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Abstract. Applications in biotechnology and bio-medical research call
for effective strategies to design novel RNAs with very specific proper-
ties. Such advanced design tasks require support by computational de-
sign tools but at the same time put high demands on their flexibility and
expressivity to model the applications-specific requirements. To address
such demands, we present the computational framework Infrared. It sup-
ports developing advanced customized design tools, which generate RNA
sequences with specific properties, often in a few lines of Python code.
This text guides the reader in tutorial-format through the development
of complex design applications. Thanks to the declarative, compositional
approach of Infrared, we can describe this development as step-by-step
extension of an elementary design task. Thus, we start with generating
sequences that are compatible with a single RNA structure and go all the
way to RNA design targeting complex positive and negative design ob-
jectives with respect to single or even multiple target structures. Finally,
we present a ’real-world’ application of computational RNA design of a
biotechnological device. We use Infrared to generate design candidates of
an artificial AND-riboswitch, which could activate gene expression (only)
in the simultaneous presence of two different metabolites.

1 Introduction

Designing molecules with novel functionality or very specific desirable properties
for applications in biological fundamental research, biotechnology, and medicine,
is a highly complex task that typically requires interdisciplinary efforts, combin-
ing biochemical experimentation and computational design. Compared to pro-
teins, designing RNAs can be particularly attractive for the construction of new
biotechnological devices. On the one hand, functional RNA molecules save the
detour of translation into proteins, and can therefore act more efficiently, e.g. as
fast on/off-switches of gene activity. On the other hand, the design process itself
can build on the well-understood combinatorics of RNA secondary structure and
available computational models and algorithms.

Still, the supporting RNA design computationally is highly demanding. First
of all, RNA design is an optimization problem with often complex objectives with
respect to multiple (secondary) structures, e.g. when the designed RNAs should
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switch between alternative structural states or fold via specific intermediary
structures. Moreover, RNA design is computationally complex even in simple
problem variants. For example, one cannot efficiently design an RNA that pref-
erentially folds into a single given target structure in the nearest-neighbor energy
model, since this problem is NP-hard.

Here we present the framework Infrared, which addresses the multiple de-
mands of computational RNA design in several ways:

– To address the issues of computational complexity, it follows the classical
decomposition of RNA design into two related sub-problems, often called
positive and negative design. Positive RNA design aims at very specific
properties (e.g. specific energy) for certain ‘target’ RNA structures, while
negative design additionally aims to avoid similar properties for all (expo-
nentially many) other, ‘non-target’ structures. While efficient algorithms for
the latter problem can not exist, the system automatically derives fixed-
parameter tractable algorithms to solve the (sub-problem) positive design
efficiently. In many cases, this can already solve negative design by searching
through relatively few samples of good positive designs. To address harder
negative design tasks, we demonstrate constraint generation as well as classic
stochastic optimization techniques as supported by the system.

– Real-world RNA design applications typically demand for targeting thermo-
dynamic criteria referring to multiple target structures (e.g. on and off-states
of riboswitches, binding pockets of aptamers and competing structures in
specific energetic relations), potentially under side constraints like moder-
ate GC-content or avoidance of specific sequence motifs. Thus, we design
Infrared as a library that supports programmers to develop complex and po-
tentially novel design strategies based on a declarative constraint framework.
This allows application programmers to harness the power of fixed-parameter
tractable sampling of designs in an easy to use system.
In this chapter, we guide the reader through the use of this library and
show by examples how to develop and run design programs from IPython
notebooks. Further examples, covering as well non-design applications, are
provided as part of the documentation of Infrared. In addition it should be
mentioned that we published complete design tools based on the library for
the specific applications of the generation of multi-target designs (RNARed-
Print v2, as reimplementation of RNARedPrint [7]) and negative RNA design
(RNAPOND [13]), which we hope are both directly useful to some readers.
These tools can as well serve as further examples for the use of Infrared in
command line tools.

Let us illustrate some fundamental ideas of the Infrared framework with a
first simple example. After importing Infrared

1 from infrared import *

2 from infrared.rna import *
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((((((((((...))))((((....))))))))))

((((((.((((((((....))))..))))))))))

.((((((...)))))).(((((((....)))))))

Fig. 1. Three RNA target structures for RNA design, which will serve us as running
examples. They are shown in 2D representation (by VARNA [3]) and as dot-bracket
strings. The latter represent base pairs by balanced parentheses.

a few lines of code let us generate 10 random (uniformly sampled) designs that
can fold into the first structure of Figure 1.

3 target = "((((((((((...))))((((....))))))))))"

4 model = Model(len(target), 4)

5 model.add_constraints(BPComp(i, j) for (i, j) in parse(target))

6 sampler = Sampler(model)

7 samples = [sampler.sample() for _ in range(10)]

While this code doesn’t yet come close to exploiting the power of the system,
it demonstrates the main structure of using Infrared’s FPT sampling engine. After
a short prelude and defining the input, the users set’s up a constraint model,
here defining that we want to sample one of 4 nucleotides for each sequence
position. Moreover by the constraints BPComp, we require the nucleotides of base
pairs to be complementary. Finally, we generate a sampler for this constraint
model, which specifies the entire problem, and generate 10 samples.

A slight extension of this example provides a first glimpse at the possibili-
ties in Infrared. Generating uniformly sampled sequences for multi-target design,
analogously to RNABluePrint [6], requires only a slight extension of the above
model. To target the three structures of Figure 1, we define
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targets = ["((((((((((...))))((((....))))))))))",

"((((((.((((((((....))))..))))))))))",

".((((((...)))))).(((((((....)))))))"]

Then, we simply add constraints for all these structures to our model. For this
purpose, we rewrite line 6 of the previous example to loop over the targets

for target in targets:

model.add_constraints(BPComp(i, j)

for (i, j) in parse(target))

and generate samples from this model in exactly the same way as before. The
involved computation and algorithmic structure required by the multi-target case
is handled transparently ”under the hood”. Internally, the problem is solved by
an efficient algorithm that automatically adapts in complexity to the dependency
network due to the multiple target structures.

Chapter overview. For preparation, we describe the installation of the library
and recommended additional software. In Section Methods, we systematically de-
velop a complex multi-target design application using the Infrared framework.
We start by targeting positive design objectives in increasingly complex set-
tings. This is followed by a discuss of several approaches that integrate negative
design objectives. Thus, we show-case constraint generation as we applied in
RNAPOND, stochastic optimization based on the library and finally, a full-
fledged application to the design of an AND-riboswitch.

2 Material: Installing Infrared

We recommend installing Infrared using the package manager Conda as described
below. Alternatively but less conveniently, the software can be compiled and
installed from its source found on Gitlab https://gitlab.inria.fr/amibio/

Infrared. In this chapter, we describe the release 1.0 of the software.

Package manager Conda installation. Unless Conda is already installed
on your system, we recommend to install it in the form of Miniconda from
https://conda.io/en/latest/miniconda.html. The page contains installa-
tion instructions for Windows, MacOs and Linux.

Infrared installation. To use Conda, it typically has to be activated by running
the shell command

https://gitlab.inria.fr/amibio/Infrared
https://gitlab.inria.fr/amibio/Infrared
https://conda.io/en/latest/miniconda.html
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conda activate

in a terminal. All required and recommended software can be installed from the
command line by

conda install -c conda-forge -c bioconda 'infrared=1.0b' viennarna

jupyter↪→

The command installs the packages infrared, viennarna, and jupyter; the
flags -c conda-forge -c bioconda specify the required channels. For the largest
part of the tutorial, only the package infrared is required. For energy evaluation
and RNA structure prediction, which we use for advanced, negative design, we
utilize the Vienna RNA package [10]. As of yet, it can not be installed under
Windows via Conda; Windows users must therefore remove viennarna from the
installation command. Note that there is as well no other convenient way to in-
stall the Python interface to the Vienna RNA package on Windows. Nevertheless,
most of the the examples can be run without Python bindings to the Vienna RNA
package. For some of the advanced design examples, we provide a work around,
which will allow Windows users to run the examples, after installing the package
using its Windows installer (https://www.tbi.univie.ac.at/RNA/#download,
select operating system ”Windows” to obtain the download link).

3 Methods

One can run all code of this tutorial from an IPython notebook using using
jupyter (or a comparable system). The tutorial notebook is available from
Infrared’s Gitlab repository https://gitlab.inria.fr/amibio/Infrared/-/

blob/master/Doc/Bookchapter%20Tutorial.ipynb. Using jupyter-notebook,
it is loaded by the command

jupyter-notebook "Bookchapter Tutorial.ipynb"

3.1 Elementary use of Infrared—A simple design model

Recall the first example from the introduction. We want to generate sequences
compatible with a single target structure. In Infrared this idea can be expressed
in the form of a constraint/function network model.

For this purpose, given a target length n

https://www.tbi.univie.ac.at/RNA/#download
https://gitlab.inria.fr/amibio/Infrared/-/blob/master/Doc/Bookchapter%20Tutorial.ipynb
https://gitlab.inria.fr/amibio/Infrared/-/blob/master/Doc/Bookchapter%20Tutorial.ipynb
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n = 35

we set up a new model with n variables X0, . . . , Xn−1 that each can take one of
four different values (representing the nucleotides A,C,G,U by integers 0,1,2,3).

model = Model(n, 4)

This is simply the Infrared-way of modeling the solutions of the design task,
namely nucleotide sequences of length n. Next, we restrict the solution space by
enforcing compatibility to a target structure (again from the running example).
This is accomplished by adding a complementarity constraint for each base pair

target = "((((((((((...))))((((....))))))))))"

model.add_constraints(BPComp(i, j) for (i, j) in parse(target))

The constraint BPComp(i, j) is valid (or satisfied) if the variables Xi and
Xj represent complementary nucleotides (i.e. one pair of A-U, C-G, G-C, G-U,
U-A, U-G). Technically, solutions are assignments that assign to each of the
variables X0, . . . , Xn−1 a value of its domain {0, 1, 2, 3}; moreover they must be
valid assignments that satisfy all the constraints.

Once we have a model, which defines the solution space, we can instantiate
a sampler

sampler = Sampler(model)

which allows us to draw sample solutions by calls to sample(), e.g. we obtain
10 sampled designs by

samples = [sampler.sample() for _ in range(10)]

Recall that nucleotides are represented by numbers, such that we typically want
to convert sampled assignments to sequences (over A, C, G, U); for this purpose,
one typically applies Infrared’s function ass to seq(), like

sequences = [ass_to_seq(sample) for sample in samples]

Without further specifications, such solutions will be sampled from the uniform
distribution.
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3.2 Imposing additional constraints—Sequence constraints in
IUPAC code

As one of the main of the constraint paradigm, more complex tasks can be speci-
fied compositionally. This allows us to tailor the solution space very naturally by
imposing additional constraints. In design problems it is often useful to express
prior knowledge on the sequence design space in IUPAC nucleotide encoding.
To provide just one (arbitrary) example, we could specify the loop regions as
RYY and GNRA, as well as the left and right most base as strong (S) by the
constraint string

iupac_sequence = "SNNNNNNNNNRYYNNNNNNNNGNRANNNNNNNNNS"

Corresponding constraints can then be added to our model by

for i, x in enumerate(iupac_sequence):

model.add_constraints(ValueIn(i, iupacvalues(x)))

Here, we make use of Infrared’s function iupacvalues() which returns the pos-
sible nucelotides values allowed by a IUPAC symbol and the constraint ValueIn
which constrains the allowed values of a variable.

3.3 Functions and features—Control of GC content

Infrared offers many ways to build on this initial design model and tailor it
towards more sophisticated design and very specific applications. For a start, we
want to generate sequences with control over their GC content.

In Infrared, we can define the GC content as a feature of solutions, which itself
is specified by a group of functions. For this purpose, we extend the previous
model by

model.add_functions([GCCont(i) for i in range(n)], 'gc')

This defines one function GCCont for each variable (or nucleotide) and add them
to the model (all in the same function group named gc). Each single function
has value 1, if the respective variable Xi represents C or G and value 0, other-
wise. Infrared automatically derives a feature with name gc that sums over all
these function values. Thus, it counts the G and C nucleotides (reflecting the GC
content as the feature value).
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Shifting the GC content distribution. Infrared offers two major ways to
make use of this feature. In the simpler case, one can control the sample distri-
bution by setting the weight of the feature before constructing the sampler and
drawing samples, e.g.

model.set_feature_weight(1, 'gc')

sampler = Sampler(model)

samples = [sampler.sample() for _ in range(1000)]

Plotting sequence logos and histograms of the GC contents of these samples
shows that it is no longer uniformly distributed, but the sample distribution is
shifted towards higher GC content. Negative weights shift to lower GC content,
while 0 keeps the distribution uniform (Fig. 2). Technically, the samples s are
generated from a Boltzmann distribution, depending on the weight wgc of feature
gc, i.e. their probabilities are proportional to the Boltzmann weights based on
their GC contents GC(s):

exp(wgc ·GC(s)).

Fig. 2. Sequence logos and GC-content histograms for each time 1000 samples with
respective weights -1, 0, and 1 (top, middle, bottom) of the feature gc. The se-
quences are compatible to the first example target structure and the IUPAC string
SNNNNNNNNNRYYNNNNNNNNGNRANNNNNNNNNS.
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Excursion 1: a first glimpse at the Infrared sampling engine. Having
seen a few sampling examples, we are ready to talk about the computations
behind the scenes. First observe that variables not involved in base pairs can
apparently be sampled independently (and in a rather straightforward manner:
either uniformly or with probability proportional to their Boltzmann factor).

It’s more interesting how to sample variables Xi and Xj connected by a
base pair (i, j). Since determining the variables simultaneously does not gen-
eralize well, we handle one after the other. Choosing the value of the variable
Xi before Xj requires looking ahead to the possible solutions in combination
with Xj . In uniform sampling, we can choose based on the number of possible
solutions for each value in Xi’s domain. For example, choosing G leaves two val-
ues for Xj to satisfy the complementarity constraint, whereas C leaves exactly
one; consequently, G must be selected two times as often as C if we want to
sample uniformly. Remarkably, sampling from a Boltzmann distribution works
in the same way but ’counting’ solutions weighted by their Boltzmann factors.
Conversely, uniform sampling turns out to be as a special case of Boltzmann
sampling with weight zero.

To inform the choice of Xi (before choosing Xj), we marginalize the sums
of Boltzmann weights exp(wgc ·GC(s)) over the possible values of Xj . In other
words, we utilize partial partition functions.

Value of Xi Possible values of Xj Partition function (GC content)
A U exp(wgc · 0)
C G exp(wgc · 2)
G C, U exp(wgc · 2) + exp(wgc · 1)
U A, G exp(wgc · 0) + exp(wgc · 1)

For sampling, the value of Xi is selected with probability proportional to
its corresponding partition function from the table. After Xi is determined, the
choice of a value for Xj becomes comparably simple.

For the previous examples, Infrared’s solving mechanism indeed boils down to
fixing an arbitrary order of the variables and precomputing partition functions
as described for the variables in base pairs. In the presence of more complex
dependencies between variables, Infrared still chooses values for the variables
one-by-one in a predetermined optimized variable order. Given this order, it pre-
computes partial partition functions to derive the probabilities to choose values
in order to sample from the desired Boltzmann distribution. The key to efficient
uniform sampling in Infrared is thus to precompute such partition functions as
efficiently as possible. After the precomputation the choice for each variable is
performed in constant time, resulting in linear time sampling. We are going to
discuss further details of the Infrared engine, when we progress to network models
with more complex dependencies as they result from simultaneously targeting
several RNA structures.

Targeting specific GC content. Let us return to the control of the GC content.
Instead of direct tweaking of the weight, we can even ask Infrared to target a
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specific feature value. For example, we generate targeted samples with a GC
content of 75%± 1% from our model by

sampler = Sampler(model)

sampler.set_target(0.75*n, 0.01*n, 'gc')

samples = [sampler.targeted_sample() for _ in range(1000)]

Note the use of Sampler’s method targeted sample() in place of sample().
This method provides access to an automatic mechanism that returns only sam-
ples within the tolerance from the target. To make such a rejection strategy
effective, we iteratively sample, estimate the current mean of the feature value
and then update the feature weight. Concretely, Infrared implements a form of
multi-dimensional Boltzmann sampling [2] as applied in RNARedPrint [7].

3.4 Controlling energy—Multiple features

While, for instructional purposes, we first presented how to target GC content, an
even more obvious target of RNA design is the energy of the target structure—or
in other words, the affinity of the designs to the target structure.

Similar to the GC content, RNA energy can be modeled as a sum of func-
tion values. This holds even for the detailed nearest-neighbor energy model of
RNAs, where energy is composed of empirically determined or trained loop en-
ergies [12,1]. Here, we focus on the much simpler base pair energy model, which
has been demonstrated to be an effective proxy for the Turner (nearest neighbor)
model in design applications [7].

In this simple model, every type of base pair (A-U, C-G or G-U) receives
a different energy. To define the feature energy, we impose a function for each
base pair (i, j) in the target structure and moreover distinguish terminal and
non-terminal base pairs, simply by (i-1, j+1) not in bps. Infrared provides a
default parameterization, which has been originally trained for use with RNARed-
Print [7].

bps = parse(target)

model.add_functions([BPEnergy(i, j, (i-1, j+1) not in bps)

for (i, j) in bps], 'energy')

In the same way as for the feature gc, we can set the weight of the new
feature energy and in this way shift the distribution of base pair energies. In
Infrared, can even simultaneously control the energy and the GC content, since it
samples (depending on the weights wgc and wenergy) from the two-dimensional
Boltzmann distribution, where probabilities are proportional to

exp(wgc ·GC(s) + wenergy · BPEnergy(s)).
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We observe that, for a fixed target structure, the energies of sequences in the
base pair energy model are strongly correlated to their energies in the Turner
model. Thus shifting the distribution of base pair energies indirectly shifts the
distribution of nearest neighbor energies.

For example, we generate sequences with high affinity to the target structure
and specific GC content, straightforwardly extending previous code and ideas:

model.set_feature_weight(-2 'energy')

sampler = Sampler(model)

sampler.set_target(0.75*n, 0.01*n, 'gc')

samples = [sampler.targeted_sample() for _ in range(10)]

We arrived at the functionality of IncARNation [11] as application of the In-
frared library, requiring only a few lines of Python code. We remark that IncAR-
Nation implements the stacking energy model, which is slightly more complex
than the base pair model. This model is as well available in Infrared, but was not
shown to have clear advantages for sampling. To use it, we would simply replace
adding the BPEnergy functions by

model.add_functions([StackEnergy(i, j)

for (i, j) in bps if (i+1, j-1) in bps], 'energy')

3.5 Targeting Turner energies—Customized features

This correlation between the base pair and Turner energy models can be more-
over exploited in Infrared to directly target Turner energies. We will make use
of the Vienna RNA package to evaluate the Turner energies using its function
energy of struct.

from RNA import energy_of_struct

Note that importing this module fails on Windows users, but we provide a
workaround in the tutorial notebook.

Now, we simply add a custom feature for Turner energy that controls the
group of functions energy:

model.add_feature('Energy', 'energy',

lambda sample, target=target:

energy_of_struct(ass_to_seq(sample), target))
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Consequently, we can target specific (realistic) Turner energy of the target
structure (and simultaneously target specific GC content)

sampler = Sampler(model)

sampler.set_target(0.75*n, 0.01*n, 'gc')

sampler.set_target(-10, 0.5, 'Energy')

samples = [sampler.targeted_sample() for _ in range(10)]

This example provides a first demonstration of the targeting flexibility due
to Infrared multi-dimensional Boltzmann sampling engine, which can simultane-
ously target several features. We already see how this generalizes over advanced
design tools like IncARNation.

3.6 Multiple-target structures—Complex dependencies

Due to the compositionality of constraints (and functions) in Infrared, defining
multiple targets does not look any different than defining a single target struc-
ture. Thus, let us right away define model to target the structures of Fig. 1,
which were previously defined in the list targets with length n.

model = Model(n,4)

for k, target in enumerate(targets):

bps = parse(target)

model.add_constraints(BPComp(i, j) for (i, j) in bps)

model.add_functions([BPEnergy(i, j, (i-1, j+1) not in bps)

for (i, j) in bps], f'energy{k}')

model.add_functions([GCCont(i) for i in range(n)], 'gc')

Note how we just add constraints and functions for each target structure, but
define different names for their functions groups (energy0, energy1, energy2),
such that we could control them separately. As well, note that we are going to
control GC content. Here, we could add further constraints like the ones for a
specific IUPAC sequence.

By now, it will appear natural to the attentive reader that we can go on by
defining Turner energy features and specific targets.

for k, target in enumerate(targets):

model.add_feature(f'Energy{k}', f'energy{k}',

lambda sample, target=target:

energy_of_struct(ass_to_seq(sample), target))

sampler = Sampler(model)
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sampler.set_target(0.75*n, 0.01*n, 'gc')

sampler.set_target( -15, 1, 'Energy0')

sampler.set_target( -20, 1, 'Energy1')

sampler.set_target( -20, 1, 'Energy2')

Finally, as expected, Infrared will indeed generate sequences that are com-
patible to all structures and hit the prescribed target energies and GC content.

samples = [sampler.targeted_sample() for _ in range(10)]

At this point, we arrived at reimplementing the essential functionality of RNARed-
Print [7] in the Infrared framework. A full-fledged Infrared-based implementa-
tion with command line interface is moreover provided, as RNARedPrint 2.x, at
https://gitlab.inria.fr/amibio/RNARedPrint.

Excursion 2: a deeper dive into Infrared’s sampling engine Setting
several target structures and targeting specific energies for them seems natural
due to Infrared’s modeling syntax, nevertheless it is not at all obvious a priori
how the system effectively generates solutions that satisfy the constraints and
target specific properties.

Generation of samples from a multi-dimensional Boltzmann distribution. For
generating samples, Infrared implements a general solving strategy based on tree
decompositions and cluster tree elimination (CTE) [8]. Such techniques have
been well known in the (larger) context of constraint processing [4]; more re-
cently, we described this approach specialized to multi-target RNA design for
our approach RNARedPrint. The cluster tree elimination scheme yields a fixed-
parameter tractable algorithm to compute (partial) partition functions, which
let’s us generate samples from a multi-dimensional Boltzmann distribution. In
our example, this means that we can efficiently generate samples with probabil-
ities proportional to

exp(wgc ·GC(s) +

2∑
k=0

wenergyk · energyk(s)).

Due to the CTE scheme, the computation is based on a tree decomposition of
the network of the dependencies induced by the constraints and functions in the
model (aka dependency graph); see Figure 3. The concept of tree decomposition
allows us to recursively compute partial partition functions for the subtrees of the
tree decomposition by processing the variables in its bags in bottom-up order.

https://gitlab.inria.fr/amibio/RNARedPrint
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Moreover, this computation can be performed efficiently due to dynamic pro-
gramming (which tabulates partial result that would otherwise be re-computed
redundantly).

After all partition functions are computed, each sample is generated in a
backtrace running from the root to the leaves. In this way, whenever a new
variable is introduced in the depth-first/top-down traversal of the tree decom-
position, its value can be chosen with the correct probability to generate the
desired multi-dimensional Boltzmann distribution.

This solving strategy explains why Infrared can sample from one network
faster than from the other. Tree-like networks of dependencies are processed
quickly, while complex cyclic dependencies require tree decompositions with
more variables per bag, since valid tree decompositions must satisfy certain con-
ditions w.r.t. the dependencies in the network (which in turn guarantee the
correctness of the dynamic programming evaluation).

Finally, since the computation requires to enumerate all possible sub-assign-
ments in each bag, the computation time is exponential in the maximum number
of variables per bag—this complexity is commonly described in terms of tree
width, which is defined as this number minus 1.
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Fig. 3. (Left) Dependency graph of the multi-target design model showing the depen-
dencies between the variables X0, . . . , X34 of this model (Right) A tree decomposition
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Targeting specific properties. For targeting very specific properties like certain
GC content and energies of the target structures, Infrared utilizes the just de-
scribed sampling engine to iteratively sample from a multi-dimensional Boltz-
mann distribution, evaluate the generated distribution w.r.t. the target proper-
ties of the single targeted features and update their weights. By suitable updates
of the weights, it is possible to shift the distribution towards the targeted fea-
ture values and increase the probability to satisfy these targets (within the given
tolerance). During this entire learning procedure, Infrared returns samples inside
of the tolerance range and rejects all others. In this way, Infrared implements
a variant of multi-dimensional Boltzmann sampling [2], which let’s it solve the
kind of complex constraints set are set by targeting certain tolerance ranges for
features (which are composed from ’local’ functions).

As a consequence of this entire mechanism, the sampling efficiency in In-
frared is a result of the complexity of the constraint network as well as the
(in)dependence of the targeted features and the demanded tolerances. For prac-
tical applications of Infrared it is thus generally advantageous to be aware of the
properties of the solving strategy and the resulting dependencies between these
factors. This is especially important, since the framework easily allows modeling
extremely hard problems, while (as we demonstrate) it is useful for a wide range
of applications in practice. Its specific properties make the system attractive for
a variety of complex design applications but as well intrinsically influence its
applicability.

3.7 Negative design by direct sampling

Good RNA designs typically must satisfy certain constraints and show high (or
specific) affinity to the target structures, but as well must avoid high affinity
to all non-target structures. Objectives of the latter type are called negative
design criteria (whereas the former are called positive design criteria). Intuitively,
design towards negative criteria seems harder since it requires to avoid affinity to
exponentially many structures. Indeed, as we discussed before, negative design
was shown to be NP hard in relevant settings.

For our negative design examples, we make use of the Turner energy model
and other functionality provided by the Vienna RNA package, which we interface
via its Python module RNA. Note this is currently not supported for Windows,
such that the negative design examples can not be run on Windows systems.
Under Linux and Mac, we simply import the module by

import RNA

A classic (single-target) negative design objective, requires the target struc-
ture to have minimum free energy among all structures of the designed RNA,
which can be tested using the Vienna RNA package:
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def is_mfe_design(sequence, target):

fc = RNA.fold_compound(sequence)

return fc.eval_structure(target) == fc.mfe()[1]

In many cases, sampling (targeting only positive design criteria) can be suf-
ficient to satisfy negative design criteria. For example, we can easily find designs
for any of our three target structures by straightforward “generate-and-test”:

sampler = Sampler(single_target_design_model(target))

sampler.set_target(0.7 * n, 0.1 * n, 'gc')

for i in range(50):

seq = ass_to_seq(sampler.sample())

if is_mfe_design(seq, target):

print(f"{i} {seq}")

where design model(target) returns a model for the given target structure
with ’gc’ feature and a bias to good base pair energy as we have developed it
before (see Notes). Based on this code, we easily find 10 to 20 solutions from
generating 50 (biased) samples for each of our example target structures (in less
than 0.1 seconds on a current notebook).

A similar approach can still be sufficient to optimize other negative criteria
for single-target design like the frequency of the target structure (see Notes for
function target frequency). The following code regularly finds designs with
> 80% target frequency for our example targets in comparable run-time (roughly,
twice as long).

sampler = Sampler(single_target_design_model(target))

sampler.set_target(0.7 * n, 0.1 * n, 'gc')

best = 0

for i in range(100):

seq = ass_to_seq(sampler.sample())

freq = target_frequency(seq, target)

if freq > best:

best = freq

print(f"{i} {seq} {freq:.6f}")

Note that in both cases, we control the GC content of our designs. This is just
one example how the core idea of finding designs by sampling can be extended
by further targets or constraints. (Adding prior knowledge as IUPAC string,
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would be another.) Generally, this approach will be most successful for prob-
lems with a medium-sized solution space. This would also apply to many design
problems, where only parts of the RNA should be redesigned, while others are
kept constant.

3.8 Larger single-target designs by constraint-generation

For larger and harder single-target design instances, we suggested a constraint-
generation strategy in RNAPOND [13]. Here, we demonstrate a slightly stripped
down version of this appraoch, which requires only a few lines of code using
Infrared.

The method starts with the attempt to solve negative design by sampling
(=positive design) as in the subsection before. When we fold the suggested de-
signs, it can be observed that some base pairs that don’t occur in the target,
occur more frequently than others. This motivates us to identify these most fre-
quent disruptive base pairs and forbid them in a next round of sampling. This
strategy is iterated until a design (according to the mfe criterion) is discovered.
In the code presented here, we decide to terminate the design attempt, when the
problem becomes inconsistent or a certain complexity of the constraint model is
exceeded.

def cg_design_iteration(dbps):

model = single_target_design_model(target)

model.add_constraints(NotBPComp(i, j) for (i, j) in dbps)

sampler = Sampler(model, lazy=True)

if sampler.treewidth() > 10 or not sampler.is_consistent():

return "Not found"

ctr = Counter()

sol = None

for i in range(100):

seq = ass_to_seq(sampler.targeted_sample())

fc = RNA.fold_compound(seq)

mfe, mfe_e = fc.mfe()

if fc.eval_structure(target) == mfe_e:

sol = seq

ctr.update(parse(mfe))

ndbps = [x[0] for x in ctr.most_common() if x[0] not in bps]

dbps.extend(ndbps[:2])

return sol

dbps, seq = [], None
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while seq is None: seq = cg_design_iteration()

print(seq)

We tested the code to find optimal ’mfe’ designs for instances from the
Eterna100 benchmark set [9]. Note that this code does not yet match the per-
formance of the more refined tool RNAPOND, but it is still quite effective. For
example, an optimal design for instance 39 (“Adenine”) is typically found after
7–9 iterations.

Figure 4, provides intuition of the effect of adding disruptive base pair con-
straints in our strategy. Following the code above, RNA sequences are first
sampled without further limitation than the target structure. Positions corre-
sponding to the target structure have a greater chance to form a base pair
according to the MFE criteria. However, as shown in the first plot in Fig-
ure 4, some unwanted base pairs are also observed considerably. As seen in
the second plot, the two most frequent unwanted base pairs in the first round
are restricted from paired (via constraint NotBPComp) in the second round of
sampling. Then, additional constraints are imposed on two novel disruptive
base pairs discovered in the following sampling round. After 7 rounds of sam-
pling with 14 disruptive base pairs restricted, a deign sequence is successfully
found, CCGACAAGGGCCAUGCGCCCGGAAACCAGUGCCUCUGAAGUCAAAGUCUG, for the tar-
get structure "..(((..((((.....)))).((...(((.....)))...))...)))..".
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Fig. 4. Base pair frequencies and disruptive base pairs in the first, second and final
iteration of a typical run of our RNAPOND-like constraint generation design strategy
targeting "..(((..((((.....)))).((...(((.....)))...))...)))..". In our trian-
gular matrix visualization, each point refers to one potential base pair (i,j); base pair
frequencies the generated sample are color coded and the target base pairs are high-
lighted by blue squares. By adding disruptive base pairs in each iteration (red squares),
the frequencies of the base pairs are shifted towards the target ones.
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3.9 Negative design by stochastic optimization with partial
resampling

Infrared supports stochastic optimization strategies to optimize negative objec-
tives for single or multi-target design. We are going to present a Metropolis-
Hastings optimization strategy for optimizing the solutions from a multi-design
models. It starts with a sample from the model and evaluates it by the objective
function. Then, it iteratively picks a connected component of the dependency
graph; constructs a model for resampling of the variables in this component;
and generates a sample. Based on its evaluation by the objective function, the
sample is either accepted or rejected based on the Metropolis-Hastings criterion.

For our example, we choose to minimize the multi-defect [6], which is a
weighted sum of the distance of the target energies to the ensemble energy and
the energy distance between the targets. Minimizing this function thus means to
increase the probability of the targets and balance the target energies as much
as possible (see function multi defect in Notes).

Next, we define a function multi design model (see Notes) that returns a
multi-target design network model (closely resembling the one presented be-
fore). In addition, crucially for the use in stochastic optimization, this model
supports partial resampling. Given a subset of the model variables and a com-
plete solution, it fixes all variables outside of the subset to the solution. This is
accomplished by the code snippet

for i in range(n):

if i not in subset:

value = solution.values()[i]

model.restrict_domains(i, (value, value))

In this function (see Notes), we moreover avoid to introduce constraints on or
between variables outside of the subset.

For the stochastic optimization, we require additional imports

from random import random, choices

from math import exp

The function multi design optimize returns the best multi-target design and
its multi-defect after a number of iterations (steps); a further parameter temp

(temperature) controls the acceptance probability.

def multi_design_optimize(steps, temp):

cc, cur, curval, bestval = None, None, math.inf, math.inf

for i in range(steps):
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model = multi_design_model(cur, cc)

new = Sampler(model).sample()

newval = multi_defect(ass_to_seq(new), targets, 1)

if (newval <= curval

or random() <= exp(-(newval-curval)/temp)):

cur, curval = new, newval

if curval < bestval:

best, bestval = cur, curval

if i==0:

ccs = model.connected_components()

weights = [1/len(cc) for cc in ccs]

cc = choices(ccs, weights)[0]

return (ass_to_seq(best), bestval)

Finally, we run the multi-defect optimization on our example target struc-
tures by

multi_design_optimize(1000, 0.015)

Note that here the number of 1000 iterations and the temperature 0.015 were
chosen after some experimentation. In practice, we will often restart such pro-
cedures to obtain better solutions and/or a diverse set of good solutions. In our
tests, one such optimization run took moderate run-time below 10s on current
notebook hardware, while it can find very good designs for the targets.

Figure 5 shows the best multi-defects in 48 runs after up to 5120 iterations.
The best sequence CCCUGUGCUCCAUGGGCCCCCGUCAGGGGACGGGG that was found in
these 48 runs of optimization had an multi-defect of 1.31. For this sequence, the
target structures have respective energies -16.9, -16.5, and -16.9 kcal/mol; two of
the targets have minimum free energy. This small experiment yields insights into
the effectivity and convergence of the optimization procedure. For applications,
it seems to suggest an optimization strategy combining restarts and moderately
long runs.

Remarkably, there are even solutions where all three targets have minimum
free energy. For the sequence CCCCUUGCCUCAAGGGCCCUCUUCAGAGGAAGGGG, which
was discovered by the same strategy, all three target structures have a free
energy of -15.40 kcal/mol (at a multi-defect of 1.21). Even the close suboptimals
contain only structures similar to the targets as can be seen from the output of
RNAsubopt of the Vienna RNA package, which enumerates all structures within
1 kcal/mol of the minimum free energy.



The Infrared framework for RNA design 21

Fig. 5. Distributions of best multi-defects from 48 runs of multi design optimization

without stochastic optimization (step 1) and after up to 5120 optimization steps at
temperature 0.015. In the box plots, the boxes extend from quartile to quartile; the
medians are shownn in blue; and the whiskers reach 1.5 times beyond the quartile.
Remaining data points are shown as circles.

$ RNAsubopt -s <<<CCCCUUGCCUCAAGGGCCCUCUUCAGAGGAAGGGG

CCCCUUGCCUCAAGGGCCCUCUUCAGAGGAAGGGG -15.40 1.00

((((((((((...))))((((....)))))))))) -15.40

((((((.((((((((....))))..)))))))))) -15.40

.((((((...)))))).(((((((....))))))) -15.40

((((((.(((((((......)))..)))))))))) -15.10

((((((.((((.(((....)))...)))))))))) -14.80

((((((.((((.(((.....)))..)))))))))) -14.80

((((((.((((..(((....)))..)))))))))) -14.80

((((((.((((.((((...))))..)))))))))) -14.60

(((((((((.....)))((((....)))))))))) -14.50

((((((.((((.((......))...)))))))))) -14.50

.((((((...))))))(((.((((....))))))) -14.50
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3.10 A real world example: design of a Tandem-Riboswitch

Finally, inspired by collaborative work [5], we showcase the design of a tandem
construct of two riboswitches for applications in bio-technology.

The single riboswitches control transcription by forming a terminator in
their ground state, but they can as well bind a metabolite in an alternative
aptamer structure. Upon binding, the terminator is destabilized and transcrip-
tion is turned-on (Fig. 6). By combining riboswitches that react to two differ-
ent metabolites (here Theophylline and Tetracycline) in tandem, we aim at the
design of an AND-riboswitch, which ramps up gene expression (only) in the
presence of both metabolites (Fig. 7)

Fig. 6. States of a Theophylline (Theo) and a Tetracycline (Tet) riboswitch. For both
riboswitches, we show the configuration that can bind the respective aptamer (top)
and the competing terminator configuration, which terminates transcription (bottom).
The regions with dark color represent functional sequences. On the other hand, the
light one are the sequences that are free for design.

We use Infrared to suggest designs that connect two known aptamer con-
structs by a spacer region. Such design candidates could then be evaluated by
biochemistry experts and tested in wet lab experiments (as e.g. done in [5]).

In preparation, we define the four structures of Fig 6 as dot-bracket strings.
Moreover, we derive sequence strings from experimentally verified functional
riboswitches, but replace some nucleotides by ’N’ to leave additional freedom
in the design (see definition of seqTheo, aptTheo, termTheo, seqTet, aptTet,
termTet in Notes). These allow to compose the structural targets and sequence
strings for the tandem construct, including a 30nt spacer (see Notes).

As goals for the computational design, we optimize the stability of the ter-
minator structures (in absolute terms as well as in comparison to the structure
ensemble), while keeping certain probabilities for the aptamer structure. More-
over, we want to avoid that the spacer region forms any stable structures or
interferes with the structures of the riboswitch components. How to express such
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Fig. 7. States of an AND-riboswitch in the absence of Theo and Tet (top), in the
presence of Theo and the absence of Tet (middle), and, in the presence of Theo and Tet
(bottom). In our design example, we put Theophylline and Tetracycline riboswitches
in tandem (Theo-Tet), connected by a freely designable 30nt space region (gray).

objectives as a function rstd objective is described in details in our Notes. We
make use of free energy differences between the free RNA structure ensemble
(free ensemble energy) and constrained ensembles, which are constraints to form
either aptamer or terminator structure, or keep the space unpaired.

It becomes clear, that we face a combination of positive and negative design
goals under additional constraints. We suggest to perform this optimization as
seen before by a stochastic optimization procedure using resampling of com-
ponents in a constraint network. Consequently, to implement the entire design
approach, we define a function rstd model to set up a (resampling) model for
the riboswitch tandem design and finally adapt the Metropolis-Hastings opti-
mization scheme in rstd optimze. Code for both functions is provided in Notes.

Finally, we can run the optimization for a specified number of steps and
temperature:

rstd_optimize(steps = 500, temp = 0.03)

To find better and/or several design candidates, the optimization procedure
can be repeated (or even run in parallel). For example, we generate designs like

CCGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCGCGGCCCGACAUCGGGCCGUGUUGUUUUUUUUCCC c

ACACACAAUAAAGAUAAACCUACCCGGCCGUUAAAACAUACCAGAGAAAUCUGGAGAGGUGAAGAAU c

ACGACCACCUAGCGGCUACCACCGUUAGGUGGUCGUUUUUUUUU

↪→

↪→
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in several minutes—after 12 parallel runs. For this sequence, both terminators
are very stable (energy differences of 0.14 and 0.0 kcal/mol), the stability of the
aptamer structures is close to the target values (differences below 0.03 kcal/mol)
and the designed spacer region behaves structurally almost neutral (low unfold-
ing energy of 2.11 kcal/mol).

As demonstrated, Infrared appears technically well equipped to express var-
ious design constraints and target complex design objectives. Especially due to
its declarative Python interface it moreover supports to apply flexible optimiza-
tion strategies that make use of its capable design sampling engine. It turns out
that this allows finding good solutions to practical design tasks using only ’a few
lines’ of code (which can still be discussed and printed in a bookchapter). This al-
lows practitioners to focus on the remaining, ’true’ challenges of computationally
supporting the design of functional RNA molecules, as they undoubtedly exist
in the realistic modeling of the design problem and the evaluation of promising
design candidates that could be scrutinized in subsequent lab experiments.

4 Notes

4.1 A model for single target design

def single_target_design_model(target):

n, bps = len(target), parse(target)

model = Model(n, 4)

model.add_constraints(BPComp(i, j) for (i, j) in bps)

model.add_functions([GCCont(i) for i in range(n)], 'gc')

model.add_functions([BPEnergy(i, j, (i-1, j+1) not in bps)

for (i, j) in bps], 'energy')

model.set_feature_weight(-1.5, 'energy')

return model

4.2 Target frequency in ensemble

The frequency of the target structure in the ensemble of the designed sequence
is a good example of a negative design criterion.

def target_frequency(sequence, target):

fc = RNA.fold_compound(sequence)

fc.pf()

return fc.pr_structure(target)
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4.3 Multi-Defect

The multi-defect can be computed with the help of the Vienna RNA library.

def multi_defect(sequence, targets, xi=1):

k = len(targets)

fc = RNA.fold_compound(sequence)

ee = fc.pf()[1]

eos = [fc.eval_structure(target) for target in targets]

diff_ee = sum(1/k * eos[i] - ee for i in range(k))

diff_targets = sum(2/(k*(k-1)) * abs(eos[i]-eos[j])

for i in range(k) for j in range(k) if i < j)

return diff_ee + xi * diff_targets

4.4 Multi-design model with support for partial resampling

def multi_design_model(subset=None, solution=None):

n = len(targets[0])

model = Model(n, 4)

if subset is None: subset = set(range(n))

for i in set(range(n)) - subset:

value = solution.values()[i]

model.restrict_domains(i, (value, value))

model.add_functions([GCCont(i) for i in subset], 'gc')

for target in targets:

s = parse(target)

ss = [(i, j) for (i, j) in s

if i in subset or j in subset]

model.add_constraints(BPComp(i, j) for (i, j) in ss)

model.add_functions([BPEnergy(i, j, (i-1, j+1) not in s)

for (i, j) in ss], 'energy')

model.set_feature_weight(-1, 'energy')

model.set_feature_weight(-0.3, 'gc')

return model
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4.5 Design of a tandem-riboswitch

Defining the design task starts with a definition of the two components of the
tandem construct.

seqTheo = "NNNNGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCNNNNNNNNNNNNNN"\

"NNNNNNNNNNUUUUUUUU"

aptTheo = "(((((...((((((((.....)))))...)))...))))).........."\

".................."

termTheo = "...............................(((((((((((((....))"\

")))))))))))......."

seqTet = "NNNNNAAAACAUACCAGAGAAAUCUGGAGAGGUGAAGAAUACGACCACCU"\

"ANNNNNNNNNNNNNNNNNNNNNNNNUUUUUUUUU"

termTet = "........................................(((((((((("\

"(((((......)))))))))))))))........"

aptTet = "((((((.......(((((....)))))...((((...........)))))"\

")))))............................."

These are concatenated while adding a spacer region, which are used to derive
the model constraints.

spacerLen = 30

aptamers = aptTheo + "."*spacerLen + aptTet

terminators = termTheo + "."*spacerLen + termTet

sequence = seqTheo + "N"*spacerLen + seqTet

To express the objective function we define relevant structural variants of the
entire tandem construct.

n = len(aptTheo) + spacerLen + len(aptTet)

variants = dict(

empty = '.'*n,

aptTheo = aptTheo + '.'*(n-len(aptTheo)),

aptTet = '.'*(n-len(aptTet)) + aptTet,

termTheo = termTheo + '.'*(n-len(aptTheo)),

termTet = '.'*(n-len(aptTet)) + termTet,
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spacer = '.'*len(aptTheo) + 'x'*spacerLen + '.'*len(aptTet)

)

The riboswitch tandem design objective function consists of three terms:

– the stability of the two terminator structures, measured as free energy differ-
ence between the energies of the unconstrainted ensemble (empty constraint)
and the ensembles that are constrained by the respective terminator struc-
ture. For each terminator, this difference has a natural interpretation as the
required (additional) energy to form this terminator in the equilibrium state.
Minimizing this energy targets maximal stability of the terminators.

– the difference between certain stability targets and analogous energy differ-
ences for the aptamer structures (7.0 kcal/mol for the Theo RS; 10.0 kcal/mol
for the Tet RS). This targets specific unfolding energies for the aptamers.
Minimizing the difference targets specific aptamer stabilities.

– the required energy to break any structures involving the spacer region.
Minimizing this energy avoids interference of the spacer with other structure
as well as stable structure within the spacer region.

def constrained_efe(sequence, c):

fc = RNA.fold_compound(sequence)

fc.hc_add_from_db(c)

return fc.pf()[1]

def rstd_objective(sequence):

efe = {k:constrained_efe(sequence, variants[k])

for k in variants}

term_stability = efe['termTheo'] + efe['termTet'] \

- 2*efe['empty']

apt_target = abs(efe['aptTheo'] - efe['empty'] - 7.0) \

+ abs(efe['aptTet'] - efe['empty'] - 10.0)

spacer_unfolding = efe['spacer'] - efe['empty']

return term_stability + apt_target + spacer_unfolding

The model sets up the constraints due to the sequence string and the base
pairs in the aptamer and terminator structures. Moreover it sets weights for
the features of base pair energies and GC content. The function is prepared to
generate resampling models (which fix the sequence out of a specified subset of
positions that are to be resampled) for its use in Metropolis-Hastings stochastic
optimization.
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def rstd_model(subset=None, solution=None):

rstd_targets = [aptamers, terminators]

n = len(rstd_targets[0])

model = Model(n, 4)

if subset is None: subset = set(range(n))

for i in set(range(n)) - subset:

value = solution.values()[i]

model.restrict_domains(i, (value, value))

for i, x in enumerate(sequence):

model.add_constraints(ValueIn(i, iupacvalues(x)))

model.add_functions([GCCont(i) for i in subset], 'gc')

for k, target in enumerate(rstd_targets):

s = parse(target)

ss = [(i, j) for (i, j) in s

if i in subset or j in subset]

model.add_constraints(BPComp(i, j) for (i, j) in ss)

model.add_functions([BPEnergy(i, j, (i-1, j+1) not in s)

for (i, j) in ss], f'energy{k}')

model.set_feature_weight(-0.6, 'energy0')

model.set_feature_weight(-1, 'energy1')

model.set_feature_weight(-0.3, 'gc')

return model

Finally, the objective function is minimized by a stochastic procedure (as
seen before). We provide the adapted code:

def rstd_optimize(steps, temp):

cc, cur, curval, bestval = None, None, math.inf, math.inf

for i in range(steps):

model = rstd_model(cc, cur)

new = Sampler(model).sample()

newval = rstd_objective(ass_to_seq(new))

if (newval <= curval

or random() <= exp(-(newval-curval)/temp)):

cur, curval = new, newval

if curval < bestval:

best, bestval = cur, curval
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if i==0:

ccs = model.connected_components()

weights = [1/len(cc) for cc in ccs]

cc = choices(ccs, weights)[0]

return (ass_to_seq(best), bestval)
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