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Robotic manipulation, autonomous manipulation, dexterous manipulation, object
manipulation, haptic manipulation, tactile manipulation

Keywords

Tactile sensing, sense of touch, object exploration, tactile servoing, force control,
motion control

Definition

An intertwined process – in which the feedback signal (perception) may affect the
control input (action) and vice versa – of controlling or exploring the location and
shape of an object by applying quasi-static (kinematic) and dynamic (kinetic) con-
straints with a robot end-effector.
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Abstract

Robotic manipulation performed by robots, both manipulator arms and robot-hands,
refers to the art of controlling the location or shape of an object through force and
form closure contact constraints with one or multiple robot end-effectors. These
end-effectors are usually equipped with tactile sensors when the success of robotic
manipulation tasks needs to be assured. For example, in a “pick and place” task a
robot equipped with vibro-tactile sensors can prevent slippage of the grasped object.
This section focuses on tactile aspects of autonomous manipulation.

Introduction

The nature and variety of unconscious decisions that are taken by a human hand
during a manipulation task – for example, turning a key or dexterous shuffling cards
– have been but slightly explored for intertwined sensory-motor actions Stuart et al
(2014); Jeannerod (1984). The human hand is endowed by multiple tactile sensing
modalities allowing us to perform dexterous manipulation tasks Shao et al (2016).
The sensing characteristics of the human tactile sensing system depend on the me-
chanics of human skin, e.g, peripheral blood flow or moisture content Bowden and
McNulty (2013), on the one hand. On the other hand, these characteristics depend
on the type of the manipulation tasks – exploratory movements and in-hand manip-
ulation of a known object involve different types Johansson and Flanagan (2009)
of hand mechanoreceptors Kunesch et al (1989). Indeed, in human hand-oriented
research, manipulation is an active intertwined process, in which motor commands
and perception depend on each other Robles-De-La-Torre and Hayward (2001). In
haptics-oriented research, this process refers to the action of touching, and implies
self-generated movements to gather information about the properties of surfaces
(texture, hardness, temperature) and objects (size, shape, weight, location) Chap-
man (2009). Findings in these human-centered research shed light on manipulation

Fig. 1 Examples of human manipulation(adopted from Mason (2001)) and an industrial
task(adopted from Lefebvre et al (2005))
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processes and yield to novel paradigms in robotic manipulation and industrial au-
tomation (Fig. 1).

In the recent literature on robotics, there are different active control approaches:
- active manipulation for point cloud acquisition by touch Petrovskaya and

Khatib (2011),
- active manipulation for optimal execution of a contact-rich task Lefebvre et al

(2005),
- active motion control for the optimal movement selection in a texture identifi-

cation task Fishel and Loeb (2012),
- active motion control for the exploration of the location of a physical con-

tact Lee and Park (2014a)
- manipulation for the estimation of physical properties in object recognition

tasks Mavrakis and Stolkin (2020)
These control approaches are formulated in the context of classical autonomous

manipulator control Righetti et al (2014), including force control and visual ser-
voing, or in the context of machine learning algorithms, including model-based
reinforcement learning Tian et al (2019). Recently, manipulation skills of an au-
tonomous robot were obtained by the combination of model-based reinforcement
learning and an impedance controller Johannsmeier et al (2019).

These approaches are designed to be deployed on dexterous robot hands endowed
with tactile sensors. In this connection, a robot hand design, tactile control and in-
hand object localization are discussed in the following sections.

Overview

Many approaches – including feedforward and feedback control, optimization algo-
rithms, e.g. satisfying multiple constraints as in Meguenani et al (2017), probabilis-
tic algorithms, e.g Bayesian state estimation in Petrovskaya et al (2006), and the
most recent ones based on penalty-reward reinforcement approaches Rajeswaran*
et al (2018) – are used to solve the problem of object manipulation. Kinematics of
rigid object manipulation is described in Murray et al (1994). For the sake of the
clarity, the state-of-the-art is summarized in Table 1.

There is a vast collection of industrial end-effectors, including grippers, devel-
oped for the manipulation of rigid and soft objects. These end-effectors were de-
signed to be robust and fast during operational cycles, and to be deployed with less
efforts in the industrial settings. Two-finger structure of industrial grippers was the
choice that satisfied these design criteria. New challenges in consumer manufac-
turing include multifunctional and reconfigurable industrial line cells that operate
and co-operate with human operators in close proximity. These challenges set new
criteria on design of the end-effectors – in particular, the new structure of the end-
effectors shall be dexterous to enable in-hand manipulation Falco et al (2014); Falco
et al (2020).
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Table 1 Taxonomy of robotic manipulation based on: the type of interaction – prehensile and
non-prehensile, the type of tool used for object manipulation – from underactuated robot hands
to redundant manipulators, the type of an object – from rigid to fabric sheet, the type of sensing
modality – proprio- and extero-ceptive, and the type of a contact formation – single or multiple
contact points, edge- or vertex- contact.

Type Reference Type Reference
Pr

eh
en

si
le

Grasping Bicchi (2000)

O
bj

ec
t Rigid Murray et al (1994)

Pick-and-place Romano et al (2011) Soft Sanchez et al (2018)
In-hand relocation Ramon et al (2013) Deformable Mazhitov et al (2019)
Gravity-based Viña B. et al (2015) Fabric sheet Mcconachie et al (2018)
In-hand rolling Bicchi et al (1999)

N
on

-p
re

he
ns

ile

Ty
pe

of
se

ns
or Proprioceptive Lee and Park (2014b)

Tapping Kumar et al (2014) Exteroceptive Lepora et al (2017)
Pushing Meier et al (2016) Multimodal Wettels et al (2008)
Rolling Kappassov et al (2016) Vibro-tactile Massalim et al (2019)
Gravity-based Bai and Liu (2014) Pressure array Drimus et al (2014)

Ty
pe

of
To

ol Underactuated Odhner et al (2014)

C
on

ta
ct

Single Berger and Khosla (1991)
Redundant Meguenani et al (2017) Multi-finger Sommer and Billard (2016)
Hand Kappassov et al (2013) Multi-link Leboutet et al (2019)
Gripper Odhner et al (2014) Point Sommer and Billard (2016)
Non-anthropomorphic Yuan et al (2020) Edge Lepora et al (2017)

In this connection, recent research in the design of multifinger robot hands is be-
ing shifted from academic laboratories to industrial settings. Various robotic hands
have been developed with different levels of anthropomorphism to reproduce the

Fig. 2 Robot hand prototype. The figure is adopted from the author’s paper Kappassov et al (2013)
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human hand functionality. These anthropomorphic robot hands on the contrary to
the traditional two-finger grippers can employ multiple grasp patterns, can relo-
cate a grasped object within the hand, and, thus, complete much wider rang e of
tasks Bicchi (2000). Nevertheless, in terms of dexterous manipulation skills, these
robot hands are still far from being deployed in the real industrial settings.

Key Research Findings

Robot hands for dexterous manipulation

Let us consider issues and limitations of multi-fingered robot hands based on the
design of a laboratory prototype Kappassov et al (2013) shown in Fig. 2.

The prototype hand has an intrinsic actuation system – the motors are located
within the hand similar to the torque controlled four-finger Allegro Robot hand.
These motors could be located outside of the hand (extrinsic) as it was imple-
mented in the tendon-driven five-finger Shadow Robot hand (Fig. 6). In the latter
case, the robot fingers and palm are relatively closer to the human hand dimensions
and smaller compare to the intrinsic approach.

The fingers of the prototype are actuated via tendons. This causes non-linearities
in force control (see the plot in Fig. 2) due to the mechanical friction between a ten-
don (green tendon in Fig. 2) and its channels within a finger and the palm. In order
to mitigate but this does not eliminate the non-linear friction, metal to plastic (self-
lubrication) joints can be chosen for guiding the tendons (this is implemented in
the last versions of Shadow Robot Hand). The non-linearity can be eliminated by
removing the tendons and actuating the finger within joints, for example the four
finger Allegro robot hand.

The number of degrees of freedom (dof) is the quantitative measure that dif-
fers the dexterous robot hands from 1 dof industrial grippers. In the prototype hand,
middle, ring and little fingers are driven by one motor. Two phalanges of each finger
in the prototype hand are underactuated. There are in total 10 dof and four servo-
motors. Efficacy of in-hand manipulation with four actuated dof is rather limited.
Dexterous manipulation can be achieved with more dof, as for example, the manip-
ulation of Rubik cube with the tendon driven Shadow Robot hand incorporating 24
dof actuated by 20 motors.

High-speed dynamic manipulation can be achieved with high bandwidth actua-
tors, e.g. the three-fingered Adamant Namiki robot hand. The majority of nowadays
robot hands can operate in quasi-static regime only and inferior to industrial grip-
pers in actuation speed. Particularly, in order to test the position tracking capability
– which is equal to 3 Hz only – of the prototype hand, its fingers were commanded
to track sinusoidal position signals±25% of total motion range centered at the mid-
flexion point. The hand requires almost a second to close and 0.85 seconds to open.
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In order to improve the dynamic range grip force control and avoid slippage,
a polyurethane rubber is incorporated on the fingers of the Shadow Robot hand.
Similarly, a soft padding was added in the hand prototype (Fig. 2). It increases the
coefficient of static friction between the hand and a grasped object. For the hand
prototype, the average pulling force of a wooden part was 21 N.

Soft padding are also used for enabling continuous physical contact during touch-
driven manipulation tasks discussed in the next sections.

Touch-driven Control

Fig. 3 Robot control block diagram for manipulation (adopted Kappassov et al (2016))

A typical touch-driven robot control block diagram for tactile manipulation is
shown in Fig. 3. The controller is designed to convert sensed tactile signals into
robot joint movements through tactile data interpretation (tactile feature extrac-
tion) and feedback control. Similar to image features in visual servoing Chaumette
(2013), there are tactile features that are fed back into a touch-driven controller that
is described in this document. The robot joint control part is not considered here.
An interested reader may refer to Villani (2013).

In active and semi-active manipulation, the goal is to determine a time se-
quence of both response actions to the changes at the contacts and control
inputs to achieve the desired response, deformation or motion of an object.
They involve: 1) actuation skills, i.e. ability to actuate in the environment; 2)
tactile sensing skills, i.e. ability to gather signals from physical contacts; 3)
precoded or learning skills, i.e. database of desired set-points or capacity to
learn for achieving a goal.
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Fig. 4 Tactile control: a) task level, b) controller level.

The main idea in touch-driven control is that the pose of a single or multiple robot
end-effectors can be controlled by steering contact points based on errors between
the desired (sd) and feedback (sa) tactile feature vectors. sd depends on both task
and touch (i.e. contact and its properties). In affordance Chavez-Garcia et al (2016)
and reinforcement Rajeswaran* et al (2018) learning approaches, sd can be retrieved
from robot trials in real or simulated worlds. In multiple point control, e.g. in object
exploration with multi-finger robot hand Sommer and Billard (2016), this feature
vector is given for each robot link. Fig. 4 a illustrates a simplified diagram of a
robot controller driven with the desired set of tactile features sd .

Depending on the response time of a tactile sensor, the error between the de-
sired and feedback tactile features can be used as an event signal in a feedforward
controller or disturbance signal for a feedback controller. In most of the cases, the
tactile sensors used in the first case have a higher bandwidth than the ones used in
the second case. The sensors of the first group can detect slippage Massalim et al
(2019), recognize textures Fishel and Loeb (2012) or perform both Massalim et al
(2020). The sensors of the second group are used in force control, object explo-
ration and manipulation. There are mainly two types of sensors within this group:
force-torque sensors installed on the fingertips of a robot hand (or end-effector) and
pressure sensing tactile arrays. Force sensors can provide force and torque values in
each direction in R3. A contact point location can be estimated from forces when
the shape of the fingertip is known Liu et al (2012). Pressure sensing tactile ar-
rays provide information about contact shape and pressure distributions Kyberd and
Chappell (1992) – by measuring two-dimensional pressure profile, which is simi-
lar to a gray-scale image in computer vision Ho et al (2012). In general, the tactile
feature error should be converted into the controller input disturbance, e.g. into the
pose disturbance dx ∈ R6 – so that dx = Ad

{g}T{s}
(sd − s)J−1, where J−1 is an in-

verse tactile Jacobian and Ad
{g}T{s}

is the adjoint matrix derived from the current

forward kinematics to transform the error expressed in the sensing frame {s} to the
global frame {g} – for a robot position controller (Fig. 4) b.

The derived input disturbance modifies the desired set points xd of the robot con-
troller so that xd = xa +dx, where xa is the current pose calculated by the Forward
Kinematics of the robot. Finally, corrective motions are performed by moving joints
q of the robot interacting with the environment.
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In-hand object localization

The number of decisions that can take nowadays robotic manipulation systems is
rather limited compare to what humans do in a single manipulation task Mason
(2001) (Fig. 1). In the aforementioned touch-driven control approach, a robot does
not take decisions for the next action. In the following, we overview one robot con-
trol approach that is based on a point cloud acquisition via touch-driven robot arm
control Petrovskaya and Khatib (2011).

Let us assume that the shape of an object is known, then its shape can be rep-
resented by a set of k points {pk}O , where O is the objects’ frame and pk are the
coordinates of a point k on the surface of the object. These point are depicted in blue
in Fig. 5a. Given the geometry of the hand and the signals from tactile sensors, there
are n measurements y1,y2, ...,yn acquired from n tactile sensors at a single grasp.
These detected contact points are shown in Fig. 5a (red). The Cartesian transforma-
tion from the sensor frame n to the palm frame P

Anyn +bn = zn, (1)

where An and bn are the rotation matrix and translational vector, respectively, and zn
is the measurement n in the palm frame. In order to localize the object we need to
map the cloud of points of contact {yn}P to the cloud of points in the model {pk}O
by finding an optimal transformation PT O .

Fig. 5 In-hand object localization: (a) contact points (red) between a robot hand and an object, (b)
the area to be explored with the maximum (green dot) and minimum (red cross) distinctiveness.

Let us assume that there are i solutions [PT O
(1),P T O

(2), ...PT O
(i)], then multiple point

clouds similarly describe the object – the mapping between the contact points and
the model – at a given grasp of an object. The robot hand will need to explore the
object. Hence, a policy for the next best action, i.e. the next location for regrasping,
finger gaiting, rolling, or sliding Bicchi (2000), is needed. The next manipulation
action should be chosen so that it will be the most informative for localizing the
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object. This problem can be solved by probabilistic Bayes filters with further Se-
quential Importance Resampling at each new manipulation action Petrovskaya et al
(2006). For the sake of clarity, let us assume that the manipulation is realized via
regrasping. Therefore, there can be multiple grasps denoted as G1,G2, ...,GNg and
ZG1 represents the measurements z1,z2, ...,zn at the grasp G1. For a given grasp G j
(where j = 1,2, ...,Ng), each possible transformation PT O

(i) (where i = 1,2, ...Ns; Ns

being the number of believes/samples for the grasp G j) will represent an hypothesis
of the state x[i]G j

of the object inside the hand. Then the posterior believe Bel(x[i]G j
)

given the grasp G j of this state will be:

Bel(x[i]G j
) = P(x[i]G j

|ZG j) (2)

A possible way to calculate this posterior believe is to obtain the sum of all Eu-
clidean distances d[i]

G j
between each measurement (or each contact point zn) and its

corresponding object model point pk for each state i:

d[i]
G j

= ∑
∀n∈G j

||zn−P T O
(i) · pk|| (3)

and later obtain the probability of this state (i.e. sample) as the ratio of its inverse
distance to the sum of all the inverse distances in all the states (samples) of a given
grasp G j:

Bel(x[i]G j
) =

1/(d[i]
G j
)

∑
Ns
i=1 1/(d[i]

G j
)

(4)

A more complex – presumably, more reliable – way would include the mapping
between tactile features (for instance, the orientation of an edge in the tactile image)
and not contact points only. At any next grasp G j+1, probabilities of some of the
states will increase or decrease. Then those states that will have higher probabilities
will be resampled and the ones with lower probabilities will be dropped out.

Defining the policy for the next grasp is a rather challenging task. One of the
simplest solution is to find for each finger such a new contact point on the surface
that would give the maximum differentiation between all the considered states of
the object. An example is shown in Fig. 5 b: the current points of contact are de-
picted as the red dots; in order to classify the shape whether it is a circle or square,
the next contact point to test should be at the location of the green dot rather than
at the location of the red cross, which would provide a higher distinctiveness (i.e.
discrimination).
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Future Directions and Challenges in robotic manipulation

In this section we discussed the robot hand design on one hand, and its control on
the other hand. Particularly, we have reviewed the foundation of touch-driven robot
control for active manipulation. There is an intersection with the literature covered
in classical motion and force control, e.g. Siciliano and Khatib (2008).

Fig. 6 Biomimetic (left, provided by Richard Greenhill) and non-biomimetic (right, Yuan et al
(2020)) hands.

The problem of robotic manipulation remains a key challenge in robotics due to
both the lack of reliable dexterous robot hands and durable tactile sensors. In this
connection, in the manipulation-oriented literature, there are no approaches with
the ability to finely and dynamically manipulate an object within a multi-fingered
robot hand. Indeed, these capabilities shall be considered during both the manufac-
turing of robot hands and design process of touch driven controllers. Non-linearity
of tendon-driven mechanisms, trade-off between the bandwidth of actuators and the
dynamic range of force control, number of dof, and the life time of the robot hands
are some but not all issues that set constraints on truly dexterous manipulation.

In the past century, one of the first dexterous robot hands was made from wood
(Fig. 6). With injection molding and rapid prototyping technologies, robot hand
mechanisms have been improved in terms of backlash, lubrication, durability. Nev-
ertheless, the computational power of the current processing units and advances in
control theory, e.g. reinforcement learning algorithms, are ahead of the capabilities
of both the robot hands and tactile sensors. In the future, these sensors and robot
hands will need to catch up with the computational power to let the future robots be
capable of dexterous manipulation of objects used in manufacturing environments
by human operators.

One of the potential solutions for in-hand robot manipulation is based on de-
velopment of non-anthropomorphic end-effectors Yuan et al (2020). These non-
anthropomorphic robot hands incorporate fingertips with active contact surfaces,
e.g. gecko skin Hashizume et al (2019) or a DC motor actuated fingertip Yuan et al
(2020) as shown in Fig. 6. The active surfaces allow robots to perform robust pick-
and-place tasks of tiny objects.
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Cross-References

Haptics and Haptic Interfaces, 19; Physical Human-Robot Interaction, 26; Tactile
Sensors, 115.
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