs. This is evidence, we believe, that Courcelle's theorem could help in expanding the nascent field of "FPT in P".

The proof of our Theorem 1 also has several aspects that, we think, are equally intriguing. For one, we avoid computing augmenting paths, and we do not need the Tutte matrix [START_REF] Tutte | The factorization of linear graphs[END_REF] either. Both concepts are the cornerstone of almost all maximum matching algorithms in the literature. At the core of our approach is a new algorithmic application of the Tutte-Berge formula. The latter also got used in [START_REF] Carmosino | Nondeterministic extensions of the strong exponential time hypothesis and consequences for non-reducibility[END_REF], but the algorithm in this related work was non-deterministic. Our repeated use of this formula in order to compute a maximum matching is not unlike the celebrated result of Anari and Vazirani that reduces the efficient parallel computation of such matching to the design of an oracle for a decision version of the problem [START_REF] Anari | Matching Is as Easy as the Decision Problem, in the NC Model[END_REF]. Nevertheless, both results have fairly different proofs.

About Theorem 2, we note that different reductions from Maximum Matching to Maximum b-Matching have already been considered for graphs of bounded modular-width [START_REF] Kratsch | Efficient and Adaptive Parameterized Algorithms on Modular Decompositions[END_REF] or bounded split-width [START_REF] Ducoffe | The b-Matching Problem in Distance-Hereditary Graphs and Beyond[END_REF], that are subclasses of bounded clique-width graphs. However, from the algorithmic point of view, the instances of Maximum b-Matching outputted by these former reductions are of bounded size, a much more restricted case than bounded tree-width. To our best knowledge, the Maximum b-Matching problem has only been solved in almost linear time on subclasses of graphs of tree-width at most two [START_REF] Ducoffe | The use of a pruned modular decomposition for Maximum Matching algorithms on some graph classes[END_REF]. We left open the parameterized complexity of Maximum b-Matching within the graphs of bounded tree-width. For general graphs, the so-called "Russian method" starts from the linear relaxation of this problem (written as an integer program) and it repeatedly adds "blossom constraints" that are violated by the current solution until it finds an optimal integral outcome [START_REF] Padberg | The Russian method for linear inequalities III: Bounded integer programming[END_REF]. These blossom constraints are deduced from the good characterization of the b-matching polytope by Edmonds and Pulleyblank [START_REF] Pulleyblank | Faces of Matching Polyhedra[END_REF]. It seems, however, that a super-linear (but polynomial) number of linear programs needs to be solved on general graphs. See also Anstee [START_REF] Anstee | A polynomial algorithm for b-matchings: an alternative approach[END_REF] and Gabow [43] for alternative algorithms.

Organization of the paper

In Sec. 2, we introduce some basic notations and terminology, as well as the two graph parameters considered in this article. Sec. 3 is devoted to Courcelle's theorem for bounded clique-width graphs. We need a distributed version of this theorem, for optimization functions, of which a proof by Courcelle and Vanicat can be found in [START_REF] Courcelle | Query efficient implementation of graphs of bounded clique-width[END_REF] but, unfortunately, for a more restricted setting than what we need. While it is not excessively difficult to check that Courcelle and Vanicat's proof indeed works in the broader setting that is here needed, the proof is fairly long and it has several intermediate steps, which is why we found it better to write it down almost completely. Then, in Sec. 4, we apply this result in order to compute the matching number, a corresponding maximum matching, and the Edmonds-Gallai decomposition, within bounded clique-width graphs. Sec. 5 is devoted to the proof of Theorem 2. We then conclude in Sec. 6.

Preliminaries

First we complete the basic graph terminology given in Sec. 1. By a graph, we mean a finite, simple, unweighted undirected graph. Let G = (V, E) be such a graph. The (open) neighbourhood of a vertex v is defined as

N G (v) := {u ∈ V | uv ∈ E}. Its closed neighbourhood is defined as N G [v] := N G (v) ∪ {v}. Let d G (v) := |N G (v)| be the degree of vertex v. Similarly, for a vertex-subset S, let N G (S) := v∈S N G (v) \ S
denote its (open) neighbourhood and let N G [S] := S∪N G (S) denote its closed neighbourhood. We sometimes omit the subscript if the graph G is clear from the context.

Clique-width

A k-labeled graph is a graph G = (V, E) equipped with a labeling function ℓ : V → {1, 2, . . . , k}. A k-expression is an algebraic expression where the four allowed operations are:

• i(v): we add a new isolated vertex with label ℓ(v) = i;

• G 1 ⊕ G 2 : we make the disjoint union of two k-labeled graphs;

• η i,j : for some distinct labels i and j, we add an edge uv for each pair (u, v) of a vertex u of label i and a vertex v of label j. Doing so, we create a join (complete bipartite subgraph) whose respective sides are the subset of vertices of label i and the subset of vertices of label j.

• ρ i→j : for some distinct labels i and j, for all vertices v s.t. ℓ(v) = i, we set ℓ(v) = j.

The generated graph is the one obtained from the k-expression by ignoring all the labels. The clique-width of a graph G, denoted by cw(G), is the least k such that it is the graph generated by some k-expression [START_REF] Courcelle | Upper bounds to the clique width of graphs[END_REF].

It is useful to see a k-expression as a rooted tree. Namely, the leaves of this tree are labeled by the operations i(v) for vertex-creation. The internal nodes are labeled by the other operations, with the degree of each such node being the arity of the corresponding operation: 1 for the join operations and the relabeling operations, and 2 for the disjoint union operations. See Fig. 1 for an example. We call this tree representation the parse tree of the k-expression.

The size of a k-expression is its number of operations (= number of nodes in its parse tree). Throughout the remainder of the paper, we assume each given k-expression for a graph to be of linear size O(n + m). Note that it is always the case if we restrict ourselves to a subclass where a k-expression can be computed in linear time, that is anyway the most relevant case for which our results in this paper could be applied. More generally, any k-expression can be transformed into an equivalent k-expression of size O(n + m) [START_REF] Fürer | A natural generalization of bounded tree-width and bounded clique-width[END_REF]. This transformation can be done in time O(L) where L denotes the size of the input k-expression (see Lemma 7 in the paper). In [START_REF] Courcelle | Linear time solvable optimization problems on graphs of bounded clique-width[END_REF], the authors remarked that any k-expression of size L can be transformed in O k (L) time into an equivalent k-expression of size O k (n). However, they left unspecified the dependency on k, both in the runtime of this transformation and in the size of its output.

η1,2 ⊕ 2(d) ρ2→3 η1,2 ⊕ 1(c) ρ1→3 η1,2 ⊕ 1(a) 2(b)
Figure 1: The parse tree of some 3-expression of P 4 .

Tree-width

A tree decomposition (T, X) of G = (V, E) is a pair consisting of a tree T and of a family X = (X t) t∈V (T) of subsets of V indexed by the nodes of T and satisfying:

• t∈V (T) X t = V ;

• for any edge e = {u, v} ∈ E, there exists t ∈ V (T) such that u, v ∈ X t ;

• for any v ∈ V , the set of nodes {t ∈ V (T) | v ∈ X t } induces a subtree T v of T .
The sets X t are called the bags of the decomposition. The width of a tree decomposition is the size of a largest bag minus one. Finally, the tree-width of a graph G, denoted by tw(G), is the least possible width over its tree decompositions. We only use tree-width in Sec. 5.

Courcelle's theorem

We refer to [START_REF] Courcelle | Graph structure and monadic second-order logic: a language-theoretic approach[END_REF] for a thorough treatment of graph logics and their algorithmic applications. Recall that in monadic second-order logic (for short, M SO logic), we are given first-order variables x (written in lowercase), and set variables X (written in upper-case). We allow atomic formulas of the form x ∈ X, expressing the membership of x to a set X. The counting M SO (for short, CM SO) further allows atomic formulas of the form Card p,q (X), expressing that |X| ≡ p (mod q) and sometimes called counting predicates. -We here assume p and q to be fixed constants, but it should be noted that in the general case, the complexity of CM SO model checking also depends on the values of p and q. -The CM SO logic is stronger than M SO logic: for instance, there is no M SO formula expressing that a set has even cardinality [START_REF] Courcelle | Graph structure and monadic second-order logic: a language-theoretic approach[END_REF]. In Sec. 4, we will need the counting predicates of CM SO logic in order to express the Tutte-Berge formula. Before that, we need to define CM SO optimization functions.

Let φ be some CM SO formula whose set of free variables is arbitrarily split in two disjoint subsets of respective sizes r and s. Let also a 1 , a 2 , . . . , a s be fixed integers. Let Z 1 , Z 2 , . . . , Z r be fixed subsets of the domain of the first-order variables. We define ψ(Z 1 , Z 2 , . . . , Z r) as the minimum value

s i=1 a i • |X i | amongst all subsets X 1 , X 2 , . . . , X s such that φ(Z 1 , Z 2 , . . . , Z r , X 1 , X 2 , . . . , X s) is true.
Then, ψ is a CM SO optimization function of arity r. We define the size of ψ as |ψ| = r + s (a.k.a., as the arity of the underlying CM SO formula φ).

To a c-labelled graph G = (V, E, ℓ), we can associate the relational structure ⟨V, {adj, lab 1 , lab 2 , . . . , lab c }⟩ where the vertex-set V is the domain of first-order variables, the binary operator adj : V ×V → {0, 1} asserts whether two vertices are adjacent in G and, for each i, lab i : V → {0, 1} asserts whether the label of a given vertex equals i. The (C)M SO 1 logic on graphs is the above (C)M SO logic restricted to such structures. We define CM SO 1 optimization functions in the exact same way. There is a more general (C)M SO 2 logic, where we also allow variables to represent edges, but it is not discussed here. Finally, define the underlying graph of G as the graph obtained from G by removing all its labels.

The following Theorem 3 should not be considered as completely new. Indeed, it was first proved by Courcelle and Vanicat [START_REF] Courcelle | Query efficient implementation of graphs of bounded clique-width[END_REF], but only for M SO 1 whereas we prove it here for CM SO 1 logic. Another difference between the following Theorem 3 and the original result of Courcelle and Vanicat is that, in [START_REF] Courcelle | Query efficient implementation of graphs of bounded clique-width[END_REF], the authors restricted their study to optimization functions where all but one free variables must be fixed (with our notations, the latter corresponds to the case s = 1). Still, their proof also applies to the more general case presented below. We note that a proof of Theorem 3 could also be deduced from the heavy machinery from [START_REF] Courcelle | Graph structure and monadic second-order logic: a language-theoretic approach[END_REF]. Our presentation marginally differs from these previous works, while it avoids using explicitly some logic concepts such as M SO transductions.

Theorem 3. Let ψ be a CM SO 1 optimization function on c-labelled graphs, for some fixed constant c, and of arity r. For every c-labelled graph G of clique-width at most k, if a k-expression is given for the underlying graph of G, then after a pre-processing in Õk,|ψ| (n + m) time, for every vertex-subsets

Z 1 , Z 2 , . . . , Z r of G, we can compute the value ψ(Z 1 , Z 2 , . . . , Z r) in Õk,|ψ| r j=1 |Z j | time.
In order to prove Theorem 3, roughly, we rewrite a CM SO 1 formula on a c-labelled graph as a longer CM SO formula on the parse tree of its clique-width expression. Then, we make this parse tree of logarithmic depth, using a modified centroid decomposition, updating the CM SO formula along the way. We end up designing a dynamic programming procedure on this parse tree, using prior work of Doner [START_REF] Doner | Tree acceptors and some of their applications[END_REF] and Thatcher and Wright [START_REF] Thatcher | Generalized finite automata theory with an application to a decision problem of second-order logic[END_REF] on tree automata.

Proof of Theorem 3. We start from the given k-expression, which we transform into a kc-expression whose output is the c-labelled graph G. For that, roughly, we encode in the label of each vertex its former label in the original k-expression and its final label in G. See [START_REF] Courcelle | Linear time solvable optimization problems on graphs of bounded clique-width[END_REF]Lemma 30]. Consider the parse tree T of the resulting expression. Let ψ be defined by a CM SO 1 formula φ of arity r + s and by integers a 1 , a 2 , . . . , a s .

As an intermediate step toward proving the theorem, we now define a term as a node-labelled binary tree where the labels of the leaves are taken from some finite set of constants C and the labels of the internal nodes are taken from some some finite set F of binary functions. To each term T ′ , we can associate a relational structure ⟨V (T ′), {lef t, right} ∪ {lab α | α ∈ F ∪ C}⟩ and define CM SO formulas. Here, the node-set V (T ′) is the domain of first-order variables, lef t : V (T ′) × V (T ′) → {0, 1} asserts whether the first given node is the left child of the second node, right : V (T ′) × V (T ′) → {0, 1} does the same for the right child relation, and finally, for each α ∈ F ∪ C, lab α : V (T ′) → {0, 1} asserts whether the label of a given node equals α. In general, a parse tree T is not a term, because it is not a binary tree. Indeed, nodes labelled by either a relabelling or join operation have arity equal to one. However, to each such node, one may simply attach a new leaf with a special label equal to 0. We call T ′ the resulting term.

Claim 1. Consider the structure associated to T ′ . The following properties can be expressed by a MSO formula for this structure (whose length depends on k and c):

1. whether two given vertices of G are adjacent; 2. whether a given vertex of G has label i, for any i.

Proof. We first define child(x, y) := lef t(x, y) ∨ right(x, y) as a shorthand to determine whether x is a child of node y in T ′ . Then, we define a M SO formula desc(x, y) to determine whether x is a descendant of y: desc(x, y) :=∃P (x ∈ P ∧ y ∈ P ∧ ∀z ∈ P (

z ̸ = x ⇐⇒ ∃z ′ ∈ P (child(z ′ , z)) ∧ z ̸ = y ⇐⇒ ∃z ′′ ∈ P (child(z, z ′′))))
where P represents the path from x to y. We also define leaf (x) := ¬(∃z(child(z, x))) and root(x) := ¬(∃z(child(x, z))) to determine whether a node x is a leaf or the root of T ′ , respectively. Now, let v be a node of T ′ . It is a vertex of G if it satisfies the M SO formula vertex(v) := leaf (v) ∧ ¬lab 0 (v). Fix an ancestor x of v. It represents a kc-subexpression. We can determine whether, in the subgraph output by this subexpression, vertex v has label j, by keeping track in some subset of nodes X of all the relabelling operations which involve vertex v. Note that all such operations label nodes of T ′ on the path from v to x. Let ordered(X) := ∀y, y ′ ∈ X(desc(y, y ′) ∨ desc(y ′ , y)) to determine whether all nodes in X lie on a path from a leaf to the root. Let. also anc(X, x) = ∀z ∈ X(desc(z, x)) to determine whether x is an ancestor of all nodes in X. We will need to compare every two "consecutive" operations stored in X. For that, let us define the formula:

succ(z, z ′ , X) :=z ̸ = z ′ ∧ desc(z, z ′) ∧ ∀z ′′ ∈ X((z ′′ ̸ = z ∧ z ′′ ̸ = z ′) =⇒ (¬desc(z, z ′′) ∨ ¬desc(z ′′ , z ′)))
If X is a subset of nodes on the path from a leaf to the root, then it associates to a node z its closest ancestor node z ′ in X.

Let relab in (z, i) := k j=1 lab ρi→j (z) be satisfied if, for some j, all vertices with label i are assigned label j (we say that a relabelling operation for label i occurs at node z). In the same way, let relab out (z, j) := k i=1 lab ρi→j (z) ∨ lab j (z) be satisfied if either we create a new vertex with label j or, for some i, all vertices with label i are assigned label j. Informally speaking, we use relab in (z, i) (resp., relab out (z, j)) in order to keep track of the label of vertex v before (resp., after) each relabelling operation; the initial creation of vertex v is abusively considered the same as a relabelling operation.

The M SO formula:

no -relab(z, z ′ , i) := ∀y((desc(z, y) ∧ desc(y, z ′) ∧ y ̸ = z ′) =⇒ ¬relab in (y, i))
asserts that there is no relabelling operation for label i that occurs from node z (included

) to z ′ (excluded) in T ′ . Let next(z, z ′) := k i=1 (relab out (z, i) ∧ no -relabel(z, z ′ , i) ∧ relab in (z ′ , i))
to check whether at z some more vertices get assigned label i (as a result of either the creation of a new vertex, or a relabelling operation) and z ′ is the next relabelling operation for i after z. Informally speaking, in our final formula we use next(z, z ′) as a way to check whether z, z ′ are two consecutive changes of label for vertex v. Finally, let

f inal(z, x, j) := relab out (z, j) ∧ (z = x ∨ (no -relab(z, x, j) ∧ ¬relab in (x, j)))
to check that the label of vertex v stays unchanged from z. We are now ready to check the label of v in the graph outputted by the subexpression:

label(v, x, j) := ∃X(v ∈ X ∧ ordered(X) ∧ anc(X, x) ∧ ∀z ∈ X(∃z ′ (z ′ ∈ X ∧ succ(z, z ′ , X)) =⇒ next(z, z ′) ∧ ̸ ∃z ′ (z ′ ∈ X ∧ succ(z, z ′ , X)) =⇒ f inal(z, x, j))).
Equipped with the above formula, we can decide whether v has label i in G using the formula lab G (v, i) := ∃x(root(x) ∧ label(v, x, i)). Furthermore, we can also determine whether two vertices u and v are adjacent in G by using the formula:

adj G (u, v) := 1≤i,j≤k (∃x(label(v, x, i) ∧ label(u, x, j) ∧ lab ηi,j (x))).
⋄ Doing so, we may now regard the CM SO 1 formula φ for G as a CM SO formula φ ′ for the structure associated to T ′ . Let ψ ′ be the CM SO optimization function defined from φ ′ and a 1 , a 2 , . . . , a s in the natural way. We stress that φ ′ and ψ ′ express properties of T ′ and of subsets of leaves of T ′ : indeed, there is a one-to-one mapping between the vertices of G and the leaves of T ′ with positive label. Furthermore, we have [START_REF] Abboud | Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs[END_REF].

|ψ ′ | = O k,|ψ|
In order to prove the theorem, it suffices to prove the following. Let ψ ′ be any fixed CM SO optimization function which expresses properties of terms and of subsets of their leaves. For any term T ′ with N nodes, we can associate Õ|ψ ′ | (1)-size labels L(v) to each leaf-node v in such a way that, for each subsets of leaves

Z 1 , Z 2 , . . . , Z r , it becomes possible to compute ψ ′ (Z 1 , Z 2 , . . . , Z r) in O(r i=1 v∈Zi |L(v)|) time.
Moreover, all these labels can be pre-computed in Õ|ψ ′ | (N) time.

For that, a nice intermediate result of Courcelle and Vanicat [21,Sec. 4] is that we can always assume the term to have logarithmic depth. Specifically, add one more binary operator • to the label-set of internal nodes, and one more constant I d to the label-set of leaves. Let T ′ be a term with N nodes and at most one leaf whose label equals I d (note that initially, there is no such a leaf, and so, the property holds). Choose a node w such that:

• If there is no leaf whose label equals I d , then w is a centroid of T (i.e., a node whose removal leaves subtrees of order at most N/2). Such a node always exists by a classic theorem from Jordan [START_REF] Jordan | Sur les assemblages de lignes[END_REF].

• Otherwise, let u be the unique leaf labelled I d . We choose w as the deepest ancestor of u with more than N/2 descendants.

In both cases, we can compute the node w in O(N) time by dynamic programming. Let T ′ 1 be obtained from T ′ by removing all strict descendants of w and relabelling w with the new constant I d . Let. also T ′ 2 , T ′ 3 be the left and right subtrees of w. We create a new term whose root is labelled by the new operator •, whose left subtree is T ′ 1 and whose right subtree is the subtree rooted at w (i.e., with respective right-left and right-right subtrees T ′ 2 and T ′ 3). Furthermore, we may repeat this process on T ′ 1 and T ′ 2 , T ′ 3 until all the gotten subtrees have constant-depth. We may see the overall construction as a special case of centroid decomposition. Let T ′′ be the resulting term.

Claim 2. The number of recursive steps is in O(log N). In particular, the depth of T ′′ is in O(log N) and we can compute this term from T ′ in Õ(N) time.

Proof. By the choice of w, the subtree T ′ 1 has order at most N/2, and so does at least one of T ′ 2 , T ′ 3 . The remaining subtree T ′ i , i ∈ {2, 3} also has order at most N/2 except maybe if we fall in the second case when there exists a leaf labelled I d and this leaf is not contained in T ′ i . Then, at the next recursive step, T ′ i falls in the first case, and therefore, after at most two steps, all subtrees considered have order at most N/2. ⋄ Observe that there is a one-to-one mapping between the nodes of T ′ and the nodes of T ′′ with any other label than I d , •. This mapping also preserves the labels and the property for a node to be a leaf. Moreover, Claim 3. Consider the structure associated to T ′′ . Given two nodes, the property for the first one to be the left child of the second one in T ′ (resp., its right child) can be expressed by a constant-size MSO formula for this structure.

Proof. For clarity, we shall write lab ′ α , lef t ′ , right ′ the operations in the structure associated to T ′ , and lab ′′ β , lef t ′′ , right ′′ the operations in the structure associated to T ′′ . Consider a leaf y whose label is I d (representing one step of the centroid decomposition). There is a corresponding internal node x, labelled •. This node x is an ancestor of y, however after we are done with our centroid decomposition, there may also exist intermediate nodes labelled • on the xy-path. In order to find x, we first need to observe that at any step of our recursive construction, if there exists a unique leaf y labelled I d then, in the new term we create at this step (with root labelled •), this leaf y always ends up in the right subtree. As a result, x is the closest ancestor to y labelled • such that y is in its left subtree. Next, we characterize the relation between x and y with a M SO formula. As before, let child(z, z ′) := lef t ′′ (z, z ′) ∨ right ′′ (z, z ′). Let also

path(z, P, z ′) :=(z, z ′ ∈ P) ∧ ∀u ∈ P ((u ̸ = z ⇐⇒ ∃u ′ ∈ P (child(u ′ , u))) ∧ (u ̸ = z ′ ⇐⇒ ∃u ′ ∈ P (child(u, u ′))))
denote the property for P to be a path from z to one of its ancestors z ′ . We characterize the relation between x and y by the following M SO formula:

cut(x, y) :=lab • (x) ∧ lab I d (y) ∧ ∃P (path(y, P, x) ∧ ∀z ∈ P (z = x ⇐⇒ (lab • (z) ∧ ∃z ′ ∈ P (lef t ′′ (z ′ , z)))))
where the final line of the formula enforces x to be the only node of P with label • and its left child also in P . The original node of T ′ that is replaced by y is always the right child of x in T ′′ . Now, let u, v be nodes of T ′ . By symmetry, we only need to express the property whether u is the left child of v in T ′ . If u is the left child of v in T ′′ then it is also the case in T ′ . Otherwise, assume the left child of v in T ′′ to be labelled either • or I d (if it is not the case then, u cannot be the left child of v in T ′). If the left child of v is a leaf y labelled I d then, let x be the corresponding internal node labelled •; in order for u to be the left child of v in T ′ , it must be the right child of x in T ′′ . Finally, we consider the case when the left child of v is an internal node x labelled •. Observe that at each step of our recursive construction, the root of the term considered is put in the left subtree. Therefore, u is the left child of v in T ′ if and only if it is reached from x by always going left until the first node whose label does not equal •. Consider the following formula in order to relate the root x of some term in T ′′ , whenever x is labeled •, to the root u of the corresponding term in T ′ :

root ′ (u, x) := ∃P (path(u, P, x) ∧ ∀z ∈ P ((z ̸ = x ⇐⇒ ∃z ′ ∈ P (lef t ′′ (z, z ′))) ∧ (z ̸ = u ⇐⇒ lab • (z)))).
We can express whether u is the left child of v in T ′ as follows:

lef t ′ (u, v) := lef t ′′ (u, v) ∨ ∃x, y(lef t ′′ (y, v) ∧ cut(x, y) ∧ right ′′ (u, x)) ∨ ∃x(lef t ′′ (x, v) ∧ root ′ (u, x)).

⋄

It follows from the above claim that any CM SO formula on the structure associated to T ′ can be transformed into an equivalent CM SO formula on the structure associated to T ′′ , with constant-size overhead. Thus, from now on, we assume without loss of generality (w.l.o.g). the depth of T ′ to be in O(log N).

Let φ ′ be a M SO formula with r + s free variables, expressing properties of terms and subsets of their leaves. A celebrated result from Doner [START_REF] Doner | Tree acceptors and some of their applications[END_REF] and Thatcher and Wright [START_REF] Thatcher | Generalized finite automata theory with an application to a decision problem of second-order logic[END_REF] is that for every fixed φ ′ , for every term T ′ and leaf-subsets Z 1 , Z 2 , . . . , Z r+s , we can decide whether φ ′ (Z 1 , Z 2 , . . . , Z r+s) holds true in time linear in the input. -Formally, these prior works only apply to terms, and not to terms and subsets of their leaves. However, as observed by Courcelle and Vanicat [START_REF] Courcelle | Query efficient implementation of graphs of bounded clique-width[END_REF], we may multiply the number of labels by 2 r+s in order to encode, for each leaf, its belonging to some subset Z i . -This result also holds for CM SO formulas because, for terms and more generally for bounded-degree forests, CM SO has the same expressive power as M SO [15, Lemma 5.27 and Proposition 5.30]. We apply this result to the formula φ ′ corresponding to our CM SO optimization function ψ ′ on terms. Recall that |ψ ′ | = O k,|ψ| [START_REF] Abboud | Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs[END_REF], where ψ is a CM SO 1 optimization function on c-labelled graphs.

The result of Doner, Thatcher and Wright is achieved through the construction of a finite tree automaton A φ ′ , of which the formal definition can be found, e.g., in [START_REF] Courcelle | Graph structure and monadic second-order logic: a language-theoretic approach[END_REF]Definition 3.46]. Suffice it to say for our purpose that A φ ′ is a finite-state machine which, given T ′ , Z 1 , Z 2 , . . . , Z r+s as input, assigns a state to each node of T ′ using bottom-up dynamic programming. Specifically, the state of a node is determined according to transition rules, in function of its label and of the states of its children. We say that A φ ′ accepts the input if the state of the root is from a pre-defined set of so-called accepting states.

Note that on any input to A φ ′ , since the state of each node is computed bottom-up, it only depends on the leaves in its rooted subtree. We denote by F x the leaves in the subtree rooted at a node x. Then, for every node x of T ′ and state q of A φ ′ , let M (x, q) minimize s i=1 a i |X i | amongst all subsets X 1 , X 2 , . . . , X s ⊆ F x such that, being given T ′ , ∅, ∅, . . . , ∅, X 1 , X 2 , . . . , X s as input, the state assigned to node x is q (i.e., we first assume Z 1 = Z 2 = . . . = Z r = ∅ and we restrict the other sets to F x). If x is a leaf then, each X i is either empty or reduced to {x}, and therefore, we are left testing 2 s = O |ψ ′ | (1) possibilities. Otherwise, let ℓ be the label of node x and let y, z be its children; then, by linearity, M (x, q) is the minimum of M (y, q 1) + M (z, q 2) amongst all transitions (q 1 , q 2 , ℓ) → q. Overall, since there are only O |ψ ′ | (1) states q to consider at each node, the whole dynamic programming can be done in O |ψ ′ | (N) time, where N is the number of nodes.

To each leaf v, we assign a label L(v) that contains: the automaton A φ ′ , the path P v from v to the root in T ′ , and finally, for each x ∈ P v \ v, all the values M (y, q) for its unique child not in P v . Since the depth of T ′ is assumed to be O(log N), |L(v)| = Õ|ψ ′ | (1). Let now Z 1 , Z 2 , . . . , Z r be arbitrary fixed subsets. In order to compute ψ ′ (Z 1 , Z 2 , . . . , Z r), the same as above we could compute the minimal values M Z (x, q) for each node x and state q, then keep the minimum such value when x is the root and q is an accepting state. However, that would require O |ψ ′ | (N) time. To do that faster, let T ′ Z be the smallest subtree that contains the root of T ′ and whose leaves are exactly the nodes in Z = r j=1 Z j . Clearly,

|V (T ′ Z)| ≤ v∈Z |L(v)| ≤ Õ|ψ ′ | (r j=1 |Z j |).
Furthermore, for every subtree of T ′ \ T ′ Z , we stored the values M (y, q) for its root y in at least one label L(v), for some v ∈ Z. Note also that M (y, q) = M Z (y, q) because there is no leaf from Z in its rooted subtree. Hence, using these labels, we can compute the values M Z (x, q) for each state q and for each node x of T ′ Z , including the root, by dynamic programming on

T ′ Z . It takes O |ψ ′ | (|V (T ′ Z)|) = O |ψ ′ | (r j=1 v∈Zj |L(v)|) = Õ|ψ ′ | (r j=1 |Z j |) time.
As a particular case of the above Theorem 3 (for r = 0), we retrieve the optimization version of Courcelle's theorem for bounded clique-width graphs (see [START_REF] Courcelle | Linear time solvable optimization problems on graphs of bounded clique-width[END_REF]). In this special case, the runtime can be improved to linear time because we needn't compute a modified centroid decomposition. Namely: Theorem 4. Let φ be a CM SO 1 formula on c-labelled graphs, for some fixed constant c, and with s free variables. Let also a 1 , a 2 , . . . , a s be fixed integers. For every c-labelled graph G of clique-width at most k, if a k-expression is given for the underlying graph of G, then in O k,|φ| (n + m) time, one can compute the minimum value s i=1 a i • |X i | amongst all vertex-subsets X 1 , X 2 , . . . , X s such that φ(X 1 , X 2 , . . . , X s) is true.

Algorithms: the general case

Our main result in this section (Theorem 1) is proved in Sec. 4.3. In Sec. 4.1 we first compute the matching number, a key step toward the final proof of Theorem 1. Sec. 4.2 is devoted to computing the Edmonds-Gallai decomposition, and it is a gentle introduction to the techniques we also use in Sec. 4.3.

Size of a maximum matching

We explain in this section how to compute the matching number of bounded clique-width graphs. For that, we need a classic result from Matching theory: Lemma 1 (Tutte-Berge formula [START_REF] Berge | Sur le couplage maximum dun graphe[END_REF][START_REF] Bondy | Graph theory[END_REF]). For any graph G = (V, E), we have:

ν(G) = min U ⊆V 1 2 (|V | + |U | -odd(G \ U))
where odd(G \ U) denotes the number of connected components of odd size of G \ U .

Our main insight below is that evaluating the Tutte-Berge formula can be written as a CM SO 1 optimization problem. We prove it next: Theorem 5. For any graph G = (V, E) of clique-width at most k, if a k-expression is given then, we can compute ν(G) in O k (n + m) time.

Proof. By Theorem 4, it suffices to prove that the Tutte-Berge formula (see Lemma 1) can be written as a CM SO 1 optimization problem. For that, let us first define adj(x, y, U) := adj(x, y) ∧ x / ∈ U ∧ y / ∈ U in order to suppress all edges incident to a given set U . The following formula can be used to test whether two vertices are in the same connected component of G \ U , for a given set U : connected(x, y, U

) := ∀X((x ∈ X ∧ y / ∈ X) =⇒ ∃x ′ , y ′ (x ′ ∈ X ∧ y ′ / ∈ X ∧ adj(x ′ , y ′ , U))
). Then, we can relate a vertex to its connected component of G \ U as follows: comp(x, X, U) := ∀y(y ∈ X ⇐⇒ connected(x, y, U)). We are now ready to define our formula for computing ν(G). It has two free variables. . By Lemma 1, we have ν(G) = 1 2 (n + δ). We stress that by using Courcelle's optimization theorem, an optimal certificate U for the Tutte-Berge formula could also be computed. However, this approach does not lead to an efficient computation of a maximum matching. For all that, the CM SO 1 formula in this above Theorem 5 is the cornerstone of all the remainder of Sec. 4.

T utteBerge(U, W) :=∀x ∈ W (x / ∈ U ∧ ∃X(comp(x, X, U) ∧ Card 1,2 (X))) ∧ ∀x, y ∈ W (x = y ∨ ¬connected(x, y, U)).

Edmonds-Gallai decomposition

We continue with a known structural result about maximum matchings in a graph. Recall that a graph is hypomatchable if the removal of any one vertex results in a graph with a perfect matching.

Theorem 6 (Edmonds-Gallai [START_REF] Edmonds | Paths, trees, and flowers[END_REF][START_REF] Gallai | Kritische graphen II[END_REF][START_REF] Gallai | Maximale systeme unabhangiger kanten[END_REF]). Let G = (V, E) be a graph, and let A ⊆ V be the set of all vertices v so that there is a maximum matching of G that does not cover v. Set B = N G (A) and C = V \ (A ∪ B). Then:

• Every odd component H of G \ B is hypomatchable and it has V (H) ⊆ A;
• Every even component H of G \ B has a perfect matching and it has V (H) ⊆ C;

• For every non-empty X ⊆ B, the set N (X) contains vertices in > |X| odd components of G \ B. (A,B,C) is called the Edmonds-Gallai decomposition of G.

The partition

In [START_REF] Cheriyan | Algorithms for Problems in Matching Theory[END_REF], the author proposes a randomized O(n ω)-time algorithm for computing the Edmonds-Gallai decomposition of an n-vertex graph, where ω < 2.37286 [START_REF] Alman | A refined laser method and faster matrix multiplication[END_REF] denotes the exponent of square matrix multiplication. We improve this result to deterministic almost linear-time for all classes of bounded clique-width graphs (under the standard assumption in the field that a corresponding clique-width expression is given in the input): Theorem 7. For any graph G = (V, E) of clique-width at most k, if a k-expression is given then, we can compute its Edmonds-Gallai decomposition in Õk (n + m) time.

Proof. If we are given the set A of all vertices left exposed by at least one maximum matching then, by Theorem 6, the sets B and C can be computed in additional O(n+m) time. Recall (see Theorem 5) that there exists a CM SO 1 formula T utteBerge(U, W) to express that all vertices of W are in pairwise different odd components of G\U . Let EdmondsGallai(X, U, W) := T utteBerge(U ∪X, W). It is also a CM SO 1 formula since the union of two subsets can be easily expressed in M SO [START_REF] Courcelle | Graph structure and monadic second-order logic: a language-theoretic approach[END_REF]. Then, for any X, let ψ(X) be the problem of minimizing |U | -|W | among all the subsets U, W such that EdmondsGallai(X, U, W) is true. Observe that ψ is a CM SO 1 optimization function. We apply Theorem 3 to ψ. Then, we claim that v ∈ A if and only if ψ({v}) = 2ν(G) + 1 -n. Indeed, by construction we have ψ({v}) = min U ⊆V \{v} (|U | -odd(G \ ({v} ∪ U))), and therefore by Lemma 1, ν(G \ {v}) = 1 2 (n -1 + ψ({v})). Then:

v ∈ A ⇐⇒ν(G) = ν(G \ {v}) ⇐⇒ ν(G) = 1 2 (n -1 + ψ({v})) ⇐⇒2ν(G) = n -1 + ψ({v}) ⇐⇒ ψ({v}) = 2ν(G) + 1 -n.
Computing ν(G) can be done in O k (n + m) time (Theorem 5). Computing ψ({v}) takes Õk (1) time per vertex v up to an Õk (n + m)-time pre-processing (Theorem 3). As a result, we can compute the set A, and so, the Edmonds-Gallai decomposition, in Õk (n + m) time.

Computation of a maximum matching

Let us first recall our main result in this section:

Theorem 1. Given a graph G and a corresponding k-expression, one can compute a maximum matching for G in deterministic Õk (n + m) time.

Let us sketch our strategy to prove this above result. Given a graph G = (V, E), we first recall that an edge-cut is, for some non-empty proper subset A, the set of all edges between A and V \ A. It is balanced if we further have max{|A|, |V \ A|} ≤ 2n/3. Roughly, we compute a balanced edge-cut for G, we compute a subset of edges of the cut to be included in some maximum matching of G, then we recurse on subgraphs of G[A] and G[V \ A] separately.

Computing a balanced edge-cut

The computation of a balanced edge-cut in Õ(k • (n + m)) time follows from prior works [START_REF] Courcelle | A characterisation of cliquewidth through nested partitions[END_REF][START_REF] Ducoffe | Optimal Centrality Computations Within Bounded Clique-Width Graphs[END_REF]. We need to introduce some additional terminology. A width-k partition tree is the parse tree of a k-expression where we iteratively contracted all internal nodes of degree two. Such trees have a purely combinatorial characterization, that can be found in [START_REF] Courcelle | A characterisation of cliquewidth through nested partitions[END_REF]. A representation graph is a compact encoding of a partition tree (i.e., in O(kn) space if the width of the partition tree is at most k). Roughly, for every node y in the partition tree, we add in the representation graph one new vertex for every non-empty label class in the labeled subgraph G y that corresponds to its subtree. For every child z of y and for every labels i and j, we add an arc from (y, j) to (z, i) if and only if all vertices of label i in G z are of label j in G y .

Lemma 2 ([16]

). There is an algorithm that transforms a k-expression into the representation graph of a width-k partition tree in O(k • (n + m)) time.

For a graph G = (V, E), let (U, W = V \ U) be a cut. We call its left side U an ℓ-module if it can be ℓ-

partitioned into U 1 , U 2 , . . . , U ℓ such that, for each 1 ≤ i ≤ ℓ and u i , u ′ i ∈ U i , we have N G (u i)\U = N G (u ′ i)\U .
Note in particular that there is a join between U i and N G (U i). Finally, the neighbourhood diversity of a cut (U, W) is the least ℓ such that U is an ℓ-module. An easy observation (see [START_REF] Ducoffe | Optimal Centrality Computations Within Bounded Clique-Width Graphs[END_REF]Lemma 2]) is that for every node y in a width-k partition tree of G, the vertex-subset V (G y) is an ℓ-module where ℓ ≤ k is the number of non-empty label classes in G y . Based on this observation and the standard computation of a centroid node in a tree, an algorithm is proposed in the proof of [START_REF] Ducoffe | Optimal Centrality Computations Within Bounded Clique-Width Graphs[END_REF]Theorem 2] in order to compute a balanced cut of neighbourhood diversity at most k. In a nutshell, for some centroid node c of the partition tree this algorithm starts from the non-empty label classes of G c , as vertices in the representation graph. Then, it computes the intersection of each label class with all leaves in the subtrees rooted at some children nodes of c. For that, it is sufficient to traverse the arcs in the representation graph until we reach all possible sinks. We summarize this above discussion in the following lemma.

Lemma 3 ([29]

). Let G be a graph, with some representation graph of a width-k partition tree. One can compute in O(k • n) time a cut (U, W) s.t. max{|U |, |W |} ≤ 2n/3, and the representation graphs of some width-k partition trees for the subgraphs G[U] and G[W]. Furthermore, U is an ℓ-module of G, for some ℓ ≤ k, and one can also compute in O(k • n) time a corresponding ℓ-partition U 1 , U 2 , . . . , U ℓ .

We reuse this above Lemma 3 also in Sec. 5.1. Note that a weaker version could also be deduced from [START_REF] Courcelle | Query efficient implementation of graphs of bounded clique-width[END_REF]Lemma 3], but at the price of a higher (exponential) dependency on the clique-width in both the construction time and the neighbourhood diversity of the output cut.

Handling of a join

An important property for the cut computed using Lemma 3 is that it can be edge-partitioned into at most k joins. We handle each join separately. For that, both Lemma 4 and Lemma 5 below apply Theorem 3 (distributed Courcelle's theorem).

Lemma 4. Let X, Y be the two sides of a join in a graph G = (V, E), where |X| ≤ |Y | and cw(G) ≤ k. If a k-expression is given, then in Õk (n + m) time, we can compute an inclusion-wise minimal subset X ′ ⊆ X such that, in some maximum matching of G:

1. every vertex of X ′ is matched to some vertex of Y ; 2. no vertex of X \ X ′ is matched to a vertex of Y .
Proof. The idea is similar to Theorem 7 but, instead of removing subsets of vertices, we simulate the removal of some edges of the join. While we cannot express a subset of edges in CM SO 1 logic, such removal can be expressed in M SO 1 if we add vertex-labels. Specifically, let G Y = (V, E, ℓ) be the 2-labelled graph such that: ℓ(y) = 1 for every y ∈ Y ; and ℓ(v) = 2 for every v ∈ V \ Y . Through the formula

adj(u, v, Z) := adj(u, v) ∧ (u / ∈ Z ∨ ¬lab 1 (v)) ∧ (v / ∈ Z ∨ ¬lab 1 (u))
we ignore all edges between a given subset Z and Y . Take the formula T utteBerge(U, W) of Theorem 5 and, for some new free variable Z, replace all occurences of adj(u, v) in this formula by adj(u, v, Z). Doing so, we get a new CM SO 1 formula φ(Z, U, W). Let ψ(Z) minimize |U | -|W | among all subsets U, W such that φ(Z, U, W) is true. If we denote E(Z, Y) the set of edges between Z and Y then, by Lemma 1, we have ν(G \ E(Z, Y)) = 1 2 (n + ψ(Z)). We start from Z := ∅ and we consider all vertices x ∈ X sequentially. We add x in Z if and only if ν(G) = 1 2 (n + ψ(Z ∪ {x})). Finally, after we are done scanning X, we claim that we can choose X ′ = X \ Z. Indeed, by construction Z is an inclusion-wise maximal subset of X such that ν(G) = ν(G \ E(Z, Y)). Consider a maximum matching M with no edge between Z and Y . By maximality of Z, all the vertices of X ′ needs to be matched to some vertex of Y , thus proving the claim. Overall, we need to compute ψ(Z) for |X| different subsets Z, each of cardinality at most |X|. By Theorem 3, we can do all these computations in time Õk (n

+ m + |X| 2) = Õk (n + m + |X∥Y |) = Õk (n + m)
, where the last two equalities follow from |X| ≤ |Y | and the fact there is a join between X and Y . Lemma 5. Let X, Y be the two sides of a join in a graph G = (V, E), where |X| ≤ |Y | and cw(G) ≤ k. We are given a subset X ′ ⊆ X as stated in Lemma 4. If a k-expression is given then, in Õk (n + m) time, we can compute the intersection of the edges of the join with some maximum matching of G.

Proof. Let G ′ = (V, E, ℓ) be the 4-labelled graph such that: ℓ(x) = 1 for every x ∈ X ′ ; ℓ(u) = 2 for every u ∈ X \ X ′ ; ℓ(y) = 3 for every y ∈ Y ; ℓ(v) = 4 for every v ∈ V \ (X ∪ Y). Consider the following formula:

adj(u, v, Z) := adj(u, v) ∧ (lab 2 (u) =⇒ ¬lab 3 (v)) ∧ (lab 2 (v) =⇒ ¬lab 3 (u)) ∧ (u ∈ Z =⇒ lab 1 (v)) ∧ (v ∈ Z =⇒ lab 1 (u)).
The second line excludes all edges between Y and X \ X ′ . The third line restricts to X ′ the neighbourhoods of the vertices in a given subset Z. As for the previous Lemma 4, we take the formula T utteBerge(U, W) of Theorem 5 and, for some new free variable Z, we replace all occurences of adj(u, v) in this formula by adj(u, v, Z). Doing so, we get a new CM SO 1 formula φ(Z, U, W). Let ψ(Z) minimize |U | -|W | among all subsets U, W such that φ(Z, U, W) is true.

We start from Z = ∅ and we consider each vertex y ∈ Y sequentially until we get |Z| = |X ′ |. We add y into Z if and only if we have ν(G) = 1 2 (n + ψ(Z ∪ {y})). Finally, we output any perfect matching between X ′ and Z. Before proving correctness of the algorithm, let us discuss its time complexity. Computing ν(G) can be done in O k (n + m) time by Theorem 5. We also need to evaluate ψ(Z) for up to |Y | different subsets Z, each having size at most |X ′ | ≤ |X|. By Theorem 3, we can do that in total time Õk (n+m+|X∥Y |) = Õk (n+m), where the last equality follows from the fact there is a join between X and Y .

To prove correctness, let Z ⊆ Y be of cardinality ≤ |X ′ |. We claim that, if ν(G) = 1 2 (n + ψ(Z)), then there exists a maximum matching of G where all the vertices of Z are matched to some vertices of X ′ . To see that, observe first that by Lemma 1, 1 2 (n + ψ(Z)) is the cardinality of a maximum matching in the graph H Z : obtained from G by removing all edges between Y and X \ X ′ and all edges between Z and V \ X ′ . Let M be a maximum matching of H Z . Since ν(H Z) = ν(G), it is also a maximum matching of G. Assume that in M , there is a z ∈ Z not matched to a vertex of X ′ . Then, z is left exposed by M (i.e., because N H Z (z) ⊆ X ′ by construction). By the pigeonhole principle, there exists a x ∈ X ′ that is not matched in M to any vertex of Z. We remove from M any edge incident to x, which we replace by xz. The claim follows by repeating this process for all z ∈ Z until each such vertex is matched to some vertex of X ′ .

Note that a Z as above for which we have ν(G) = 1 2 (n + ψ(Z)) always exists, namely, we can set Z = ∅. Indeed, by Lemma 4 we have ν(G) = ν(H ∅). Assume now the set Z to be inclusion-wise maximal and suppose for the sake of contradiction |Z| < |X ′ | (i.e., our algorithm would stay blocked). Let M be a maximum matching of H Z with all vertices of Z being matched to some vertices of

X ′ . Since H Z is a subgraph of H ∅ and ν(H Z) = ν(G) = ν(H ∅), M is
also a maximum matching of both H ∅ and G. By minimality of X ′ (see Lemma 4) the vertices of X ′ must be matched to some vertices of Y in any maximum matching of H ∅ , and so, in M . Let Z ′ ⊆ Y, Z ∩ Z ′ = ∅ such that the vertices of Y that are matched in M to the vertices of X ′ are exactly Z ∪ Z ′ . We get ν(H Z∪Z ′) = ν(H ∅) = ν(G), thus contradicting the maximality of Z.

Overall, we may assume |Z| = |X ′ |. Since there is a join between Z and X ′ , any perfect matching between Z and X ′ is included in a maximum matching M of H Z , and so, of both G and H ∅ . Recall that all edges between Y and X \ X ′ got removed in H ∅ . As a result, the intersection of M with the join is a perfect matching between Z and X ′ .

We stress that if we apply Lemma 4 and Lemma 5 to two different joins X 1 , Y 1 and X 2 , Y 2 , then doing so we may compute their respective intersections with two different maximum matchings of the graph. Therefore, we need to remove from the graph the end-vertices of all edges in the intersection between the join X 1 , Y 1 considered and some maximum matching before we can process another join X 2 , Y 2 of the graph. However, this is still not enough in order to ensure the compatibility of multiple applications of Lemma 4 and Lemma 5. The reason is that there may exist a maximum matching with an even larger intersection with the join X 1 , Y 1 . Indeed, the subset X ′ 1 of Lemma 4 is only inclusion-wise minimal. Hence, if we now apply Lemma 4 and Lemma 5 to another join X 2 , Y 2 , then doing so we may compute the intersection of the latter with some maximum matching with an even larger intersection with X 1 , Y 1 than the one we previously computed. Our approach in order to prevent such complications from happening consists in removing all edges from the join X 1 , Y 1 . The resulting subgraph is not induced, but it still has bounded clique-width (see Lemma 6 below for a proof).

Updating the k-expression

Finally, once we computed from a join a subset of edges to be added into a maximum matching, all other edges of the join can be removed from the graph (and in fact they must be removed, as we discussed it above). We must also remove all the end-vertices of the edges included into the matching. Doing so, we need the following two lemmas in order to update the k-expression of the graph considered. Lemma 6. Let G = (V, E) be a graph, let (U, W) be a cut of G, and let U ′ ⊆ U . If cw(G) ≤ k then the graph H, obtained from G by removing all edges between U ′ and W ′ := N (U ′) ∩ W , has clique-width at most 3k. Furthermore, we can compute a 3k-expression of H from a k-expression of G in O(n + m) time.

Proof. Fix a k-expression of G. We replace all operations in it as follows:

• Creation of a vertex v with label i: we assign to vertex v the label

i if v ∈ W , the label i + k if v ∈ U ′ ,
and the label i + 2k otherwise.

• Disjoint union: unchanged.

• Relabelling ρ i→j : we perform three consecutive relabelling operations, namely, ρ i→j , ρ i+k→j+k and ρ i+2k→j+2k .

• Addition of a join η i,j : we add 7 different joins, namely, η i,j , η i,j+2k , η i+k,j+k , η i+k,j+2k , η i+2k,j , η i+2k,j+k , and η i+2k,j+2k . Since we excluded from this above list the joins η i,j+k and η i+k,j , we do not add any edge between the subsets U ′ and W .

Overall, we just need to scan the k-expression once and replacing each of its operations by at most seven new operations, and so, the running time is linear in its size.

Lemma 7. Let G = (V, E) be a graph and let H = (X, E X) be an induced subgraph of G. If a k-expression of G is given, then in O(n + m) time, we can compute a k-expression of H of size O(|X| + |E X |).
Proof. We present a transformation of any k-expression of G into a k-expression of H of size at most 2|X| + |E X |. The runtime of the transformation is shown to be in O(L) if the k-expression of G has size L.

Recall that a k-expression of size L = O(n + m) always exists and that we assume to be given one for our algorithms. Therefore, this aforementioned transformation will prove the lemma.

Let us call a k-expression irredundant if for any join operation η i,j in it, there was previously no edge between the vertices labelled i and the vertices labelled j. Being given a k-expression of size L, we can compute an irredundant k-expression in O(L) time [START_REF] Courcelle | Upper bounds to the clique width of graphs[END_REF]. Thus, from now on, we assume to be given an irredundant k-expression of G of size O(L). We transform the parse tree T of this irredundant k-expression of G into the parse tree T ′ of an irredundant k-expression of H. For that, we remove some nodes with at most one child from T . Note that, in what follows, whenever we remove such a node that is neither a leaf nor the root, we implicitly reconnect its unique child to its father.

The algorithm works in two phases, that we describe next. During the first phase of the transformation, we perform a post-order traversal. For every operation y, considered as a node of T , let p(y) denote its post-order number. Let also s(y) denote the size of its rooted subtree. Before we start the traversal we precompute the values p(y) and s(y), for every operation y, in total O(L) time. Furthermore, as we traverse the tree we store some vertices in X in k different stacks, according to their respective labels. In what follows, a vertex v is identified with the operation i(v) of creating this vertex. We keep the vertices in the stacks totally ordered with respect to their respective post-order numbers. In particular at any moment during the traversal, for every 1 ≤ i ≤ k, the top entry of the i th stack is the vertex in X of current label i with maximum post-order number. Let us now describe how to process every operation y:

1. Case y = i(v) for some i. We remove the node if v / ∈ X. Otherwise, we push vertex v in the i th stack.

2. Case y = ⊕. We remove the node if it has at most one child, or equivalently if at least one of the subgraphs G 1 , G 2 of which we take the disjoint union does not contain a vertex of X.

3.

Case y = η i,j for some distinct i and j. If either the i th stack or the j th stack is empty, then we remove the node. Otherwise, let v i and v j denote the respective top entries of the i th and the j th stacks. We remove the node if and only if at least one of v i , v j is not in the subtree rooted at y. It can be checked in constant time by verifying whether p(y) -s(y) + 1 ≤ p(v i) ≤ p(y), resp. whether p(y) -s(y) + 1 ≤ p(v j) ≤ p(y). Indeed, recall that nodes in the subtree rooted at y are post-ordered consecutively.

4. Case y = ρ i→j for some distinct i and j. If either the i th stack is empty or its top entry is not in the subtree rooted at y, then we remove the node. If either the j th stack is empty or its top entry is not in the subtree rooted at y, then we mark this node. Indeed, such an operation is useless because it is just a local permutation of the labels i and j. However in order to remove this operation we may need to rewrite several other operations, and therefore we postpone its removal to the next phase of the algorithm. If we do not remove y (that also includes the sub-case when we mark this operation), then we pop the respective top entries of the i th stack and (if it exists) the j th stack, pushing back in the j th stack the vertex with maximum post-order number. Then, we iteratively pop vertices from the i th stack until either the former is empty or its top entry is not in the subtree rooted at y.

By taking as our potential function the cumulative sizes of all stacks, we can observe that we can process every operation in amortized constant time. Therefore, the total runtime is in O(L).

During the second phase of the transformation, we perform a DFS traversal in order to remove the marked nodes. We further need to rewrite some unmarked operations, that is done depending on some permutation σ over the labels which we dynamically update during the traversal. Initially, σ is the identity function. We store a k-size array that map each label i to σ(i). Let us now describe how to process every node y during the traversal:

1. Case y is unmarked. If y = ⊕, then we leave this node unchanged. However, if y = i(v) for some label i and some v ∈ X, then we rewrite the operation as i ′ (v), where i ′ = σ(i). Similarly, if y = η i,j (resp., y = ρ i→j) for some distinct i and j, then we rewrite the operation as η σ(i),σ(j) (resp., as ρ σ(i)→σ(j)).

Note that we only need to rewrite an unmarked node at most once, namely, at the first time it is visited during the DFS traversal.

2. Case y is marked. Let y = ρ i→j for some distinct i and j, and let z denote its unique child. Recall that we marked y because there is no vertex of label j in H z , where H z denotes the labelled subgraph output by the k-sub-expression whose subtree rooted at z is the parse tree. In order to suppress this operation, it suffices to switch the labels i and j for every operation in the subtree rooted at z. This is done in two steps. If we visit node y for the first time, then we actualize the permutation σ into τ so that: τ (i) = σ(j), τ (j) = σ(i). Then, we can process the subtree rooted at y. If we visit the node for the last time, then we go back from τ to σ, and then we can delete this node.

The runtime of this second phase, and so the runtime of the whole algorithm, is in O(L).

It remains to prove that indeed, the output k-expression of H has size at most 2|X| + |E X |. We first observe that it is an irredundant k-expression of H because it is constructed from an irredundant k-expression of G and we remove useless join operations. Then, let T ′ denote in what follows its parse tree. Recall that for each node y of T ′ , we denote by H y the labelled subgraph output by the k-sub-expression whose subtree rooted at y is the parse tree. We define Φ(y) := |V (H y)| + |E(H y)| + n ⊕ (y) -|ℓ(H y)| where n ⊕ (y) denotes the number of disjoint union operations in the subtree rooted at y and ℓ(H y) is the set of labels assigned to the vertices of H y . Let C(y) be the set of children of y (of cardinality at most two). We have that Φ(y) > z∈C(y) Φ(z) (otherwise, the k-expression would not be irredundant, or some more operations could be discarded). In particular, if r is the root of T ′ , we have that Φ(r) is an upper bound on the number of nodes. Since for any y we have 0 ≤ Φ(y) ≤ 2|X|+|E X | (where the upper bound also follows from the fact that the k-expression is irredundant), the total number of nodes in

T ′ is at most 2|X|+|E X | = O(|X|+|E X |).

Divide-and-conquer algorithm

We are now ready to prove the main result in this section:

Proof of Theorem 1. Compute from the k-expression of G some width-k partition tree (Lemma 2) and then, from the latter, some balanced cut (U, W) as in Lemma 3. It takes O(k • (n + m)) time. For some partition U 1 , U 2 , . . . , U ℓ of U , for some ℓ ≤ k, the edges of the cut are partitioned into ℓ joins, with respective sides U i and W i = N (U i) ∩ W for every i (we allow the side W i to be empty, that may happen for at most one i).

We consider these ℓ joins sequentially, from i = 1 to i = ℓ. At each step i, we are given a subgraph G i of G such that cw(G i) ≤ 3k and a corresponding 3k-expression is given (initially, G 1 := G). We apply Lemmas 4 and 5 in order to compute the intersection of a maximum matching of G i with the join with sides U i , W i . It takes Õk (n + m) time. Denote F i ⊆ U i × W i the set of edges in this intersection, and let V (F i) be the set of vertices incident to an edge of F i . We obtain G i+1 from G i by removing the vertices in V (F i) and then removing all remaining edges between U i \ V (F i) and W i \ V (F i).

Let M i := i j=1 F j be the matching constructed so far, and let V (M i) be the set of vertices incident to it. Let also X i := i j=1 U j . By induction, the union of M i with a maximum matching of G i+1 is a maximum matching of G. Also by induction, G i+1 is obtained from G\V (M i) by removing all edges between X i \V (M i) and W \V (M i). Therefore, we can apply Lemma 7 (for X = V \V (M i)) then Lemma 6 (for U ′ = X i \V (M i)) to compute a 3k-expression of G i+1 . It takes O(n + m) time. Note that since we always apply Lemma 6 to G, and not to the G i 's, there is no blow-up of the clique-width value, i.e., the clique-width of any G i is at most 3k.

Since all edges between U and W eventually got removed, we are left with computing a maximum matching in G[U \ V (M ℓ)] and in G[W \ V (M ℓ)] respectively. Apply Lemma 7 to compute k-expressions for both subgraphs, then call our above algorithm recursively in order to compute a maximum matching. Since the cut is balanced, the recursive depth is in O(log n).

Algorithms: the bipartite case

We present in this section an alternative to Theorem 1, with polynomial dependency on the clique-width, but only for bipartite graphs (see Theorem 2). The structure of bipartite graphs of bounded clique-width can be quite complex. For instance, let G = (V, E) be any graph and let

V ′ = {v ′ | v ∈ V } be a disjoint copy of V . We can define the bipartite graph B G = (V ∪ V ′ , {u ′ v | uv ∈ E})
and, if G has clique-width at most k, then B G has clique-width at most 2k. Some classes of monogenic bipartite graphs are also known to have bounded clique-width [START_REF] Dabrowski | Classifying the clique-width of H-free bipartite graphs[END_REF]. In general, bipartite graphs have bounded clique-width if and only if their corresponding binary matroids have bounded branch-width [START_REF] Oum | Rank-width and vertex-minors[END_REF].

Reduction to Maximum b-matching

We define N to be the set of non-negative integers. Let G = (V, E) be a graph and let b : V → N assign a nonnegative capacity to each vertex. We say that x : E → N is a b-matching if we have u∈N G (v) x uv ≤ b(v) for each vertex v. Observe that a matching is a b-matching for the trivial function b(v) = 1 for each v ∈ V . The cardinality of a b-matching is defined as ∥x∥ 1 = e∈E x e . We denote by ν(G, b) the cardinality of a maximum b-matching in G. Let also ∥b∥ 1 = v∈V b(v) be the sum of all the vertex capacities. For every vertex-subset S, let b(S) = v∈S b(v). Given a b-matching x and a vertex v, let d

x (v) := u∈N G (v) x uv ≤ b(v).
We start with the following reduction rule:

∪ {uv | v ∈ U } ∪ {wv ′ | v ′ ∈ W }, and finally setting b ′ (u) = b ′ (w) = min{b(U), b(W)}. Then, we have ν(G ′ , b ′) = ν(G, b) + min{b(U), b(W)}.
Moreover, if G is bipartite, then so is G ′ .

Proof. We refer to Fig. 2 for an illustration. First, let x be any b-matching for (G, b). Observe that we have v∈U,v ′ ∈W x vv ′ ≤ min{b(U), b(W)}. We transform it into a b-matching x ′ for (G ′ , b ′), such that: Let y : U × W → N such that: v ′ ∈W y vv ′ = x ′ vu for every v ∈ U (in particular, ∥y∥ 1 = v∈U x ′ uv); and v∈U y vv ′ ≤ x ′ v ′ w for every v ′ ∈ W . Such a b-matching (for the bipartite graph with sides U, W) always exists because there is a complete join between U and W . We now construct x from x ′ (restricted to E) by adding to it the b-matching y. Doing so,

x ′ uv = v ′ ∈W x vv ′ for every v ∈ U ; x ′ wv ′ = v∈U x vv ′ for every v ′ ∈ W ; and x ′ uw = min{b(U), b(W)} - v∈U,v ′ ∈W x vv ′ . Notice that, ∥x ′ ∥ 1 = ∥x∥ 1 +min{b(U), b(W)}. Hence, ν(G ′ , b ′) ≥ ν(G, b)+min{b(U), b(W)}. Conversely, let x ′ be any maximum b-matching for (G ′ , b ′). Without loss of generality, v∈U x ′ uv ≤ v ′ ∈W x ′ wv ′ . In particular, x ′ uw = min{b(U), b(W)} -v ′ ∈W x ′ wv ′ (otherwise, x ′ could not be maximum).
∥x∥ 1 = ∥x ′ ∥ 1 -x ′ uw + v∈U x ′ vu + v ′ ∈W x ′ v ′ w + ∥y∥ 1 = ∥x ′ ∥ 1 -min{b(U), b(W)} + v∈U x ′ vu + v∈U x ′ uv = ∥x ′ ∥ 1 -min{b(U), b(W)}. As a result, ν(G, b) ≥ ν(G ′ , b ′) -min{b(U), b(W)}.
Finally, let us further assume G to be bipartite. The sides U, W of the join must be in different colour classes. To obtain a proper bicolouring of G ′ , we include vertices u and w, respectively, in the same colour class as the vertices in W and U , respectively.

We stress that the transformation of Lemma 8 holds even if either side U or W of the join is empty. Indeed, in this degenerate situation we only add to G two new adjacent vertices u and w with zero capacity. By repeatedly applying Lemma 8 to some special balanced edge-cuts, we obtain: Recall that U is an ℓ-module of G, for some ℓ ≤ k, and that we also computed a corresponding ℓ-partition U 1 , U 2 , . . . , U ℓ . For every 1 ≤ i ≤ ℓ, let W i := N G (U i) ∩ W . Since all the U i 's are disjoint, one can compute all the W i 's in O(m) time. We then apply Lemma 8, for the join with sides U i and W i , calling u i , w i the two new vertices created by this transformation. Notice that, in the intermediate graph H 0 obtained after our ℓ applications of Lemma 8, the vertices u 1 , w 1 , u 2 , w 2 , . . . , u ℓ , w ℓ disconnect U from W . We apply Lemma 7 to compute k-expressions of G[U] and G[W], then we call our reduction recursively to both subgraphs. Let (H U , b U) and (H W , b W) be the resulting instances, and let (T U , X U) and (T W , X W) be their tree decompositions. The final instance (H, b) is such that:

• V (H) = V (H U) ∪ V (H W) ∪ {u 1 , w 1 , . . . , u ℓ , w ℓ }; • H U , H W are induced subgraph of H and, for each 1 ≤ i ≤ ℓ, the edges of {u i w i } ∪ {u i v i | v i ∈ U i } ∪ {w i v ′ i | v ′ i ∈ W i } are in H; • b(v) = b U (v) for each v ∈ V (H U); b(v ′) = b W (v ′) for each v ′ ∈ V (H W); b(u i) = b(w i) = min{|U i |, |W i |} for each 1 ≤ i ≤ ℓ.
We get a tree decomposition for H by adding an edge between a bag of (T U , X U) and a bag of (T W , X W), then adding vertices u 1 , w 1 , u 2 , w 2 , . . . , u ℓ , w ℓ to all the bags. Correctness of the reduction follows from Lemma 8 (applied to all the cuts considered, at each recursive stage of the reduction, that are pairwise edge-disjoint).

In particular, if G is bipartite then so is H. We can always ensure |V (H)| ≤ ∥b∥ 1 by removing vertices with null capacity. At the start of the reduction, ∥b∥ 1 = n. Then, we observe that for each 1 ≤ i ≤ ℓ, the vertices u i , w i replace some edge between U i , W i (if no such edge exists, then b(u i) = b(w i) = |W i | = 0, and we may discard u i , w i from H). In particular, b(u i) = b(w i) = min{|U i |, |W i |} ≤ |U i | • |W i |, that is the number of edges part of the join. Since all the cuts considered throughout the reduction are edge-disjoint, we increase the sum of all vertex-capacities by at most 2m in total, and so, ∥b∥ 1 ≤ n + 2m. Alternatively, observe that we have

Reduction to Linear Programming

The Maximum b-Matching problem is a classic example of an integer linear program. It is well-known that for the special case of Maximum Matching within bipartite graphs, we can drop the condition for all variables to be integers, thus reducing the computation of the matching number to the solving of a linear program [START_REF] Lovász | Matching theory[END_REF]. Because of Tutte's quasi-polynomial reduction from Maximum b-Matching to Maximum Matching [START_REF] Tutte | A short proof of the factor theorem for finite graphs[END_REF], this is also true for Maximum b-Matching within bipartite graphs. Very recently, Dong et. al. [START_REF] Dong | A nearly-linear time algorithm for linear programs with small treewidth: a multiscale representation of robust central path[END_REF] answered an open question from Fomin et. al. [START_REF] Fomin | Fully polynomial-time parameterized computations for graphs and matrices of low treewidth[END_REF] about bounded tree-width linear programs. We restate below their main result: Theorem 8 ([START_REF] Dong | A nearly-linear time algorithm for linear programs with small treewidth: a multiscale representation of robust central path[END_REF]). Given a linear program max M x=b,ℓ≤x≤u c ⊺ x3 , where M ∈ R d×n is a full-rank matrix with d ≤ n, define the dual graph G M to be the graph with vertex-set {1, 2 . . . , d}, such that ij ∈ E(G M) if there is a column r such that M i,r ̸ = 0 and M j,r ̸ = 0.

Suppose that a tree decomposition of G M with width τ is given, and R is the diameter of the polytope, namely, for any ℓ ≤ x ≤ u with M x = b, we have ∥x∥ 2 ≤ R.

Then, for any 0 < ε ≤ 1, we can find ℓ ≤ x * ≤ u such that

c ⊺ x * ≥ max M x=b,ℓ≤x≤u c ⊺ x -ε • ∥c∥ 2 • R and ∥M x * -b∥ 2 ≤ ε • (∥M ∥ 2 • R + ∥b∥ 2)
in expected time Õ(n • τ 2 log (1/ε)).

Dong et. al. [START_REF] Dong | A nearly-linear time algorithm for linear programs with small treewidth: a multiscale representation of robust central path[END_REF] referred to [START_REF] Renegar | A polynomial-time algorithm, based on Newton's method, for linear programming[END_REF] and [START_REF] Lee | Path Finding I: Solving Linear Programs with Õ(√ rank) Linear System Solves[END_REF] for a detailed discussion about converting an approximate solution to an exact solution. We give a direct proof for Maximum b-Matching within bipartite graphs. For that, we combine a folklore reduction to Maximum Flow with a nice rounding technique by Madry [START_REF] Madry | Navigating central path with electrical flows: From flows to matchings, and back[END_REF].

Proposition 2. The Maximum b-Matching problem within bipartite graphs of tree-width at most τ can be solved in expected Õ(nτ 2 log ∥b∥ 1) time, if a corresponding tree decomposition is given in the input.

Proof. Let G = (V 0 ∪ V 1 , E) be a bipartite graph and let b : V 0 ∪ V 1 → N. The incidence matrix of G is the n × m matrix M such that M v,e = 1 if v is an end-vertex of edge e and M v,e = 0 otherwise. Let also c be the all-one vector. To compute the cardinality of a maximum b-matching for G, it suffices to solve the linear program max M x≤b c ⊺ x. We slightly modify this above program so that we fit in the conditions of Theorem 8. First, if we let ℓ, u ∈ R m such that ℓ is all-zero and u vv ′ = min{b(v), b(v ′)} for each edge vv ′ ∈ E, then we must now solve max M x≤b,ℓ≤x≤u c ⊺ x. If we further add n new variables (x v) v∈V such that 0 ≤ x v ≤ b(v) for each v ∈ V , then we can replace all constraints by x v + vv ′ ∈E x vv ′ = b(v) for each vertex v ∈ V , thus getting a new linear program max M ′ x=b,ℓ ′ ≤x≤u ′ c ′ ⊺ x to solve, where M ′ ∈ R n×(m+n) and we obtain c ′ from c by completing the latter with n zero coordinates for the slack variables (x v) v∈V .

Note that, since we constructed M ′ from M by adding n new columns with exactly one nonzero value each, we have G M ′ = G M = G. Furthermore, an easy upper bound on the diameter R of the polytope is R ≤ ∥b∥ 2 ≤ ∥b∥ 1 . We also have ∥c

′ ∥ 2 = √ m and ∥M ′ ∥ 2 ≤ v (1 + d(v)) 2 ≤ n 3/2 .
Assume G to be given with a tree decomposition of width at most τ , and apply Theorem 8 to the above linear program with ε = 1/(4 • ∥b∥ 1 • n 2). We denote by x * its output. Set all variables x * v , v ∈ V to 0. Then, for all vertices v such that vv ′ ∈E x * v ′ v > b(v), we decrease the variables x * v ′ v of incident edges until we reach equality. In doing so, we obtain a fractional b-matching y. By construction:

∥x * ∥ 1 -∥y∥ 1 ≤ v max{0, (M ′ x *) v -b(v)} ≤ ∥M ′ x * -b∥ 1 ≤ √ n • ∥M ′ x * -b∥ 2 ≤ ε √ n • (∥M ′ ∥ 2 • R + ∥b∥ 2) ≤ ε √ n • ∥b∥ 1 • (n 3/2 + 1) ≤ 2εn 2 • ∥b∥ 1 ≤ 1/2.
We now construct a network D from G by adding two new vertices s and t, an arc (s, u) for every u ∈ V 0 , an arc (v, t) for every v ∈ V 1 , and finally by orienting all the edges of G from V 0 to V 1 . The capacities of the arcs are defined as follows: κ(s, v) = b(v) for every v ∈ V 0 ; κ(v

′ , t) = b(v ′) for every v ′ ∈ V 1 ; κ(v, v ′) = min{b(v), b(v ′)} for every vv ′ ∈ E such that v ∈ V 0 , v ′ ∈ V 1 .
Then, we construct a fractional st-flow as follows: f y (s, v) = vv ′ ∈E y vv ′ for every v ∈ V 0 ; f y (v ′ , t) = vv ′ ∈E y vv ′ for every v ′ ∈ V 1 ; and f y (v, v ′) = y vv ′ for every vv ′ ∈ E such that v ∈ V 0 , v ′ ∈ V 1 . Note that the value of this flow is exactly ∥y∥

′ ∈ E with v ∈ v 0 , v ′ ∈ V 1 , we set z vv ′ = f z (v, v ′).
We are finally ready to prove our second main result in this paper: Theorem 2. Given a bipartite graph G and a corresponding k-expression, one can compute a maximum matching for G in randomized Õ(k 2 • (n + m)) time.

Proof. The result follows from the combination of Proposition 1 with Proposition 2.

Conclusion

We left open whether an Õ(k c •(n+m))-time algorithm exists for computing a maximum matching within the graphs of clique-width at most k, for some constant c. Recall that our algorithm in the paper runs in almost linear time, but that it has a super-polynomial dependency on the clique-width. Relatedly, we left open the complexity of Maximum b-Matching within bounded tree-width graphs. It follows from Proposition 1 that an Õ(k c • (n + m))-time algorithm for this problem within the graphs of tree-width at most k would imply a similar algorithm for Maximum Matching within graphs of clique-width at most k.

 This above formula expresses that all vertices of W are in pairwise different odd components of G \ U . The first line ensures that every vertex of W is in an odd component of G \ U . The second line ensures that two distinct vertices of W are in different components of G \ U . If we set a 1 = 1, a 2 = -1, the objective becomes to minimize |U | -|W |. Therefore, we get as solution δ = min U ⊆V (|U | -odd(G \ U))

Lemma 8 .

 8 Let (G, b) be some instance of Maximum b-Matching, and let U and W be disjoint vertexsubsets such that there is a join between U and W . Consider the new instance (G ′ , b ′) obtained from (G, b) by removing all edges between U and W , adding two new vertices u, w / ∈ V (G) and edges {uw}

Figure 2 :

 2 Figure 2: Transformation of Lemma 8.

Proposition 1 .

 1 There is an O(k • (n + m) log n)-time reduction from Maximum Matching on graphs with clique-width at most k (if a k-expression is known) to Maximum b-Matching on graphs with tree-width O(k log n). For the resulting instance (H, b), the algorithm also outputs a corresponding tree decomposition. Furthermore, |V (H)| ≤ ∥b∥ 1 ≤ O(min{n + m, n log n}), and if G is bipartite, then so is H. Proof. We assume in what follows the input graph G to be given with some b : V → N. Initially, b(v) = 1 for every vertex v ∈ V . Let us further assume |V (G)| > k + 1 (otherwise, tw(G) ≤ k and there is nothing to be done). We apply Lemma 2, then Lemma 3, and call (U, W) the resulting balanced cut. It takes O(k • (n + m)) time.

 ℓ i=1 (b(u i) + b(w i)) ≤ 2|U | ≤ 4n/3, and therefore, the sum of all capacities increases by O(n) at each stage. It thus also follows that ∥b∥ 1 = O(n log n).

1 .

 1 Let f ′ y be an integral st-flow of value ⌊∥y∥ 1 ⌋. It can be constructed from f y in Õ(m) = Õ(τ n) time[START_REF] Madry | Navigating central path with electrical flows: From flows to matchings, and back[END_REF] Corollary 3.4]. There is a one-to-one mapping between b-matchings in G and integral st-flows in D. In particular, the maximum value of a st-flow is exactly ν(G, b). Furthermore,∥y∥ 1 ≥ ∥x * ∥ 1 -1/2 ≥ ν(G, b) -ε • ∥c∥ 2 • R -1/2 ≥ ν(G, b) -1.Therefore, we can transform f ′ y into a maximum st-flow f z by computing at most one augmenting path in the residual graph D f ′ y . It can be done in O(m) = O(τ n) time. The resulting b-matching is maximum: for every vv

 recursive stages, and so, the running time is in O(k • (n + m) log n). Similarly, since the treewidth increases by at most 2k at each stage, tw(H) = O(k log n).

Since max{|U |, |W |} ≤ 2n/3 (Lemma 3), there are O(log n)

The result is stated in[START_REF] Dong | A nearly-linear time algorithm for linear programs with small treewidth: a multiscale representation of robust central path[END_REF] for minimization problems. Since we only consider it here for Maximum b-Matching, we rather write it as a maximization problem.

Acknowledgements. We thank the anonymous reviewers for their valuable feedback.

Conflict of Interest.

This work was supported by Grant TC ICUB-SSE 15109-26.07.2021, "The complexity landscape of Maximum Matching". It was also supported by project PN-19-37-04-01 "New solutions for complex problems in current ICT research fields based on modelling and optimization", funded by the Romanian Core Program of the Ministry of Research and Innovation (MCI) 2019-2022.