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Introduction

The nature and variety of unconscious decisions that are taken by a human hand during a manipulation task -for example, turning a key or dexterous shuffling cards -have been but slightly explored for intertwined sensory-motor actions [START_REF] Stuart | Pioneers in cns inhibition: 1. ivan m. sechenov, the first to clearly demonstrate inhibition arising in the brain[END_REF]; [START_REF] Jeannerod | The timing of natural prehension movements[END_REF]. The human hand is endowed by multiple tactile sensing modalities allowing us to perform dexterous manipulation tasks [START_REF] Shao | Spatial patterns of cutaneous vibration during whole-hand haptic interactions[END_REF]. The sensing characteristics of the human tactile sensing system depend on the mechanics of human skin, e.g, peripheral blood flow or moisture content [START_REF] Bowden | Age-related changes in cutaneous sensation in the healthy human hand[END_REF], on the one hand. On the other hand, these characteristics depend on the type of the manipulation tasks -exploratory movements and in-hand manipulation of a known object involve different types [START_REF] Johansson | Coding and use of tactile signals from the fingertips in object manipulation tasks[END_REF] of hand mechanoreceptors [START_REF] Kunesch | Invariant temporal characteristics of manipulative hand movements[END_REF]. Indeed, in human hand-oriented research, manipulation is an active intertwined process, in which motor commands and perception depend on each other Robles-De-La-Torre and Hayward (2001). In haptics-oriented research, this process refers to the action of touching, and implies self-generated movements to gather information about the properties of surfaces (texture, hardness, temperature) and objects (size, shape, weight, location) [START_REF] Chapman | Active Touch[END_REF]. Findings in these human-centered research shed light on manipulation Fig. 1 Examples of human manipulation(adopted from [START_REF] Mason | Mechanics of robotic manipulation[END_REF]) and an industrial task(adopted from [START_REF] Lefebvre | Task planning with active sensing for autonomous compliant motion[END_REF] processes and yield to novel paradigms in robotic manipulation and industrial automation (Fig. 1).

In the recent literature on robotics, there are different active control approaches:

-active manipulation for point cloud acquisition by touch [START_REF] Petrovskaya | Global localization of objects via touch[END_REF], -active manipulation for optimal execution of a contact-rich task [START_REF] Lefebvre | Task planning with active sensing for autonomous compliant motion[END_REF], -active motion control for the optimal movement selection in a texture identification task [START_REF] Fishel | Bayesian exploration for intelligent identification of textures[END_REF], -active motion control for the exploration of the location of a physical contact Lee and Park (2014a) -manipulation for the estimation of physical properties in object recognition tasks [START_REF] Mavrakis | Estimation and exploitation of objects ' inertial parameters in robotic grasping and manipulation: A survey[END_REF] These control approaches are formulated in the context of classical autonomous manipulator control [START_REF] Righetti | An autonomous manipulation system based on force control and optimization[END_REF], including force control and visual servoing, or in the context of machine learning algorithms, including model-based reinforcement learning [START_REF] Tian | Manipulation by feel: Touch-based control with deep predictive models[END_REF]. Recently, manipulation skills of an autonomous robot were obtained by the combination of model-based reinforcement learning and an impedance controller [START_REF] Johannsmeier | A framework for robot manipulation: Skill formalism, meta learning and adaptive control[END_REF].

These approaches are designed to be deployed on dexterous robot hands endowed with tactile sensors. In this connection, a robot hand design, tactile control and inhand object localization are discussed in the following sections.

Overview

Many approaches -including feedforward and feedback control, optimization algorithms, e.g. satisfying multiple constraints as in [START_REF] Meguenani | Energy based control for safe human-robot physical interaction[END_REF], probabilistic algorithms, e.g Bayesian state estimation in [START_REF] Petrovskaya | Bayesian estimation for autonomous object manipulation based on tactile sensors[END_REF], and the most recent ones based on penalty-reward reinforcement approaches [START_REF] Rajeswaran | Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations[END_REF] -are used to solve the problem of object manipulation. Kinematics of rigid object manipulation is described in [START_REF] Murray | A mathematical introduction to robotic manipulation[END_REF]. For the sake of the clarity, the state-of-the-art is summarized in Table 1.

There is a vast collection of industrial end-effectors, including grippers, developed for the manipulation of rigid and soft objects. These end-effectors were designed to be robust and fast during operational cycles, and to be deployed with less efforts in the industrial settings. Two-finger structure of industrial grippers was the choice that satisfied these design criteria. New challenges in consumer manufacturing include multifunctional and reconfigurable industrial line cells that operate and co-operate with human operators in close proximity. These challenges set new criteria on design of the end-effectors -in particular, the new structure of the endeffectors shall be dexterous to enable in-hand manipulation [START_REF] Falco | A roadmap to advance measurement science in robot dexterity and manipulation[END_REF]; Falco et al (2020).

Table 1 Taxonomy of robotic manipulation based on: the type of interaction -prehensile and non-prehensile, the type of tool used for object manipulation -from underactuated robot hands to redundant manipulators, the type of an object -from rigid to fabric sheet, the type of sensing modality -proprio-and extero-ceptive, and the type of a contact formation -single or multiple contact points, edge-or vertex-contact. In this connection, recent research in the design of multifinger robot hands is being shifted from academic laboratories to industrial settings. Various robotic hands have been developed with different levels of anthropomorphism to reproduce the Fig. 2 Robot hand prototype. The figure is adopted from the author's paper [START_REF] Kappassov | Semi-anthropomorphic 3d printed multigrasp hand for industrial and service robots[END_REF] human hand functionality. These anthropomorphic robot hands on the contrary to the traditional two-finger grippers can employ multiple grasp patterns, can relocate a grasped object within the hand, and, thus, complete much wider rang e of tasks Bicchi (2000). Nevertheless, in terms of dexterous manipulation skills, these robot hands are still far from being deployed in the real industrial settings.

Key Research Findings

Robot hands for dexterous manipulation

Let us consider issues and limitations of multi-fingered robot hands based on the design of a laboratory prototype [START_REF] Kappassov | Semi-anthropomorphic 3d printed multigrasp hand for industrial and service robots[END_REF] shown in Fig. 2.

The prototype hand has an intrinsic actuation system -the motors are located within the hand similar to the torque controlled four-finger Allegro Robot hand. These motors could be located outside of the hand (extrinsic) as it was implemented in the tendon-driven five-finger Shadow Robot hand (Fig. 6). In the latter case, the robot fingers and palm are relatively closer to the human hand dimensions and smaller compare to the intrinsic approach.

The fingers of the prototype are actuated via tendons. This causes non-linearities in force control (see the plot in Fig. 2) due to the mechanical friction between a tendon (green tendon in Fig. 2) and its channels within a finger and the palm. In order to mitigate but this does not eliminate the non-linear friction, metal to plastic (selflubrication) joints can be chosen for guiding the tendons (this is implemented in the last versions of Shadow Robot Hand). The non-linearity can be eliminated by removing the tendons and actuating the finger within joints, for example the four finger Allegro robot hand.

The number of degrees of freedom (dof) is the quantitative measure that differs the dexterous robot hands from 1 dof industrial grippers. In the prototype hand, middle, ring and little fingers are driven by one motor. Two phalanges of each finger in the prototype hand are underactuated. There are in total 10 dof and four servomotors. Efficacy of in-hand manipulation with four actuated dof is rather limited. Dexterous manipulation can be achieved with more dof, as for example, the manipulation of Rubik cube with the tendon driven Shadow Robot hand incorporating 24 dof actuated by 20 motors.

High-speed dynamic manipulation can be achieved with high bandwidth actuators, e.g. the three-fingered Adamant Namiki robot hand. The majority of nowadays robot hands can operate in quasi-static regime only and inferior to industrial grippers in actuation speed. Particularly, in order to test the position tracking capability -which is equal to 3 Hz only -of the prototype hand, its fingers were commanded to track sinusoidal position signals ±25% of total motion range centered at the midflexion point. The hand requires almost a second to close and 0.85 seconds to open.

In order to improve the dynamic range grip force control and avoid slippage, a polyurethane rubber is incorporated on the fingers of the Shadow Robot hand. Similarly, a soft padding was added in the hand prototype (Fig. 2). It increases the coefficient of static friction between the hand and a grasped object. For the hand prototype, the average pulling force of a wooden part was 21 N.

Soft padding are also used for enabling continuous physical contact during touchdriven manipulation tasks discussed in the next sections. (2013), there are tactile features that are fed back into a touch-driven controller that is described in this document. The robot joint control part is not considered here. An interested reader may refer to [START_REF] Villani | Force Control in Robotics[END_REF].

Touch-driven Control

In active and semi-active manipulation, the goal is to determine a time sequence of both response actions to the changes at the contacts and control inputs to achieve the desired response, deformation or motion of an object. They involve: 1) actuation skills, i.e. ability to actuate in the environment; 2) tactile sensing skills, i.e. ability to gather signals from physical contacts; 3) precoded or learning skills, i.e. database of desired set-points or capacity to learn for achieving a goal. The main idea in touch-driven control is that the pose of a single or multiple robot end-effectors can be controlled by steering contact points based on errors between the desired (s d ) and feedback (s a ) tactile feature vectors. s d depends on both task and touch (i.e. contact and its properties). In affordance Chavez-Garcia et al ( 2016) and reinforcement Rajeswaran* et al ( 2018) learning approaches, s d can be retrieved from robot trials in real or simulated worlds. In multiple point control, e.g. in object exploration with multi-finger robot hand [START_REF] Sommer | Multi-contact haptic exploration and grasping with tactile sensors[END_REF], this feature vector is given for each robot link. Fig. 4 a illustrates a simplified diagram of a robot controller driven with the desired set of tactile features s d .

Depending on the response time of a tactile sensor, the error between the desired and feedback tactile features can be used as an event signal in a feedforward controller or disturbance signal for a feedback controller. In most of the cases, the tactile sensors used in the first case have a higher bandwidth than the ones used in the second case. The sensors of the first group can detect slippage [START_REF] Massalim | Array of accelerometers as a dynamic vibro-tactile sensing for assessing the slipping noise[END_REF], recognize textures [START_REF] Fishel | Bayesian exploration for intelligent identification of textures[END_REF] or perform both [START_REF] Massalim | Deep vibro-tactile perception for simultaneous texture identification, slip detection, and speed estimation[END_REF]. The sensors of the second group are used in force control, object exploration and manipulation. There are mainly two types of sensors within this group: force-torque sensors installed on the fingertips of a robot hand (or end-effector) and pressure sensing tactile arrays. Force sensors can provide force and torque values in each direction in R 3 . A contact point location can be estimated from forces when the shape of the fingertip is known [START_REF] Liu | Intelligent fingertip sensing for contact information identification[END_REF]. Pressure sensing tactile arrays provide information about contact shape and pressure distributions [START_REF] Kyberd | Object-slip detection during manipulation using a derived force vector[END_REF] -by measuring two-dimensional pressure profile, which is similar to a gray-scale image in computer vision [START_REF] Ho | What can be inferred from a tactile arrayed sensor in autonomous in-hand manipulation?[END_REF]. In general, the tactile feature error should be converted into the controller input disturbance, e.g. into the pose disturbance dx ∈ R 6 -so that dx = Ad {g} T {s} (s ds)J -1 , where J -1 is an inverse tactile Jacobian and Ad {g} T {s} is the adjoint matrix derived from the current forward kinematics to transform the error expressed in the sensing frame {s} to the global frame {g} -for a robot position controller (Fig. 4) b.

The derived input disturbance modifies the desired set points x d of the robot controller so that x d = x a + dx, where x a is the current pose calculated by the Forward Kinematics of the robot. Finally, corrective motions are performed by moving joints q of the robot interacting with the environment.

In-hand object localization

The number of decisions that can take nowadays robotic manipulation systems is rather limited compare to what humans do in a single manipulation task Mason (2001) (Fig. 1). In the aforementioned touch-driven control approach, a robot does not take decisions for the next action. In the following, we overview one robot control approach that is based on a point cloud acquisition via touch-driven robot arm control [START_REF] Petrovskaya | Global localization of objects via touch[END_REF].

Let us assume that the shape of an object is known, then its shape can be represented by a set of k points {p k } O , where O is the objects' frame and p k are the coordinates of a point k on the surface of the object. These point are depicted in blue in Fig. 5a. Given the geometry of the hand and the signals from tactile sensors, there are n measurements y 1 , y 2 , ..., y n acquired from n tactile sensors at a single grasp. These detected contact points are shown in Fig. 5a (red). The Cartesian transformation from the sensor frame n to the palm frame P

A n y n + b n = z n , (1) 
where A n and b n are the rotation matrix and translational vector, respectively, and z n is the measurement n in the palm frame. In order to localize the object we need to map the cloud of points of contact {y n } P to the cloud of points in the model {p k } O by finding an optimal transformation P T O .

Fig. 5 In-hand object localization: (a) contact points (red) between a robot hand and an object, (b) the area to be explored with the maximum (green dot) and minimum (red cross) distinctiveness.

Let us assume that there are i solutions

[ P T O (1) , P T O (2) , ... P T O (i) ]
, then multiple point clouds similarly describe the object -the mapping between the contact points and the model -at a given grasp of an object. The robot hand will need to explore the object. Hence, a policy for the next best action, i.e. the next location for regrasping, finger gaiting, rolling, or sliding Bicchi (2000), is needed. The next manipulation action should be chosen so that it will be the most informative for localizing the object. This problem can be solved by probabilistic Bayes filters with further Sequential Importance Resampling at each new manipulation action [START_REF] Petrovskaya | Bayesian estimation for autonomous object manipulation based on tactile sensors[END_REF]. For the sake of clarity, let us assume that the manipulation is realized via regrasping. Therefore, there can be multiple grasps denoted as G 1 , G 2 , ..., G N g and Z G 1 represents the measurements z 1 , z 2 , ..., z n at the grasp G 1 . For a given grasp G j (where j = 1, 2, ..., N g ), each possible transformation P T O (i) (where i = 1, 2, ...N s ; N s being the number of believes/samples for the grasp G j ) will represent an hypothesis of the state x

[i] G j of the object inside the hand. Then the posterior believe Bel(x

[i] G j )
given the grasp G j of this state will be:

Bel(x [i] G j ) = P(x [i] G j |Z G j ) (2) 
A possible way to calculate this posterior believe is to obtain the sum of all Euclidean distances d

[i]

G j between each measurement (or each contact point z n ) and its corresponding object model point p k for each state i:

d [i] G j = ∑ ∀n∈G j ||z n -P T O (i) • p k || (3)
and later obtain the probability of this state (i.e. sample) as the ratio of its inverse distance to the sum of all the inverse distances in all the states (samples) of a given grasp G j :

Bel(x [i] G j ) = 1/(d [i] G j ) ∑ N s i=1 1/(d [i] G j ) (4) 
A more complex -presumably, more reliable -way would include the mapping between tactile features (for instance, the orientation of an edge in the tactile image) and not contact points only. At any next grasp G j+1 , probabilities of some of the states will increase or decrease. Then those states that will have higher probabilities will be resampled and the ones with lower probabilities will be dropped out.

Defining the policy for the next grasp is a rather challenging task. One of the simplest solution is to find for each finger such a new contact point on the surface that would give the maximum differentiation between all the considered states of the object. An example is shown in Fig. 5 b: the current points of contact are depicted as the red dots; in order to classify the shape whether it is a circle or square, the next contact point to test should be at the location of the green dot rather than at the location of the red cross, which would provide a higher distinctiveness (i.e. discrimination).

Future Directions and Challenges in robotic manipulation

In this section we discussed the robot hand design on one hand, and its control on the other hand. Particularly, we have reviewed the foundation of touch-driven robot control for active manipulation. There is an intersection with the literature covered in classical motion and force control, e.g. Siciliano and Khatib (2008). The problem of robotic manipulation remains a key challenge in robotics due to both the lack of reliable dexterous robot hands and durable tactile sensors. In this connection, in the manipulation-oriented literature, there are no approaches with the ability to finely and dynamically manipulate an object within a multi-fingered robot hand. Indeed, these capabilities shall be considered during both the manufacturing of robot hands and design process of touch driven controllers. Non-linearity of tendon-driven mechanisms, trade-off between the bandwidth of actuators and the dynamic range of force control, number of dof, and the life time of the robot hands are some but not all issues that set constraints on truly dexterous manipulation.

In the past century, one of the first dexterous robot hands was made from wood (Fig. 6). With injection molding and rapid prototyping technologies, robot hand mechanisms have been improved in terms of backlash, lubrication, durability. Nevertheless, the computational power of the current processing units and advances in control theory, e.g. reinforcement learning algorithms, are ahead of the capabilities of both the robot hands and tactile sensors. In the future, these sensors and robot hands will need to catch up with the computational power to let the future robots be capable of dexterous manipulation of objects used in manufacturing environments by human operators.

One of the potential solutions for in-hand robot manipulation is based on development of non-anthropomorphic end-effectors [START_REF] Yuan | Design of a roller-based dexterous hand for object grasping and within-hand manipulation[END_REF]. These nonanthropomorphic robot hands incorporate fingertips with active contact surfaces, e.g. gecko skin [START_REF] Hashizume | Capacitive sensing for a gripper with gecko-inspired adhesive film[END_REF] or a DC motor actuated fingertip [START_REF] Yuan | Design of a roller-based dexterous hand for object grasping and within-hand manipulation[END_REF] as shown in Fig. 6. The active surfaces allow robots to perform robust pickand-place tasks of tiny objects.

Fig. 3

 3 Fig. 3 Robot control block diagram for manipulation (adopted Kappassov et al (2016))

Fig. 4

 4 Fig. 4 Tactile control: a) task level, b) controller level.

Fig. 6

 6 Fig. 6 Biomimetic (left, provided by Richard Greenhill) and non-biomimetic (right, Yuan et al (2020)) hands.
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