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a b s t r a c t 

This paper relates the post-analysis of the first edition of the HEad and neCK TumOR (HECKTOR) chal- 

lenge. This challenge was held as a satellite event of the 23rd International Conference on Medical Image 

Computing and Computer-Assisted Intervention (MICCAI) 2020, and was the first of its kind focusing on 

lesion segmentation in combined FDG-PET and CT image modalities. The challenge’s task is the auto- 

matic segmentation of the Gross Tumor Volume (GTV) of Head and Neck (H&N) oropharyngeal primary 

tumors in FDG-PET/CT images. To this end, the participants were given a training set of 201 cases from 

four different centers and their methods were tested on a held-out set of 53 cases from a fifth center. 

The methods were ranked according to the Dice Score Coefficient (DSC) averaged across all test cases. An 

additional inter-observer agreement study was organized to assess the difficulty of the task from a hu- 

man perspective. 64 teams registered to the challenge, among which 10 provided a paper detailing their 

approach. The best method obtained an average DSC of 0.7591, showing a large improvement over our 

proposed baseline method and the inter-observer agreement, associated with DSCs of 0.6610 and 0.61, re- 

spectively. The automatic methods proved to successfully leverage the wealth of metabolic and structural 

properties of combined PET and CT modalities, significantly outperforming human inter-observer agree- 
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. Introduction 

High-throughput medical image analysis, often referred to as 

adiomics, has shown its potential in unveiling relationships be- 

ween quantitative image biomarkers and cancer prognosis, includ- 

ng in the context of Head and Neck (H&N) cancer ( Vallieres et al.,

017; Bogowicz et al., 2017 ). H&N cancer is the 5th leading can- 

er by incidence ( Parkin et al., 2005 ) and its treatment is generally

ased on a combination of radiotherapy with systemic treatment 

e.g. Cetuximab) ( Bonner et al., 2010 ). However, treating this can- 

er remains challenging since local failure occurs in about 40% of 

atients in the first two years after the treatment ( Chajon et al., 

013 ). The development of non-invasive and personalized ap- 

roaches (e.g. radiomics) is critical for improving disease character- 

zation and will, hopefully, lead to more targeted therapies based 

n phenotypic tumor characteristics. 2-[18F]fluoro-2-deoxyglucose 

ositron-emission tomography (FDG-PET) and Computed Tomogra- 

hy (CT) hold a special place for disease characterization since they 

ontain complementary information about the metabolism and the 

natomy of cancer. Furthermore, they are used for initial staging 

nd follow-up of H&N cancer. These modalities are therefore read- 

ly available for the creation and evaluation of radiomics models 

ased on these clinically acquired images. Typical radiomics analy- 

es rely on localized feature extraction inside delineated lesions or 

olumes Of Interest (VOI) ( Lambin et al., 2017; Gillies et al., 2016 ).

ne of the reasons that impede the development of robust mod- 

ls is the time-consuming and error-prone manual delineation of 

hese VOIs. To this end, the automatic segmentation of H&N Gross 

umor Volume of the primary tumor (GTVt) and the lymph nodes 

GTVn) constitutes a highly promising approach to annotate and 

nalyze very large cohorts, which is critically needed to enable ro- 

ust and reproducible validation of radiomics models. Moreover, 

utomatic segmentation also has the potential to allow radiation 

ncologists to improve treatment planning efficiency by reducing 

he time needed for tumor delineation as well as improving inter- 

bserver reproducibility. 

The goal of the HEad and neCK TumOR (HECKTOR) challenge 

s to establish and benchmark the best-performing methods for 

&N lesions segmentation while exploiting the rich bi-modal in- 

ormation of combined PET/CT. In this first edition of the chal- 

enge, the participants were asked to develop automatic meth- 

ds for the segmentation of the GTVt 2 on FDG-PET/CT images 

f patients suffering from oropharyngeal cancer. It is worth not- 

ng that to be part of the official ranking, the participants had 

o provide a paper describing their methods. Furthermore, partic- 

pants had to disclose the use of external training data and were 

n this case not eligible for the official ranking. None of the par- 

icipants reported using external data. This manuscript summa- 

izes the methods and presents the associated segmentation re- 

ults of the different teams who participated in this 2020 edition 

f the HECKTOR challenge. It also includes several additional ex- 

ensive qualitative and quantitative analyses. This paper extends 

he material presented in ( Andrearczyk et al., 2021b ) with the 

ollowing: 
2 For the first and second edition of the challenge, the GTVn segmentation is not 

art of the tasks but will be asked in further editions. 

l  

2  

b  

2 
esholding based on PET images as well as other single modality-based

mance is one step forward towards large-scale radiomics studies in H&N

rror-prone and time-consuming manual delineation of GTVs. 

© 2022 The Authors. Published by Elsevier B.V. 

icle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

• an extensive review of the prior work; 
• an analysis of the inter-observer agreement organized with four 

different observers on a subset of 21 cases; 
• an evaluation of a super-ensemble segmentation based on the 

submitted contours of the ten ranked teams; 
• an addition of new participants’ results from runs submitted af- 

ter the end of the challenge; 
• a semi-automatic segmentation based on PET thresholding as 

an additional baseline; and 

• additional extensive qualitative and quantitative analyses of the 

results. 

The paper is organized as follows. Section 2 presents the re- 

ated work. Section 3 describes the challenge setup including the 

ataset, annotations, participation, and ranking. The presentation 

nd in-depth analysis of the participants’ results are provided in 

ection 4 and are discussed in Section 5 . Finally, Section 6 con- 

ludes the paper. 

. Prior work 

.1. Related tumor segmentation algorithms 

An abundance of works has been proposed to automatically 

egment tumors in PET and PET/CT images ranging from thresh- 

lding to unsupervised and supervised machine learning methods. 

aking an exhaustive review of all these approaches is out of the 

cope of this manuscript and is proposed in ( Foster et al., 2014; 

att et al., 2017 ). Among these different strategies, the simplest 

nes are based on the thresholding of the Standardized Uptake 

alues (SUV) in PET images. These methods are difficult to autom- 

tize completely since the SUV is a semi-quantitative measure that 

ighly depends on the time between the injection and the image 

cquisition, the device, the reconstruction algorithm, the shape of 

he tumor, and even the patient ( Wahl et al., 2009 ). 

More refined approaches have been proposed to further au- 

omatize this process. Most of them are relying on the distribu- 

ion of SUV values or other handcrafted quantitative image features 

n PET only. For instance, algorithms based on Gaussian Mixtures 

 Aristophanous et al., 2007 ) or fuzzy C-means modeling ( Hatt 

t al., 2009; Lapuyade-Lahorgue et al., 2015 ) were proposed. Oth- 

rs formulated the segmentation problem as a minimization of a 

arkov random field ( Song et al., 2013 ). In the context of H&N tu-

ors delineation, a decision-tree-based K-nearest-neighbor classi- 

er trained with regional texture features in PET and CT images 

as used in ( Yu et al., 2009 ). 

Recent work was inspired by the success of deep Convo- 

utional Neural Networks (CNN), and more precisely of the U- 

et ( Ronneberger et al., 2015 ) applied to multi-modal biomedical 

mage segmentation ( Zhou et al., 2019 ). PET/CT tumor segmenta- 

ion has also benefited from the advancement of this field. For 

nstance, ( Blanc-Durand et al., 2018 ) applied a 3D U-Net to seg- 

ent brain tumors in O-(2-[18F]fluoroethyl)-L-tyrosine PET/CT im- 

ges. Deep CNNs was also used several times in the context of 

ung tumor segmentation ( Wu et al., 2020; Fu et al., 2021; Li et al.,

019; Zhao et al., 2018; Zhong et al., 2018 ). A 3D U-Net was used

y ( Jemaa et al., 2020 ) to lung cancer and lymphoma, which was

http://creativecommons.org/licenses/by/4.0/
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Table 1 

List of scanners used in the different centers. 

Center Device 

HGJ hybrid PET/CT scanner (Discovery ST, GE Healthcare) 

CHUS hybrid PET/CT scanner (GeminiGXL 16, Philips) 

HMR hybrid PET/CT scanner (Discovery STE, GE Healthcare) 

CHUM hybrid PET/CT scanner (Discovery STE, GE Healthcare) 

CHUV hybrid PET/CT scanner (Discovery D690 TOF, GE Healthcare) 
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rained on 2540 volumes and tested 1124 volumes. ( Iantsen et al., 

021a ) used a U-Net architecture for the automatic segmentation 

f cervical tumors in PET only. 

The deep learning-based approaches were also specifically ap- 

lied to tumor segmentation in H&N cancers. A comparison of 

ifferent CT, PET and MRI multi-modality image combinations for 

eep learning-based head and neck tumor segmentation is pre- 

ented in ( Ren et al., 2021 ). In a study including 22 patients from

wo different centers, ( Huang et al., 2018 ) used a 2D U-Net to

egment the GTV, i.e. the union of GTVt and GTVn. ( Moe et al.,

019 ) used a 2D U-Net for the segmentation of GTV on a dataset

f 55 patients. In another study, ( Guo et al., 2019 ) applied a 3D

-Net to segment the GTVt, which was evaluated on a cohort 

f 250 patients. The authors showed that multimodal networks 

utperform networks based on a single modality. More recently, 

 Groendahl et al., 2021 ) performed an analysis of the different 

ypes of automatic segmentation based on thresholding, classifi- 

ation at the pixel level using a shallow classifier, and deep CNN 

ethods. They did this comparison on a mono-centric cohort of 

97 patients and concluded that deep learning models outperform 

he others. 

Identifying the best performing method among all these differ- 

nt strategies requires a standardized evaluation. This was already 

ighlighted by ( Hatt et al., 2017 ) and challenges constitute a suit- 

ble way to systematically evaluate and compare state-of-the-art 

lgorithms against the same test set and with highly controlled 

onditions. 

.2. Medical image segmentation challenges 

The growing interest in biomedical image analysis challenges is 

llustrated by and an increasing number of new challenges orga- 

ized every year, which can be partly explained by the growing 

ommunity. For instance at the International Conference on Medi- 

al Image Computing and Computer-Assisted Intervention (MICCAI) 

018, 2019, and 2020 there were 15, 22, and 25 accepted chal- 

enges, respectively. In the past three MICCAI editions, 52 out of 

25 tasks (42%) were related to segmentation. 3 Several other chal- 

enges are organized as satellite events of other conferences in- 

luding the International Symposium on Biomedical Imaging (ISBI), 

he international conference on Medical Imaging with Deep Learn- 

ng (MIDL), and the annual meeting of the Radiological Society of 

orth America (RSNA), as well as independently organized chal- 

enges (e.g. on Kaggle 4 ). Remarkably successful challenges in med- 

cal image segmentation include the Brain Tumor Segmentation 

BraTS) challenge ( Menze et al., 2014 ), Kidney Tumor Segmentation 

KiTS) ( Heller et al., 2021 ) challenge and the Visual Concept Ex- 

raction Challenge in Radiology (VISCERAL) ( del Toro et al., 2014 ) 

hallenge. Surprisingly, as of 2021, only one challenge was orga- 

ized on PET segmentation ( Hatt et al., 2018 ) and, to the best of

ur knowledge, none on PET/CT segmentation. 

. HECKTOR 2020 challenge set-Up 

The challenge took place in 2020 and was associated with the 

3rd MICCAI conference as a satellite event the same year. It was 

osted on the AIcrowd platform. 5 The training and test data were 

eleased on the 10th of June and the 1st of August, respectively. 

he participants were asked to submit their results before the 10th 

f September. The challenge’s results were communicated the 15th 

f September, and the MICCAI associated event was held the 4th 
3 https://www.biomedical-challenges.org/miccai2021/Statistics , as of October 

021. 
4 https://www.kaggle.com/ , as of October 2021. 
5 https://www.aicrowd.com/challenges/miccai- 2020- hecktor , as of October 2021. 

a

o

3 
f October. The data of the challenge are currently available on 

he AIcrowd platform after signing an end-user agreement and 

he leaderboard submission was open until the 10th of September 

021. 6 

The following section summarizes the challenge’s set-up. A 

horough and BIAS ( Maier-Hein et al., 2020 ) compliant description 

f the challenge organization is provided in ( Andrearczyk et al., 

021b ). 

.1. Dataset 

The dataset used in this challenge includes PET and CT images 

s well as patient information including age, sex, and acquisition 

enter. The patients selected for this dataset suffered from H&N 

ancer, which was histologically proven, and they underwent ra- 

iotherapy treatment often combined with chemotherapy. The data 

ere acquired from five centers: 

1. Hôpital Général Juif (HGJ), Montréal, CA ( n = 55 ) 

2. Centre Hospitalier Universitaire de Sherbooke (CHUS), Sher- 

brooke, CA ( n = 72 ) 

3. Hôpital Maisonneuve-Rosemont (HMR), Montréal, CA ( n = 18 ) 

4. Centre Hospitalier de l’Université de Montréal (CHUM), Mon- 

tréal ( n = 56 ) 

5. Centre Hospitalier Universitaire Vaudois (CHUV), CH ( n = 53 ) 

The four centers HGJ, CHUS, HMR, and CHUM were used for the 

raining set, which amounts to 201 cases. This training data consti- 

ute a subset of ( Vallieres et al., 2017 ) which contains 298 cases in-

luding H&N cancers originating from various anatomical regions. 

or this initial edition of the HECKTOR challenge, we decided to 

ocus on patients suffering from oropharyngeal cancer to reduce 

natomical variations and provide more controlled conditions for 

he algorithms. The CHUV center was used for the test set, totaling 

 number of 53 test cases. 

An example of fused PET/CT images for each of the five centers 

s depicted in Fig. 1 . The list of scanners used in each center for

mage acquisition can be found in Table 1 . Additional information 

oncerning image protocols are described in ( Andrearczyk et al., 

021b ). 

The Digital Imaging and Communications in Medicine (DICOM) 

les were converted to the Neuroimaging Informatics Technology 

nitiative (NIfTI) format. The CT and PET images were stored in 

ounsfield Units (HU) and SUVs, respectively. The code used for 

he conversion is available on the challenge’s repository 7 Each case 

omprises NIfTI files for the CT image, the PET image, and the GTVt 

ask (for the training cases), as well as patient information (age, 

ex) and center. A bounding box locating the oropharyngeal region 

as also provided (details of the automatic region detection can 

e found in Andrearczyk et al., 2020a ). The choice of preprocess- 

ng ( e.g. resampling, image standardization) was left to the partici- 

ants. Therefore, no further preprocessing was performed to mimic 
6 The leaderboard was replaced by the 2021 edition after this date: https://www. 

icrowd.com/challenges/miccai- 2021- hecktor/leaderboards . 
7 github.com/voreille/hecktor/blob/hecktor2020/src/data/dicom _ conversion.py , as 

f October 2021. 

https://www.biomedical-challenges.org/miccai2021/Statistics
https://www.kaggle.com/
https://www.aicrowd.com/challenges/miccai-2020-hecktor
https://www.aicrowd.com/challenges/miccai-2021-hecktor/leaderboards
https://www.github.com/voreille/hecktor/blob/hecktor2020/src/data/dicom_conversion.py
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Fig. 1. Case examples of 2D sagittal slices of fused PET/CT images from each of the five centers. These images are obtained after resampling the PET image and the CT image 

to 1x1x1 mm 

3 with a tricubic interpolation. The CT window in Hounsfield unit is [ −140 , 260] and the PET window in SUV is [0 , 12] . 
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 clinical use of the segmentation methods. However, we provided 

ome routines to crop, resample, and also train a baseline CNN 

using NiftyNet Gibson et al., 2018 ). This code was made avail- 

ble on the challenge’s repository 8 to help the participants and to 

aximize transparency, but the participants were free to use their 

ethods. 

.2. Contours 

The GTVts from the original dataset were drawn by expert radi- 

tion oncologists from multiple centers for radiotherapy treatment 

lanning. In most cases, the contours used for treatment planning 

re larger than the actual tumor and are presumably not optimized 

or radiomics with sometimes the inclusion of surrounding tissue 

r even air cavities. Furthermore, only 40% (80 cases) of the train- 

ng set were delineated on the CT of the PET/CT scans. The re- 

aining 60% were drawn on a dedicated CT scan for the treatment 

lanning and were registered to the PET/CT scans using intensity- 

ased free-form deformable registration with the software MIM 

MIM Software Inc., Cleveland, OH). For more information about 

he original training set, please refer to ( Vallieres et al., 2017 ). 

he original contours of the test set were all drawn on the fused 

ET/CT scans. 

To homogenize the data i.e. to obtain delineations closer to the 

rue tumoral volume and to remove variability due to the annota- 

ors and the registration step, each contour was controlled by an 

xpert who is both a radiologist and a nuclear physician. Two non- 

xperts annotators made an initial cleaning to facilitate the ex- 

ert’s work. During this control, multiple contours were rectified 

o follow the true border of the tumor as close as possible. Many 
8 github.com/voreille/hecktor/tree/hecktor2020 , as of October 2021. 

w

t

4 
riginal contours included air as well as various tissues around the 

umor. In some cases, the registration between the dedicated CT 

lanning and the PET/CT introduced artifacts that did not belong 

o the GTVt. In many cases, the GTVt and GTVn were stored under 

he same label and had to be separated. Three annotations were 

orrupted and could not be loaded, requiring the contours to be 

rawn from scratch. Among the 53 test cases, 11 images were con- 

oured from scratch with the help of the radiological report. 

Despite the high inter-observer variability (see Section 4.4 ), and 

ith a slight misuse of language, we refer to these “controlled”

eference annotations as ground truth. 

Finally, the same VOI quality control process was performed for 

he GTVn contours. These contours were not directly used for the 

ECKTOR 2020 challenge but we used them in post-analysis of the 

esults (see Section 4.8 ). We also plan on using these annotations 

n future editions as an auxiliary task of lymph node segmentation. 

adiomics studies including lymph nodes may carry important in- 

ormation about patient prognosis and response to treatment. 

.3. Ranking and assement method 

Participants were given access to the test cases without the 

round truth annotations and were asked to submit the results of 

heir algorithms on these cases on the AIcrowd platform. We only 

ccepted binary segmentations in the NIfTI file format. 

Results were ranked using the 3D Dice Similarity Coefficient 

DSC) computed on images cropped using the provided bounding 

oxes (see Section 3.1 ) in the original CT resolution as: 

SC = 

2 T P 

2 T P + F P + F N 

, (1) 

here TP, FP, and FN are the number of True Positive, False Posi- 

ive, and False Negative at the voxel level, respectively. Prior to the 

https://www.github.com/voreille/hecktor/tree/hecktor2020
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Table 2 

Summary of the algorithms in terms of main components used: 2D or 3D U-Net, resampling, preprocessing, training or testing data augmentation, loss used for optimization, 

an ensemble of multiple models for test prediction and postprocessing of the results. We use the following abbreviations for the preprocessing: Clipping (C), Standardization 

(S), and if it is applied only to one modality, it is specified in parentheses. For the image resampling, we specify whether the algorithms use Isotropic (I) or Anisotropic (A) 

resampling and Nearest Neighbor (NN), Linear (L), or Cubic (Cu) interpolation. We use the following abbreviation for the losses: Cross-Entropy (CE), Mumford-Shah (MS), 

and Mean Absolute Error (MAE). More details can be found in the respective participants’ publications. 

Team 2D/3D preproc. resampling augm. loss ensemble postproc. 

andrei.iantsen ( Iantsen et al., 2021b ) 3D C + S I/L 
√ 

soft Dice + Focal 
√ 

✗ 

junma ( Ma and Yang, 2021 ) 3D S(PET) I/Cu ✗ Dice + Top-K 
√ √ 

badger ( Xie and Peng, 2021 ) 3D C(CT) + S(PET) A/Cu 
√ 

Dice + CE ✗ ✗ 

deepX ( Yuan, 2021 ) 3D C(CT) + S I/L 
√ 

Jaccard distance 
√ 

✗ 

AIView_sjtu ( Chen et al., 2021 ) 3D C + S A/NN 

√ 

Dice ✗ ✗ 

xuefeng ( Ghimire et al., 2021 ) 3D C(CT) + S A/L 
√ 

Dice + CE 
√ √ 

QuritLab ( Yousefirizi and Rahmim, 2021 ) 3D S I/L ✗ MS + MAE ✗ ✗ 

HFHSegTeam ( Zhu et al., 2021 ) 2D C + S I/L 
√ 

soft Dice ✗ ✗ 

Fuller_MDA_Lab ( Naser et al., 2021 ) 3D C + S A/Cu 
√ 

Dice + CE ✗ ✗ 

Maastro-Deep-Learning ( Rao et al., 2021 ) 2D/3D C A/Cu ✗ Top-K 
√ √ 

Our baseline 3D PET/CT ( Andrearczyk et al., 2020b ) 3D C + S I/Cu ✗ Dice + CE ✗ ✗ 

Our baseline 2D PET/CT ( Andrearczyk et al., 2020b ) 2D C + S I/Cu ✗ Dice + CE ✗ ✗ 
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hallenge opening, we decided to handle missing predictions by at- 

ributing a DSC of 0 to them. However, this never happened during 

he submission phase. If the submitted results were in a resolu- 

ion different from the CT resolution, we applied nearest-neighbor 

nterpolation before evaluation. We also computed other metrics 

or comparison, namely precision ( T P 
T P+ F P ) and recall ( T P 

T P+ F N ) to in- 

estigate whether the methods were rather providing a large FP 

r FN rate. The evaluation implementation can be found on our 

itHub repository 9 and was provided to the participants to maxi- 

ize transparency. 

Each participating team had the opportunity to submit up to 

ve valid runs, in case of formatting errors the participant was in- 

ormed by an error message and the run was not counted. No im- 

ediate feedback was displayed on how their run was performing 

o avoid iterative overfit. The best result of each team was used in 

he final ranking, which is detailed in Section 4 and discussed in 

ection 5 . 

. Results 

This section regroups results in terms of challenge participation, 

lgorithms used, segmentation performance, inter-observer agree- 

ent, ensembling “super-algorithm”, simple PET thresholding, the 

elation between tumor size and segmentation performance, false- 

ositive analysis, and alternative ranking of the methods. 

.1. Participation 

The number of registered teams, as of September 10, 2020 (sub- 

ission deadline), was 64. At the same date, we had also received 

nd approved 85 signed end-user agreements, received 83 results 

ubmissions, including valid and invalid submissions. For the first 

teration of the challenge, these numbers are high and show an 

mportant interest in the task. 

.2. Algorithms summary 

Baselines We trained several baseline models using standard 3D 

nd 2D U-Nets as in our preliminary results in ( Andrearczyk et al., 

020b ). It is worth noting that ( Andrearczyk et al., 2020b ) used

 dataset that was different from HECKTOR 2020, and that the 

ame algorithms were re-trained and evaluated using the HECK- 

OR 2020 data. We trained on multi-modal PET/CT as well as in- 

ividual modalities with a combination of non-weighted Dice and 

ross-entropy losses and without data augmentation. 
9 github.com/voreille/hecktor/tree/hecktor2020/src/evaluation , as of October 2021. 

0

P

t

5 
Participants’ methods In Table 2 , we summarize some of the 

ain components of the participants’ algorithms, including model 

rchitecture, preprocessing, training scheme and postprocessing. 

e only report the methods of the participants with an associ- 

ted publication, which was crucial to ensure the scientific rel- 

vance of the challenge. More details on the individual methods 

an be found in Appendix A as well as in the corresponding par- 

icipants’ papers ( Iantsen et al., 2021b; Chen et al., 2021; Ma and 

ang, 2021; Rao et al., 2021; Xie and Peng, 2021; Zhu et al., 2021; 

himire et al., 2021; Yousefirizi and Rahmim, 2021; Yuan, 2021; 

aser et al., 2021 ). In the results Section 4 , we also include results

f the participants without publication for comparison. 

All the participants used a U-Net-based architecture. Eight used 

D architectures, one used a 2D architecture and one used a com- 

ination of the two. All participants used some sort of preprocess- 

ng prior to training their model, generally with standard data aug- 

entation (except for three participants), using various combina- 

ions of losses, most often including the Dice loss. The participants 

sed various cross-validation schemes to optimize the generaliza- 

ion performance of their models. Half of the participants used an 

nsemble of multiple models. 

.3. Segmentation performance 

The results, including average DSC, precision, recall, and chal- 

enge rank are summarized in Table 3 . We also report the average 

urface Dice SCore at 1mm (SDSC) and the median Hausdorff Dis- 

ance at 95% (HD95) as defined in ( Nikolov et al., 2021 ). Our base-

ine method, developed in ( Andrearczyk et al., 2020b ) and provided 

o participants as an example on our GitHub repository, obtains an 

verage DSC of 0.6588 and 0.6610 with the 2D and 3D implemen- 

ations, respectively. Results on individual modalities are also re- 

orted for comparison. 

The results from the participants (excluding post-challenge 

ubmissions) range from an average DSC of 0.5606 to 0.7591. 

 Iantsen et al., 2021b ) (participant andrei.iantsen ) obtained 

he best overall results with an average DSC of 0.7591, an average 

recision of 0.8332 and an average recall of 0.7400 ( Fig. 2 ). This

esult (DSC) is not significantly higher than the second-best par- 

icipant ( Ma and Yang, 2021 ) ( p-value of 0.3517 with a one-tailed

ilcoxon test). The statistical comparison of the score of each team 

s done in Fig. B.1 with the one-tailed Wilcoxon test and corrected 

or multiple hypotheses testing. Across all participants, the aver- 

ge precision ranges from 0.5850 to 0.8479. The recall ranges from 

.5022 to 0.8534, with the latter surprisingly obtained by the 3D 

ET/CT baseline (although with low precision, reflecting a trend 

o over-segment as compared to other algorithms). The median 

https://www.github.com/voreille/hecktor/tree/hecktor2020/src/evaluation
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Table 3 

Summary of the challenge results as of April 2021. The average DSC, precision, recall, SDSC and median HD95 are reported for the baseline algorithms and every team (the 

best result of each team). The unit of the HD95 is [mm]. The participant names are reported when no team name was provided. The ranking is only provided for teams 

that presented their method in a paper submission. The post-challenge results are denoted by an asterisk ∗ . Bold values represent the best scores for each metric, excluding 

post-challenge results since we do not have any information about their method. 

Team DSC HD95 Precision Recall SDSC Rank 

paar ∗ 0.7624 3.27 0.8304 0.7490 0.6167 - 

andrei.iantsen ( Iantsen et al., 2021b ) 0.7591 3.27 0.8333 0.7400 0.6010 1 

junma ( Ma and Yang, 2021 ) 0.7525 3.27 0.8384 0.7174 0.6003 2 

Fuller _ MDA _ Lab ∗ 0.7523 3.27 0.7838 0.7685 0.6168 - 

supratik _ bose ∗ 0.7440 3.27 0.8350 0.7085 0.5822 - 

badger ∗ 0.7377 3.27 0.8143 0.7160 0.5800 - 

badger ( Xie and Peng, 2021 ) 0.7355 3.27 0.8326 0.7024 0.5735 3 

deepX ( Yuan, 2021 ) 0.7318 3.54 0.7851 0.7319 0.5528 4 

flash ∗ 0.7280 3.54 0.8020 0.7083 0.5650 - 

AIView _ sjtu ( Chen et al., 2021 ) 0.7241 3.33 0.8479 0.6701 0.5598 5 

DCPT 0.7049 4.10 0.7651 0.7047 0.5562 - 

xuefeng ( Ghimire et al., 2021 ) 0.6911 5.06 0.7525 0.6928 0.5011 6 

ucl _ charp 0.6765 5.42 0.7231 0.7257 0.5194 - 

QuritLab ( Yousefirizi and Rahmim, 2021 ) 0.6677 5.64 0.7289 0.7164 0.5086 7 

Unipa 0.6674 4.10 0.7143 0.7039 0.4902 - 

Baseline 3D PET/CT 0.6610 21.88 0.5909 0.8534 0.4502 - 

Baseline 2D PET/CT 0.6588 26.81 0.6242 0.7629 0.4796 - 

HFHSegTeam ( Zhu et al., 2021 ) 0.6441 14.27 0.6938 0.6670 0.4922 8 

UESTC _ 501 0.6382 5.16 0.6455 0.6874 0.4339 - 

Fuller _ MDA _ Lab ( Naser et al., 2021 ) 0.6373 5.06 0.7546 0.6283 0.4730 9 

Yone ∗ 0.6341 5.92 0.7690 0.6640 0.4513 - 

Baseline 3D PET 0.6306 24.95 0.5768 0.8214 0.4399 - 

Baseline 2D PET 0.6284 27.62 0.6470 0.6666 0.4231 - 

Maastro-Deep-L. ( Rao et al., 2021 ) 0.5874 29.56 0.6560 0.6142 0.4118 10 

Yone 0.5737 21.46 0.6606 0.5590 0.4216 - 

SC _ 109 0.5633 5.64 0.7652 0.5022 0.3542 - 

Roque 0.5606 14.94 0.5850 0.6843 0.3601 - 

Baseline 2D CT 0.3071 27.54 0.3477 0.3574 0.1847 - 

Baseline 3D CT 0.2729 32.02 0.2154 0.5874 0.1218 - 

Fig. 2. Examples of results of the winning algorithm ( andrei.iantsen ( Iantsen et al., 2021b )). The automatic segmentation results (green) and ground truth annotations 

(red) are displayed on 2D slices of PET (right) and CT (left) images. The reported DSC is computed on the entire image (see Eq. 1 ). (a), (b) Excellent segmentation results, 

detecting the GTVt of the primary oropharyngeal tumor localized at the base of the tongue and discarding the laterocervical lymph nodes despite high FDG uptake on 

PET. (c) Incorrect segmentation of the top volume at the level of the soft palate; (d) Incorrect segmentation of the smaller volume below the level of the hyoid bone. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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D95 ranges from 3.27 to 32.02 [mm]. We chose to report the 

edian since a value of + ∞ is attributed when the prediction 

s null. 3.27 [mm] is a highly observed value for HD95, which is 

robably due to the coarse axial resolution of the CT on the test 

et as we computed the performance in the original CT resolution 

see C.1 ). 
6 
Note that two participants decided to withdraw their submis- 

ions due to very low scores. We allowed them to do so since 

heir low scores were due to incorrect post-processing ( e.g. setting 

ncorrect pixel spacing or image origin), which was not represen- 

ative of the performance of their algorithms. The distributions of 

SCs across patients and across participants are reported in Figs. 3 
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Fig. 3. Box plots of the distribution of the 53 test DSCs for each participant, ordered by decreasing rank. 

Fig. 4. Box plots of the distribution of DSCs across the 10 participants for each of the 53 patients in the test set. 
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nd 4 respectively. Examples of segmentation results (TPs on top 

ow, and FPs on bottom row) are shown in Fig. B.2 . 

.4. Inter-observer agreement 

We realized that it was crucial to also define the baseline for 

uman observers performing the GTVt delineation task ( i.e. seg- 

entation), as well as their agreement. Three observers, i.e. two 

xperts in radiation oncology and one nuclear physician, annotated 

he same 21 cases drawn randomly from the training and test sets 

nd coming from all five centers. These 21 cases were chosen to 
7 
epresent approximately 10% of the dataset. It is worth noting that 

nnotating the entire dataset four times was too costly. They were 

sked to delineate as close as possible the true tumoral volume as 

he aim is for radiomics studies. Together with the official chal- 

enge delineations, it amounts to four observers. All unique pairs 

f observers were considered, resulting in six pairs of comparisons. 

e computed the average DSC of all the pairs, i.e. all possible pairs 

f the four observers, which resulted in an average DSC of 0.6110. 

t is worth noting that for a faithful delineation of the tumor, a 

ontrast-enhanced CT or an MRI image is required. Furthermore, 

here are no clinical guidelines for the task of segmenting GTVt 
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n PET/CT fusion. Moreover, the clinical information ( e.g. physi- 

al examination) brings essential information to decide whether an 

bnormal structure is malignant. In this agreement, the observers 

ere asked to perform this task with the PET/CT images only. Sim- 

lar agreements were reported in the literature. ( Gudi et al., 2017 ) 

eported the agreement of three observers with an average DSC of 

.57 using only the CT images for annotation and 0.69 using both 

ET and CT. 

.5. Ensemble of participants 

In this section, we evaluate the possibility to ensemble 

he different participants’ results into a ”super-algorithm”. Such 

nalyses often revealed superior performances to all submitted 

uns ( Menze et al., 2014 ), leveraging the diversity of the differ- 

nt methods ( Hastie et al., 2009 ). We ensemble the (binary) pre- 

ictions of all participants (with paper submissions, i.e. 10 partic- 

pants) using the Simultaneous Truth And Performance Level Es- 

imation (STAPLE) algorithm ( Warfield et al., 2004 ). This ensem- 

le of predictions obtains an average DSC of 0.7574, a precision of 

.7301, and a recall of 0.8439. This result is better than the av- 

rage performance of all participants (0.6931) and is slightly, but 

ot significantly, outperformed by the best score of 0.7591 ( p- 

alue = 0 . 9230 ). A simpler ensembling method is computed by tak- 

ng the average of the 10 teams for each patient, and then, thresh- 

lding to 0.5 to obtain a binary prediction. This average prediction 

cores a DSC of 0.7426 which is not as good as the STAPLE en-

embling ( p-value = 0 . 044 ). Note that several participants already 

eported results obtained as an ensemble of multiple independent 

etwork predictions. (see Table 2 ). 

.6. PET Thresholding 

PET thresholding is de facto the most widely used method for 

esion segmentation, at least in clinical routine, often via an ini- 

ial manual delineation of the field of interest. As a comparison to 

he results obtained by the participants using deep learning auto- 

atic segmentation algorithms, we evaluate simple PET threshold- 

ng methods (automatic and semi-automatic). For the fully auto- 
ig. 5. Segmentation performance of PET thresholding-based method at different percenta

emi-automatic PET threshold (indicating the location of the ground truth GTVt), and the

8 
atic threshold method, we simply threshold the PET image at a 

iven percentage of the maximum SUV value within the bounding 

ox. 

For the semi-automatic threshold method, we mimic a man- 

al indication of the GTVt followed by a threshold of the PET val- 

es. To this end, we threshold the PET image, compute the 26- 

onnected components and retain the component that overlaps 

ith the ground truth GTVt (or multiple components if more than 

ne overlap with the ground truth GTVt). In Fig. 5 , we report the 

esults of both methods on the test set when varying the percent- 

ge of the maximum SUV used for thresholding. Finally, we also 

valuate the same semi-automatic thresholding method with an 

dditional threshold on the CT images (at -150 HU) to remove the 

ir from the predictions. The best results, with an average DSC of 

.7409, are obtained with this semi-automatic PET/CT threshold at 

0% of the maximum SUV value, which is aligned with previous 

ndings, including in the context of the identification of predictive 

iomarkers ( Castelli et al., 2017 ). 

.7. Tumor size and segmentation performance 

In this section, we evaluate how the algorithms perform for dif- 

erent tumor sizes. To this end, we explore the correlation of tumor 

ize with the performance of the algorithms. The tumor size is cal- 

ulated as the voxel count inside the ground truth GTVt multiplied 

y the voxel volume. The Spearman correlation across all ten par- 

icipants and all tumors is 0.4301 ( p-value < 0 . 001 ). In Fig. 6 , we

llustrate this correlation with a scatter plot of the DSC as a func- 

ion of tumor size. Fig. 7 relates the performance for each of the 

0 algorithms for four tumor size groups. This figure was gener- 

ted by grouping the 53 test cases in 4 bins ( i.e. intervals) of 13,

3, 13, and 14 cases, respectively. The average DSC was then com- 

uted for each team in each bin. 

.8. Analysis of false positives 

In this section, we want to evaluate, for a given algorithm, 

hether FPs are generally occurring in the surroundings of the 

round truth GTVt, or biased towards other regions with high FDG 
ges of maximum SUV. Three results are reported: the automatic PET threshold, the 

 semi-automatic PET and CT (for removing the air) threshold. 
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Fig. 6. Scatter plot of DSC vs. tumor volume (voxel count in the VOI) for 10 participants. The corresponding Spearman correlation is 0.43. 

Fig. 7. Average DSC of each team’s algorithm in function of the volume of the tumors. This figure was generated by distributing the 53 test volumes in 4 bins of n = 13, 13, 

13, and 14 each and then computing the average DSC for each bin. 
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ptakes such as the lymph nodes or other zones with inflamma- 

ion. To this end, we compute the shortest Euclidean distance of 

ach FP voxel to the ground truth GTVt. We then aggregate these 

istances for all test cases and report these values into a histogram 

n Fig. 8 . Similarly, we compute the distance of each FP voxel to 

he ground truth GTVn (lymph nodes) and report the histogram 
9 
n the same figure. We compute this analysis for the best partic- 

pant ( andrei.iantsen ), as well as for the baseline (3D PET/CT 

-Net) since it was the approach with the largest recall but low 

recision. Note that we only compute the histogram of the FP vox- 

ls to avoid squashing the counts of the non-zero bins due to the 

arge number of TPs with a distance to the GTVt of zero (first bin). 
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Fig. 8. Histogram of the Euclidean distance of the FP voxels to the closest ground truth GTVt voxel and GTVn voxel. We evaluate here the prediction of the first ranked 

participant ( andrei.iantsen ) (a) and our baseline 3D PET/CT (b). For comparison, the False Discovery Rate (FDR), i.e. FP/(FP+TP) is 0.15, with 544,343 TPs in (a) and FDR 

= 0.37 with 621,413 TPs in (b). 

Fig. 9. Ranking robustness against changes in test data. The robustness is assessed by ranking 10 0 0 bootstraps of the test set. The size of the circles is proportional to 

the number of times a team obtained the corresponding rank for each bootstrap. The dashed lines represent the confidence intervals at 95% computed from the bootstrap 

analysis. The current ranking, i.e. the one used in this challenge, is obtained by averaging the DSCs across all test cases. The alternative ranking is computed by averaging 

the rankings of each team across the test cases. 
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.9. Ranking robustness 

Ranking robustness against changes in the test set is assessed 

y evaluating the variation of the ranking on 10 0 0 bootstrap rep- 

titions of the test set. We also compared the current ranking 

gainst an alternate ranking defined as follows. This alternative 

anking was computed based on the average ranking across all 

ases. If multiple teams obtain the same rank for one case, the av- 

rage rank is attributed to these teams. For instance, if three par- 

icipants score 0 on a given case, the average rank of 8+9+10 
10 = 9 is

ttributed to all of them for this case. 

Fig. 9 depicts the results of the bootstrap analysis for the two 

ankings. We also computed the Kendall rank correlation coeffi- 

ient between the ranking of each bootstrap and the ranking on 

he whole test set. We obtained 0.8772 (0.7333 - 1.0 0 0 0) and

.7335 (0.4658 - 0.9111) for the current ranking and alternate 

anking, respectively. The numbers in parenthesis are the confi- 

ence intervals at 95% computed with the bootstrap eanalysis. The 

ethodology used in this section to report ranking robustness is 

nspired by the challengeR toolkit ( Wiesenfarth et al., 2021 ). 

. Discussion 

This section interprets and discusses the results reported in 

ection 4 . We first discuss and report the overall challenge partici- 

ation and main lessons learned. Second, the segmentation perfor- 
10 
ance achieved by all participating methods is interpreted. Finally, 

e report the current limitations and sources of errors of this chal- 

enge. 

.1. Participation and main lessons learned 

This challenge allowed us to compare state-of-the-art algo- 

ithms developed by 18 teams across the world on the task of 

rimary H&N tumor segmentation in PET/CT images. Excellent re- 

ults were obtained with the first ranked team reaching 0.7591 av- 

rage DSC, 0.8332 precision, and 0.7400 recall. In Table 2 , we at- 

empted to group the results based on important elements of the 

lgorithms. In particular, we identified several elements important 

or addressing the task. All participants used U-Net based archi- 

ectures, mostly 3D. Preprocessing, normalization, data augmenta- 

ion, and ensembling seem to play an important role in the final 

esults. Most of these trends (see also algorithms description in 

ection 4.2 ) and results can be found in other medical imaging 

egmentation challenges ( Menze et al., 2014; Ma, 2021 ). An inter- 

sting comparison of several challenges (including HECKTOR 2020) 

nd algorithms focusing on automatic segmentation in medical im- 

ges can be found in ( Ma, 2021 ). 

We note, however, that it is a difficult task to characterize al- 

orithms with only a few descriptions and to assign good perfor- 

ance to specific parts. The methods are highly complex with high 

egrees of freedom and many hyper-parameters that can all have 
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 strong influence on segmentation performance. Simple modifica- 

ions such as the number of training iterations or the learning rate 

an have a large impact on the results and cannot be exhaustively 

isted and compared. For this analysis, we asked the participants to 

pecifically report a set of characteristics of their algorithms to be 

ble to compare them in Table 2 . More information will be asked 

n the future editions of HECKTOR to enhance comparison. 

The ranking used in this edition was based on the average 

SC. The results of Section 4.9 show that this approach is more 

obust to changes in the test set. These findings are corrobo- 

ated by Maier-Hein et al. (2018) where they showed that ranking 

ased on averaged metrics are more consistent for changes in test 

ata. 

.2. Overall segmentation performance 

As shown in Fig. 4 , some cases were incorrectly segmented by 

ost or all participants, e.g. CHUV01 and CHUV36. On the con- 

rary, some cases were correctly segmented by most participants 

 e.g. CHUV22 and CHUV53), and others showed a large variability 

cross participants’ algorithms ( e.g. CHUV16 and CHUV41). These 

ifferences, as confirmed by further evaluations in Sections 4.8 , 4.7 , 

riginate from the tumor size, the SUVs within the GTVt, and the 

resence of lymph nodes or other regions with high SUVs. Some 

xamples are illustrated in Fig. B.2 . 

The participants’ algorithms obtained better results than the 

nter-observer agreement. This comparison, however, should be put 

nto perspective. First, the cases used in the agreement were dif- 

erent from the test set. Second, one annotator, the one who an- 

otated the entire dataset for the challenge, had extra information 

ince he corrected the radiotherapy annotations whereas the oth- 

rs were asked to draw the segmentation from scratch without any 

urther information than the raw PET/CT data. Finally, some an- 

otators delineated closer to radiotherapy requirements, i.e. with 

arge annotations, resulting in higher disagreement. To alleviate 

his issue, we are currently developing clear guidelines for the next 

teration of the challenge. 

The results can also be compared with a simple PET threshold- 

ng method (see Section 4.6 ), often used in radiomics studies ( Erdi 

t al., 1997; Castelli et al., 2017 ). The latter obtained an average 

SC of 0.7409 when used in a semi-automatic manner. This re- 

ult is significantly lower than the performance of the best par- 

icipants (0.7591, p-value of 0.0237) and must be considered with 

recaution since the segmentation was highly guided toward the 

rue tumor location and the threshold was optimized on the test 

et. With a fully automatic threshold of the PET image in the 

ropharynx region, we only obtain 0.2652 due to various regions, 

ncluding lymph nodes, with high SUVs. The best semi-automatic 

hreshold method was obtained with a threshold around 30% of 

he maximum SUV, as frequently used to measure the metabolic 

esponse characteristic of the tumor, e.g. 36–44% for best approxi- 

ation of tumor volume ( Erdi et al., 1997 ), 40 to 68% of SUV max

or best radiomics results in DFS prediction ( Castelli et al., 2017; 

reff et al., 2020 ). Overall, this suggests that the segmentation al- 

orithms can leverage the wealth of both PET and CT images ( i.e. 

etabolic and anatomical/structural tumor properties) to provide 

ore advanced segmentation rules when compared to simple PET 

hresholding. This is also corroborated by the consistent superior- 

ty of algorithms using both PET and CT imaging modalities when 

ompared to using PET only. 

The ensemble of participants’ methods (see Section 4.5 ) reached 

 good consensus with an average DSC of 0.7574 and a rather high 

ecall (0.8438) and low precision (0.7301) as compared to other 

esults in the same range. While this is not better than the first 

ank result, it would likely achieve an excellent generalization to 

ther data. 
11 
.3. Detailed performance analysis 

The analysis of tumor sizes in Section 4.7 ( Figs. 6 and 7 )

howed that they are correlated with the segmentation perfor- 

ance. These results seem to show that the small tumor sizes 

re more difficult to segment than the large ones. More pre- 

isely, smaller tumors are less consistently well segmented, result- 

ng in a large variation of performance. This is not surprising since 

mall lesions suffer from a higher partial volume effect which in- 

reases the relative difficulty to define the boundary of the tu- 

or ( Foster et al., 2014 ). Moreover, the volumetric (or 3D) DSC 

s largely dependent on the volume sizes. A contour deviation of 

1mm around the true tumor boundary, for instance, will affect 

SC values more for small tumors than the large ones, resulting in 

 negligible chance for the latter. 

In Fig. 8 ( Section 4.8 ), we analyzed the spatial arrangement of 

Ps segmented voxels. We conducted this experiment for the first 

anked results and our baseline. In both cases, the majority of FP 

oxels are located in the surrounding of the GTVt, as shown in 

ig. 8 . As illustrated in the same figure, the FPs of the best results

re not located near the lymph nodes, whereas a lot of FPs of the 

aseline are located in the lymph nodes and their surroundings. 

his suggests that, unlike the baseline, the best algorithm relies on 

rue tumoral patterns and not only on FDG uptake. 

.4. Limitations and sources of errors 

The main limitation of the current challenge is the lack of more 

recise GTVt ground truth. The annotations were made on the 

ET/CT fusion without using other modalities such as contrast- 

nhanced CT or MR which allow delineating the tumor more 

aithfully. This limitation is illustrated by the results of the inter- 

bserver agreement mentioned in Section 4.4 , where the aver- 

ge DSC of 0.6110 highlighted the difficulty of the task. A source 

f error, therefore, originates from the degree of subjectivity and 

he lack of guidelines in the annotation and correction of the 

xpert. 

Another limitation of this challenge is the lack of test data with 

xact ground truth. To obtain such data, phantom and simulation 

an be used. This enables the evaluation of performances of mod- 

ls on data where the exact ground truth is known. ( Hatt et al.,

017 ) claim that for a good benchmark in PET segmentation, one 

ust include simulated and phantom test images in addition to 

linical test data. 

In this challenge, we provided the participants with a bound- 

ng box to decrease the difficulty of the task. This can be seen as 

 limitation since the resulting methods are not fully automatic, 

ut these bounding boxes cover a large portion of the original 

mage and are easy to detect automatically ( Andrearczyk et al., 

020a ). 

. Conclusions 

This paper presents the HECKTOR 2020 challenge on the seg- 

entation of the primary tumor of oropharyngeal H&N cancer in 

DG PET/CT. Detailed information was reported on the dataset, par- 

icipation, and segmentation performance. Good participation with 

8 teams and 10 participants’ publications allowed us to compare 

tate-of-the-art segmentation methods on this challenging task. 

he results are very satisfactory with the winning team achieving 

n average DSC of 0.7591, which is superior to the inter-observer 

greement (average DSC 0.6110). These results were obtained with 

 strict testing scheme as the test cases were all from an unseen 

enter. It is reasonable to expect better results if the proposed 

ethods are fine-tuned on few examples from this center. All par- 

icipants used U-Net based deep learning models, most of them 
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ith a 3D architecture and standard pre-processing techniques. We 

ould identify several key elements that seem to have led to good 

esults, including normalization, data augmentation, and ensem- 

ling of multiple models. 

Preliminary experiments show that fully automatic radiomics 

ethods are on pair or surpass radiomics models based on feature 

xtraction from manual annotations ( Fontaine et al., 2021; Andrea- 

czyk et al., 2021a ). These preliminary results are very encourag- 

ng and demonstrate that we are one step closer to analyzing very 

arge-scale cohorts for radiomics validation. 

While focusing on H&N cancer in HECKTOR, we believe that 

any of the methods developed and lessons learned will general- 

ze to the automatic segmentation of other types of cancer imaged 

n PET/CT images ( e.g. lung, melanoma). 

In future editions, we aim to increase the size of the dataset 

nd propose other clinically relevant tasks such as the segmenta- 

ion of lymph nodes and the prediction of patient outcome ( e.g. 

isease-free survival). 
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ppendix A. Participants’ Algorithms Summary 

In ( Iantsen et al., 2021b ), Iantsen et al. proposed a model based

n a U-Net architecture with residual layers and supplemented 

ith ’Squeeze and Excitation’ (SE) normalization, previously devel- 

ped by the same authors for brain tumor segmentation. An un- 

eighted sum of soft Dice loss and Focal Loss was used for train- 

ng. The test results were obtained as an ensemble of eight models 

rained and validated on different splits of the training set. No data 

ugmentation was performed. 

In ( Ma and Yang, 2021 ), Ma and Yang used a combination of 

-Nets and hybrid active contours. First, 3D U-Nets are trained to 

egment the tumor (with a cross-validation on the training set). 

hen, the segmentation uncertainty is estimated by model ensem- 

les on the test set to select the cases with high uncertainties. 

inally, the authors used a hybrid active contour model to refine 

he high uncertainty cases. The U-Nets were trained with an un- 

eighted combination of Dice loss and top-K loss. No data aug- 

entation was used. 

In ( Zhu et al., 2021 ), Zhu et al. used a two steps approach. First,

 classification network (based on ResNet) selects the axial slices 

hich may contain the tumor. These slices are then segmented 

sing a 2D U-Net to generate the binary output masks. Data aug- 

entation was applied by shifting the crop around the provided 

ounding boxes and the U-Net was trained with a soft Dice loss. 

he preprocessing includes clipping the CT and the PET, standard- 

zing the HU within the cropped volume and scaling the range of 

he PET to correspond to the CT range by dividing it by a factor 

f 10. 

In ( Yuan, 2021 ), Yuan proposed to integrate information across 

ifferent scales by using a dynamic Scale Attention Network (SA- 

et), based on a U-Net architecture. Their network incorporates 

ow-level details with high-level semantics from feature maps at 

ifferent scales. The network was trained with standard data aug- 

entation and with a Jaccard distance loss, previously developed 

y the authors. The results on the test set were obtained as an en- 

emble of ten models. 

In ( Chen et al., 2021 ), Chen et al. proposed a three-step frame-

ork with iterative refinement of the results. In this approach, 

ultiple 3D U-Nets are trained one-by-one using a Dice loss with- 

ut data augmentation. The predictions and features of previous 

odels are captured as additional information for the next one to 

urther refine the segmentation. 

In ( Ghimire et al., 2021 ), Ghimire et al. developed a patch-based 

pproach to tackle the memory issue associated with 3D images 

nd networks. They used an ensemble of conventional convolu- 

ions (with small receptive fields capturing fine details) and dilated 

onvolutions (with a larger receptive field of capturing global infor- 

ation). They trained their model with a weighted cross-entropy 

nd dice loss and random left-right flips of the patches were ap- 

lied for data augmentation. Finally, an ensemble of the best two 

odels selected during cross-validation was used for predicting 

he segmentation of the test data. 

In ( Yousefirizi and Rahmim, 2021 ), Yousefirizi and Rahmim pro- 

osed a deep 3D model based on SegAN, a generative adversar- 

al network (GAN) for medical image segmentation. An improved 

olyphase V-net (to help preserve boundary details) is used for the 

enerator and the discriminator network has a similar structure to 

he encoder part of the former. The networks were trained using 

 combination of Mumford-Shah (MS) and multi-scale Mean Abso- 

ute Error (MAE) losses, without data augmentation. 
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Fig. B.1. The significance matrix represents significant tests for the one-sided 

Wilcoxon signed-rank test at a 5% significance level, adjusted for multiple compar- 

isons with the Holm-Bonferroni method for 45 hypotheses. For each pair, the al- 

ternative hypothesis is that the best team has a greater score. For instance, for the 

andrei.iantsen - junma pair the alternative is that andrei.iantsen has a 

better DSC than junma . The yellow color indicates that the team on the line of the 

matrix has significantly better DSC than the team on the column. Blue color means 

no significant difference. Orange color is used as a visual guide to show pairs of 

identical teams. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

F

d

G

s

t

In ( Xie and Peng, 2021 ), Xie and Peng proposed a 3D scSE nnU-

et model, improving upon the 3D nnU-Net by integrating the 

patial and channel ’Squeeze and Excitation’ (scSE) blocks. They 

rained the model with a weighted combination of Dice and cross- 

ntropy losses, together with standard data augmentation tech- 

iques (rotation, scaling etc.). To preprocess the CT images an 

utomated level-window-like clipping of intensity values is per- 

ormed based on the 0.5 and 99.5th percentile of these values. 

he intensity values of the PET are standardized by subtracting 

he mean and then, by dividing by the standard deviation of the 

mage. 

In ( Naser et al., 2021 ), Naser et al. used a variant of 2D and 3D

-Net (we report the best result, with the 3D model). The models 

ere trained with a combination of Dice and cross-entropy losses 

ith standard data augmentation. 

In ( Rao et al., 2021 ), Rao et al. proposed an ensemble of two

ethods, namely a 3D U-Net and another 2D U-Net variant with 

D context. A top-k loss was used to train the models without data 

ugmentation. 

ppendix B. Additional plots 

This appendix presents additional plots. In Fig. B.1 the pair- 

ise statistical comparison of the 10 teams is illustrated by 

 significance matrix computed with a corrected one-sided 

ilcoxon signed-rank test at 5% significance. In Fig. B.2 , ex- 

mples of predictions obtained by the second-ranked team 

 junma ( Ma, Yang, 2021 )) are drawn on the same cases as

ig. 2 to illustrate the variability among the two best teams. 

igs. B.3, B.4 and B.5 show, for each participant, the distribu- 

ions across the 53 test cases of the precision, recall, and SDSC, 

espectively. 
ig. B.2. Examples of results of the second algorithm ( junma ( Ma and Yang, 2021 )). The automatic segmentation results (green) and ground truth annotations (red) are 

isplayed on 2D slices of PET (right) and CT (left) images. The reported DSC is computed on the entire image (see Eq. 1 ). (a), (b) Excellent segmentation results, detecting the 

TVt of the primary oropharyngeal tumor localized at the base of the tongue and discarding the laterocervical lymph nodes despite high FDG uptake on PET. (c) Incorrect 

egmentation of the top volume at the level of the soft palate; (d) Incorrect segmentation of the smaller volume below the level of the hyoid bone. (For interpretation of 

he references to colour in this figure legend, the reader is referred to the web version of this article.) 

13 



V. Oreiller, V. Andrearczyk, M. Jreige et al. Medical Image Analysis 77 (2022) 102336 

Fig. B.3. Box plots of the distribution of the precision on the 53 test cases for each 

participant, ordered by decreasing rank. 

Fig. B.4. Box plots of the distribution of the recall on the 53 test cases for each 

participant, ordered by decreasing rank. 

Fig. B.5. Box plots of the distribution of the 53 test SDSCs for each participant, 

ordered by decreasing rank. 
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Table C.1 

Statistics of the different centers. GTVt volumes are computed after iso

cm 

3 as average plus the 5th and 95th percentile in parenthesis. All devi

Center Pixel spacing CT Slice spacing CT Pixel spacing PT

HGJ 0.98 (0.98 - 0.98) 3.27 (3.27 - 3.27) 3.52 (3.52 - 4.69

CHUS 1.17(0.68- 1.17) 3.00 (2.00 - 5.00) 4.00 (4.00 - 4.00

HMR 0.98 (0.98 1.37) 3.27 (3.27 - 3.27) 3.52 (3.52 - 5.47

CHUM 0.98 (0.98 - 1.37) 1.50 (1.50 - 3.27) 4.00 (3.52 - 5.47

CHUV 1.37 (0.98 - 1.37) 3.27 (1.00 - 4.25) 2.73 (2.73 - 3.91

14 
ppendix C. Centers statistics 

In Table C.1 , we report the differences between the five cen- 

ers in terms of image properties such as devices, pixel spacing and 

lice spacing. We also disclose the distribution of GTVt volumes in 

ig. C.1 and Table C.2 

able C.2 

verage GTVt volume for the five center used in this challenge. The numbers in 

arenthesis represent the 5th and 95th respectively. 

Center GTVt volume 

HGJ 14.913 (2.263 - 38.879) 

CHUS 14.209 (1.837 - 42.967) 

HMR 23.622 (2.412 - 88.785) 

CHUM 9.866 (1.358 - 24.884) 

CHUV 13.317 (1.725 - 41.212) 

. 
Fig. C.1. Box plots of the distribution of the GTVt volumes per center. 

resampling at 1 × 1 × 1 mm 

3 . The GTVt volumes are reported in 

ces are hybrid PET/CT. 

 Slice spacing PT Device 

) 3.27 (3.27 - 3.27) Discovery ST, GE Healthcare 

) 4.00 (4.00 - 4.00) GeminiGXL 16, Philips 

) 3.27 (3.27 - 3.27) Discovery STE, GE Healthcare 

) 4.00 (3.27 - 4.06) Discovery STE, GE Healthcare 

) 3.27 (3.27 - 4.25) Discovery D690 TOF, GE Healthcare 
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