
HAL Id: hal-03711809
https://hal.science/hal-03711809

Submitted on 1 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bi-Alignments with Affine Gaps Costs
Peter F Stadler, Sebastian Will

To cite this version:
Peter F Stadler, Sebastian Will. Bi-Alignments with Affine Gaps Costs. Algorithms for Molecular
Biology, 2022, �10.1186/s13015-022-00219-7�. �hal-03711809�

https://hal.science/hal-03711809
https://hal.archives-ouvertes.fr

Stadler and Will

RESEARCH

Bi-Alignments with Affine Gaps Costs
Peter F. Stadler1,2,3,4,5,6*

and Sebastian Will7

*Correspondence:

studla@bioinf.uni-leipzig.de
1Bioinformatics Group,

Department of Computer Science,

and Interdisciplinary Center for

Bioinformatics, Universität

Leipzig, Härtelstraße 16–18,

D-04107, Leipzig, Germany

Full list of author information is

available at the end of the article

Abstract

Background: Commonly, sequence and structure elements are assumed to evolve
congruently, such that homologous sequence positions correspond to homologous
structural features. Assuming congruent evolution, alignments based on sequence
and structure similarity can therefore optimize both similarities at the same time
in a single alignment. To model incongruent evolution, where sequence and
structural features diverge positionally, we recently introduced bi-alignments.
This generalization of sequence and structure-based alignments is best
understood as alignments of two distinct pairwise alignments of the same
entities: one modeling sequence similarity, the other structural similarity.

Results: Optimal bi-alignments with affine gap costs (or affine shift cost) for two
constituent alignments can be computed exactly in quartic space and time. Even
bi-alignments with affine shift and gap cost, as well as bi-alignment with
sub-additive gap cost are optimized efficiently. Affine gap-cost bi-alignment of
large proteins (∼ 930 aa) can be computed.

Conclusion: Affine cost bi-alignments are of practical interest to study shifts of
protein sequences and protein structures relative to each other.

Availability: The affine cost bi-alignment algorithm has been implemented in
Python 3 and Cython. It is available as free software from
https://github.com/s-will/BiAlign/releases/tag/v0.3b05 and as
bioconda package bialign.

Keywords: Dynamic Programming; Scoring Functions; Multi-tape Formal
Grammar; Recursion

Introduction
Incongruent Evolution

While biological function is eventually encoded in a genomic sequence, it relies

on the “decoding” of the sequence into a spatially structured RNA or protein, or

into specific interactions, such as the binding of a DNA element by a transcrip-

tion factor. Natural selection acts to conserve function over evolutionary times and

therefore preserves functional RNA or protein structures, binding motifs, intron–

exon boundaries, etc. Stabilizing selection on such a functional entity typically also

causes the conservation of its encoding DNA sequence. Homologous functional units,

i.e. those that share a common ancestry [1], are therefore represented by homolo-

gous sequences. As a consequence, functional elements often can be identified based

on their similarity in sequence alignments. For RNA and proteins, this allows the

detection of consensus structures [2, 3], enables the identification of transcription

factor binding sites [4], and the detection of conserved (non-coding) transcripts

through the conservation of splice junctions [5].

Stadler and Will Page 2 of 18

Homology of a feature or trait, however, does not require that all its constituent

parts are homologous. Most obviously, insertions and deletions in a DNA sequence

imply that not all nucleotides trace back to a common ancestor even if the sequence

as a whole does. Similarly, homology of a structural feature does not imply that

all its constituent contacts are preserved. There are indeed well-documented excep-

tions to the by far most common case of homologous features being produced from

homologous sequence positions. A well-studied, albeit apparently rare, example is

intron-sliding, where the start and end of an intron “moves” in the same direction

for the same number of nucleotides [6, 7, 8, 9]. While the gene product is perfectly

preserved, except possibly for some changes of the amino acids encoded by the

few nucleotides involved in the sliding, both splice junctions are now encoded by

non-homologous genomic positions. Promotors sometime exhibit a similar form of

turnover, where a short binding site pattern at one site is replaced by the emergence

of a matching sequence nearby [10]. In the context of biopolymer structures it is

possible that contacts between nucleotides or amino acids are shifted relative to the

underlying sequence in a way that preserves most features of the ancestral struc-

ture. Such transitions can be facilitated by the existence of kinetically accessible

structural alternatives [11], of which different variants are stabilized by subsequent

mutations in different lineages. In a preliminary survey, we recently observed that

72 of 1181 moderate-size Rfam families show evidence for this kind of incongruence

between sequence and structure conservation [12]. This observation suggests that

incongruent evolution of sequence and structure is relatively rare but still occurs

with sufficient frequency to be non-negligible.

To our knowledge, incongruences between conserved protein sequence and con-

served protein structures so far have not been studied systematically. However, the

example of Fig. 1 demonstrates that (at least at the level of secondary structures)

it is not at all difficult to obtain incongruence by performing a few mutations.

Here, we (artificially) introduced substitutions into a peptide sequence such that

predicted secondary structures shifted relative to the reference sequence. The com-

parative analysis of proteins occasionally reveals examples of natural incongruences

between sequence and secondary structure; moreover, it shows that the phenomenon

occurred at least occasionally in protein evolution. Figure 2(top) depicts the align-

ment of the extant human CYPB1 cytochrome P450 enzyme and its reconstructed

ancestral mammalian counterpart, which was recently crystallized (PDB: 6OYU and

6OYV) and characterized functionally [15]. Despite the high level of similarity of

the ancestral and extant folds, the bi-alignment (Fig. 2, bottom) reveals some differ-

ences in the extent of helices and suggests a shift of “helix D” by two amino acids,

constituting an incongruence of the considered type. Another published example

can be found in Fig. 5 of [16]: relative to the underlying sequence, one observes sev-

eral small helix shifts in the evolution of the Pgp protein (MDR1) between human,

mouse, and rat.

Incongruences between sequence homology and homology of structure or func-

tional elements are rooted in the inherent redundancy of genotype-phenotype maps.

For both RNA and proteins, very different sequences can encode the same fold or

function [17, 18, 19], while at the same time identical sequences can appear in very

different structural or functional contexts [20, 21, 22]. Together, these features some-

times lead to a sliding or migration of a functionally relevant structure in response

Stadler and Will Page 3 of 18

Figure 1 Two pairwise alignments and a bi-alignment of peptide sequences and their predicted
secondary structures (helix red, turn blue, β-sheet green, coil orange). Structure are predicted
according to the Chou Fasman method [13] with CFSSP [14]. To facilitate quick visual assessment
of sequence alignment quality, sequence mismatches are shown in bold black, sequence indels in
non-bold black, and mismatches in dark red. The upper alignment optimizes sequence similarity,
and shows the structure out of sync: the helix is moved to left, the last β-sheet is shifted to the
right by 1 position. The second alignment maximizes structural similarity and thus shows little
sequence similarity.
The evolution of the two peptides is explained much better by a bi-alignment (third panel), which
supports shift events (marked by rectangles) that can shift either sequence against its structure to
the left (<) or to the right (>). The resulting regions of shift are indicated by in general k blue and
red lines corresponding to shifts by k positions to the left or to the right. While the shift events
shown in this example delete and insert structure of A with respect to both sequences and the
structure of B, shift alignments also support as well analogous shifts of sequences and the second
structure (which would be shown in the bottom row).
In our representation, shift events are the only visible difference between the bi-alignment A in the
third panel and the two alignments. Nevertheless, the representation can be mapped to our
formalization of bi-alignments as alignments of two constituent alignments U and V: U is obtained
from the 2nd and 3rd bi-alignment row by removing the two all-gap columns (i.e. the first and the
3rd-to-last column). The secondary structure alignment V coincides with the 1st and 4th row
since there is no column that contains only gaps in these to rows.

to a fortuitously placed mutation. The occasional emergence of incongruences be-

tween sequence conservation and the conservation of structure thus is an expected

consequence of the redundancies inherent in the sequence/structure relationship of

biopolymers. It becomes a relevant empirical question, therefore, how frequent this

process has been throughout evolutionary history.

Not only is incongruent evolution of interest as an under-studied aspect of evolu-

tionary dynamics, but it has practical implications for data analysis. Incongruences

impact our ability to detect and reconstruct consensus structures, since correspond-

ing structural features are formed by evolutionarily unrelated nucleotides or amino

acids, while homologous sequence positions form disparate structural elements. This

means that (in the presence of incongruent evolution) a single multiple sequence

alignment cannot simultaneously represent the similarities of sequence and struc-

ture. In particular, conserved structure can no longer be represented as ‘consensus

structure’, i.e. as an annotation of the columns of a sequence alignment.

Stadler and Will Page 4 of 18

Bi-Alignments

We recently introduced bi-alignments [23, 12] as a mathematically consistent way of

describing incongruent evolutionary relationships. Bi-alignments are motivated by

treating shifts between sequence and structure explicitly as evolutionary events. It

is important to realize that it is not necessarily possible to find an optimal reconcil-

iation of sequence and structure alignments by identifying shifts events a posteriori

from a pair of sequence and structure alignments that have been computed sepa-

rately. Instead, bi-alignments allow simultaneously predicting sequence and struc-

ture homologies and their relation. For this purpose, we define a bi-alignment to

consist of two alignments (one based one sequence similarity, the other one based

on structure similarity) that are related by a third alignment, which captures the

shift events. All three constituent alignments contribute to a common score.

While bi-alignments have similarities to combined sequence and structure align-

ments (which also optimize a joint score for sequence and structure similarity),

bi-alignments extend such models by supporting shift events explicitly. Combined

sequence/structure alignments therefore can be interpreted as the limit case of bi-

alignments where arbitrarily high shift penalties completely prohibit shift events.

As important consequence, bi-alignments overcome the requirement of a consensus

structure, which is the key assumption underlying combined sequence/structure

alignments.

As their main purpose, bi-alignments provide a coherent framework to detect

shift-like incongruences, i.e. a local “movement” of conserved structures relative to

the underlying sequence. It is worth noting that the formal concept of bi-alignments

is not tied to applications in structural biology. Instead, it can be seen as a way to

quantify the effect of differences in scoring schemes that focus on different aspects

of the same sequence. The only requirement for bi-alignments is a position-wise

one-to-one correspondence between the two different representations of each input

object.

In this contribution, we extend bi-alignments with linear costs to a more real-

istic model with affine gap costs. We will illustrate our algorithmic developments

using protein sequences and their secondary structures as an example, because

the position-wise annotation of a secondary structure elements fits well with the

framework of sequence alignments. The (artificial) example in Fig. 1 shows that

incongruence between sequence and secondary structure can indeed be caused a

few well-place substitutions. It also shows that bi-alignments are capable, at least

in principle, to reconcile incongruent sequence and structure homologies and to

identify shift events.

A bi-alignment is formally defined as an alignment relating two, generally differ-

ent, alignments of the same objects.

Definition 1 A bi-alignment A ∼= (U,V,W) consists of two pairwise alignments

U and V of the objects a and b and an alignment W of U and V.

In Fig. 1, U is a sequence alignment (shown in the second row with the secondary

structure annotation above and below the two sequences), while V is an alignment of

the two respective secondary structures (shown in the second row with the two cor-

responding sequences between them). The columns of U and V are then aligned by

Stadler and Will Page 5 of 18

Figure 2 Alignment (top) and Bi-alignment (bottom) of 145 N-terminal amino acids of two
CYP1B1 cytochrome P450 enzymes: the extant human enzyme (Human 1B1) and the
corresponding ancestral mammalian cytochrome (N98 1B1 M). See Fig. 1 for the representation
of the alignments and secondary structure elements. Only the bi-alignment properly aligns the
’shifted’ fifth helix and explains the structural incongruence by evolutionary shifts (two forward
and two backward shifts.

W. Since the pairwise alignment of two pairwise alignments is equivalent to a 4-way

alignment, bi-alignments can be thought of as multiple alignments A ∼= (U,V,W).

The input objects a and b appear twice in A, once regarded as sequence (repre-

sented by the one-letter amino acid codes) and once regarded as secondary struc-

ture (shown a position-wise glyphs). Bi-alignments therefore differ from “structure-

aware” sequence alignments by replacing the annotation of sequence positions with

a secondary structure features by an alignment of both the sequence and the string

of structural features. Importantly, A ∼= (U,V,W) completely determines the align-

ments of the sequences of a and b with their secondary structures (shown in the

third row of Fig. 1 as the first and last pair of rows, respectively.) These alignments

in general contain gaps that indicate how the conserved “consensus” structure is

shifted compared to the sequence positions.

Assuming a linear scoring model, i.e. scores for U, V, and W that are additively

composed from single column contributions, it can be shown that the 4-way align-

ment A is scored additively as well [23, 12]. Linear bi-alignment problems therefore

can be exactly solved by dynamic programming [24, 25] in quartic time. In this con-

tribution we are interested in bi-alignments that are scored with affine gap costs.

Alignments as Regular Multi-Tape Grammars

To address this problem, it is helpful to describe the structure of alignments by

multi-tape grammars, see e.g. [26] for a more detailed, formal discussion. In the

simplest case, sequence alignments can be represented as regular grammars of the

form A → Ac
∣∣ ϵ. The only non-terminal symbol A denotes a (pairwise) alignment,

the terminal ϵ is the empty alignment, and the terminal c denotes an alignment

column, which may be a (mis)match (••), a deletion (•
−), or an insertion (−•)}.

Since alignments compare extant sequences rather than an ancestor/descendant

Stadler and Will Page 6 of 18

pair, the two “indels” (insertion/deletion) are biologically indistinguishable and

hence receive the same score. The grammar simply expresses the fact that alignment

can be constructed step-by-step by adding a column to an alignment of prefixes.

For linear scoring functions, the production A → Ac allows adding the score of c to

the previously accumulated score of the alignment A. Denote by M(x) the optimal

score of an alignment of the prefixes a[1..x1] and b[1..x2]. As noted e.g. in [27, 28],

the index vector of the penultimate column of the alignment is x − c, where • is

interpreted as 1 and the gap character − as 0. The Needleman-Wunsch recursions

[29] thus can be written in compact form (see also [24]) as

M(x) = max
c

M(x− c) + s(x, c) with M(0) = 0 . (1)

Notably, in the non-affine case, the scoring function s(x, c) is completely determined

by a single column.

Affine gap cost. While linear gap costs are not very realistic in sequence alignment

[30], arbitrary gap costs algorithmically require an additional factor O(n) in running

time [31, 32] and are difficult to parametrize in practice. The affine gap cost model

serves as a useful and convenient compromise that is most often used in practice.

Here, the opening and the extension of a gap are scored differently. It is therefore

necessary to distinguish three different non-terminal A(••)
, A(•

−), A(−•)
designating

alignments that end in a (mis)match, deletion, and insertion column, respectively.

Again one obtains a regular grammar with analogous productions of the form Ac →
Ac′c

∣∣ ϵ for the three non-terminals. Denote by M(x; c) the optimal score of an

alignment of the prefixes a[1..x1] and b[1..x2] with end column of type c. We can

then write Gotoh’s well-known recursions [33] for pairwise affine gap cost alignment

in the following compact form:

M(x; c) = max
c′

M(x− c; c′) + s(x, c′, c) (2)

with initial conditions M(0, (••)) = 0, M(0, (−•)) = M(0, (•
−)) = −∞. In principle

this formulation accommodates any scoring function s(x, c′, c) for which the column

score depends on the gap pattern of the previous column. For instance, we could

also score the closing of a gap separately.

Both the Needleman-Wunsch algorithm and the Gotoh algorithm run in O(n2)

space and time. Recursion Eq.(1) also describes the dynamic programming algo-

rithm for k-ary alignments [24, 34, 35, 25], which requires O(nk) space and time.

The situation is more complicated, however, for affine gap costs. Sum-of-pairs scor-

ing functions simply sum over the scores of all pairwise alignments contained in a

given multiple alignment. Surprisingly, computing the optimal alignment of align-

ments with affine gap costs under the sum-of-pairs-model is NP-complete unless the

number of sequences in the constituent alignments is bounded [36]. On the other

hand, scoring models of the form of Eq.(2) are of practical interest in particular for

k = 3 [37, 38, 39].

In this contribution we show that the bi-alignment model with affine gap costs

for the constituent alignments can be solved in polynomial time by dynamic pro-

Stadler and Will Page 7 of 18

b

a

b

a

V

UU

V

Figure 3 Shifts in a bi-alignment. The bi-alignment consists of two alignments U or V (colored
horizontal boxes) of the pair of objects a and b that are aligned with each other two different
ways i.e. w.r.t. to two different objective functions. Since the actual letters in a and b are
irrelevant for definition of shifts, we distinguish only letters (filled circles) and gaps (dashes). Note
that a and b may be represented by different alphabets in U and V. Insertions and deletions in
the alignment of alignments W, i.e. the alignment of the columns of U with the columns of W, are
(highlighted by darker colors) correspond to all-gap columns in either U or V. Aligned columns in
W are shifts if the gap patterns in the upper pair and the lower pair differ. Colored outlines
distinguish single (blue) and double shifts (red).

gramming. As we shall see, the recursions are of the form of Eq.(2) but require a

subtle re-definition of M(x; c).

Theory
Bi-Alignments

Recall that we define a bi-alignment as an alignment of alignments (Def. 1). It is well

known that an alignment of alignments can be represented again as an alignment.

This compositional structure of alignments is discussed formally in [40]. In our case,

A is a 4-way alignment from which U (and V) are obtained as “projections”, i.e.

by extracting the corresponding pair of rows and removing all columns consisting

of a pair of gap characters. The alignment W, on the other hand, is obtained by

considering each column in U and V as a single letter; and moreover interpreting

the columns of the form
(−
−
)
(i.e. the ones that are removed in the projections to

U and V) as gap characters.

The Bi-Alignment Problem for two input sequences a and b consists in opti-

mizing

score(A) = u(U) + v(V) + w(W) (3)

with given scoring functions u, v, and w. The special case where u, v, and w are

linear scoring functions has been discussed in [23, 12].

The alignment W of U and V describes the shifts distinguishing U and V in the

following manner. First, consider a match column α of W. It consists of a pair

of columns with gap patterns c(α) and d(α), respectively. Using their numerical

interpretation, we observe that

s(α) := |c1(α)− d1(α)|+ |c2(α)− d2(α)| (4)

measures whether none, one, or both input sequences are shifted relative to each

other (Fig. 3). Insertions and deletions in W correspond to inserting an all-gap

column
(−
−
)
into U or V, respectively, and always lead to incongruences. We note,

furthermore, that there is a one-to-one correspondence between the columns of W
and the columns of the 4-way alignment A. Thus we can count the number of shifts

Stadler and Will Page 8 of 18

s(A) =
∑

α∈A s(α). The alignment A contains sub-alignments A(aa) and A(bb) of

the first and second input sequence with itself. Let us denote the number of indels

in these two projected alignments by δa and δb, respectively.

Lemma 2 If A ∼= (U,V,W) is a bi-alignment of a and b, then s(A) = δa + δb.

Proof For column α of A we write δa(α) := |c1(α) − d1(α)| and δb(α) := |c2(α) −
d2(α)|. Thus δa(α) = 1 if α is an indel column in the projected self-alignment

of a, and δa(α) = 0 if α is a (mis)match column. Note that all-gap columns are

omitted in the projection and thus do not contribute to the indel count. Thus

δa =
∑

α∈A δa(α) correctly counts the indels in A(aa). An analogous equality holds

for δb. A comparison with Eq.(4) completes the proof.

A natural scoring function for W is thus to penalize the total number of shifts,

setting w(A) = −∆s(A). This amounts to computing the shift contribution for each

column (c
d) of A as shift(c, d) = −∆|c− d| = −∆(|c1 − d1|+ |c2 − d2|).

Bi-Alignements with Affine Gaps Costs

Lemma 2 provides an alternative interpretation in terms of a simple linear score

for A(aa) and A(bb). We can therefore think of Eq.(3) as a restricted sum-of-pairs

model in which only four of the six pairwise alignments in A contribute. In this

picture it is natural to assume that the constituent alignments U and V are scored

with affine gap costs. In the light of the NP-hardness result of [36] it is not at all

obvious, however, that the bi-alignment problem with affine gap costs can be solved

in polynomial time.

In order to address this problem, we first recall the language of multi-way align-

ments. The following statement is “folklore”, see e.g. [40]: Every column of the

4-way alignment A is uniquely determined by

(i) a four-dimensional index (x, y) identifying the prefixes a[1..x1], b[1..x2],

a[1..y1], and b[1..y2] that are aligned up to the focal column.

(ii) a gap pattern (c, d) = ((c1, c2), (d1, d2)) specifying whether the entry in a

column is a letter or a gap character.

The language of 4-way alignments is generated by the regular language A → A(c
d)

∣∣
ϵ, where the non-terminal A denotes a bi-alignment and the terminals (c

d) corre-

spond to one of the 15 possible gap patterns in a column of elements (excluding the

all-gap column). Note that c =
(−
−
)
and d =

(−
−
)
respectively correspond to an

insertion and deletion in W, while c, d ̸=
(−
−
)
corresponds to a match in W. This

regular language is sufficient for linear gap cost models [23, 12].

In order to handle affine gap costs for U and V, we need to keep track of the gap

patterns of the preceding alignment column in U and V. This is not the same as

considering the preceding column of A because gap patterns of the form
((−

−
)

d

)
and

(c(−
−

))
correspond to all-gap columns, which are removed in U or V. Thus, we

introduce a new notion of column type to address these ’preceding’ gap patterns of

the sub-alignments.

Stadler and Will Page 9 of 18

p=

q=
b

a

b

a

Figure 4 The end column type of an bi-alignment is defined by the last column of each of the
constituent pairwise alignments of a and b that is not an all-gap column.

Definition 3 The end column type (p, q) of a bi-alignment A ∼= (U,V,W) consists

of the gap pattern p of the last column of U and the gap pattern q of the last column

of V. The end column type of the empty alignment is left arbitrary.

The definition is illustrated in Fig. 4. Note that by construction, neither p nor q

consist only of gaps.

Now, we define a column-wise scoring function that captures the alignment score

with affine gap cost. It scores a single column of a bi-alignment A, characterized by

(xy) and (c
d), depending on the end column type

(
c′

d′

)
of the previous column. This

function has the form

score((xy),
(
c′

d′

)
, (c

d)) = scoreU(x, c
′, c) + scoreV(y, d

′, d) + shift(c, d)

with score(x, c′, 0) = score(y, d′, 0) = 0
(5)

Since score(x, c′, 0) and score(y, d′, 0), respectively, correspond to all-gap columns

in U and V, we observe that the sum of the score((xy),
(
c′

d′

)
, (c

d)) over all columns

of A equals∑
(x,c)∈U

scoreU(x, c
′, c) +

∑
(y,d)∈V

scoreV(y, d
′, d) +

∑
(c,d)∈W

shift(c, d)

= u(U) + v(V) + shift(A)
(6)

Thus, Eq.(5) correctly scores the bi-alignment with general affine gap costs for both

U and V.
In order to derive a dynamic programming algorithm that solves the bi-alignment

problem with this type of scoring function, we consider a decomposition of the search

space in grammar form. The non-terminals A(p,q) correspond to bi-alignment with

end column type (p, q). The terminals are the 15 possible column types of a 4-way

alignment, which we write as (pq), with p, q ̸=
(−
−
)
as well as

(−
q

)
(
q
−) where the

− in the latter is a shorthand for
(−
−
)
. In addition, we write ϵ for the empty 4-way

column.

Lemma 4 The language of bi-alignments with fixed end column type is generated

by the productions

A(p,q) → A(p′,q′)(
p
q)

∣∣ A(p,q′)

(−
q

) ∣∣ A(p′,q)(
p
−)

∣∣ ϵ (7)

Proof Consider an alignment A with last column (c, d) and end column type (p, q),

and denote by A′ the alignment without the last column. If c, d ̸=
(−
−
)
, i.e. the

Stadler and Will Page 10 of 18

(mis)match case in W, then p = c and q = d and A′ may have any end-column

type. If c =
(−
−
)
, corresponding to the insertion case in W, A inherits the first

component c of its end column type from the previous alignment A′. The other

component is given by the second part of the last column, i.e. d = q. Thus the

second component of the end column type of A′ is arbitrary. The case d =
(−
−
)
,

deletion inW analogously yields d = q and an end column type (p′, q) for the A′.

Note that this grammar would allow terminating with any end column type. This

is undesirable since we would like the first column to be scored as it was preceded

by a match column in both U and V. This is easily implemented by an appropriate

initialization for x = y = 0, however.

Definition 5 Let Mp,q(x, y) denote the optimal score of a 4-way alignment with

end column type (p, q).

In order to enforce that empty alignment is treated as having end column

type ((••), (
•
•)), we set M((••),(

•
•))

(0, 0) = 0 and M(c,d)(0, 0) = −∞ for (c, d) ̸=
((••), (

•
•)).

Theorem 6 The matrices Mp,q satisfy the recursion

M(p,q)(x, y) = max

max
p′ ̸=0
q′ ̸=0

M(p′,q′)(x− p, y − q) + score((xy),
(

p′

q′

)
, (pq))

max
p′ ̸=0

M(p′,q)(x− p, y) + score((xy),
(
p′

q

)
, (p0))

max
q′ ̸=0

Mp,q′(x, y − q) + score((xy),
(p
q′
)
,
(
0
q

)
)

(8)

Proof We first note that every column of A is either a (mis)match or an indel column

w.r.t. W. These correspond to the first three alternative productions in Eq.(7),

and cover all alternatives. Since score((xy),
(
c′

d′

)
, (c

d)) depends only on the current

column and the end column type, we obtain the optimal score of an alignment A with

end column type (p, q) and last column (c, d) as the optimal score of an alignment

A′ with any of the matching column type plus the score score((xy),
(
c′

d′

)
, (c

d)) for

the last column. The grammar in Eq.(7) specifies which end column types match.

Furthermore, we note that, in the match case, the indices (x′, y′) of the last column

of the alignment to the left are given by x−p and x−q, where (p, q) is gap pattern on

the last column of A. Correspondingly we have (x′, y′) = (x− p, y) for the insertion

case and (x′, y′) = (x, y′ − q) in the insertion case. Taken together, this established

the correctness of the recursion.

As an immediate consequence we have

Corollary 7 The bi-alignment problem with affine gap cost models for the two

constituent alignments can be solved in O(n4) time and space.

Stadler and Will Page 11 of 18

Affine Shift Costs

While bi-alignment with affine gap cost and linear shift costs may be of the most

obvious practical relevance, we also discuss two variations with affine shift costs.

First of all, we clarify how to attribute affine shift cost in our bi-alignment scoring

model.

Let’s take a step back to our original definition of the bi-alignment score (Eq.3)

and our previous suggestion to define the “shift” score component w(A) as −∆s(A),
i.e. as a multiple of s(A). Since the latter was defined as the number of gap columns

in the alignments A(aa) and A(bb), this amounts to scoring shifts in a linear cost

model, where every shift has a cost of ∆ per column.

For affine shift costs, we take the view that every consecutive run of gap symbols

in the pairwise alignments of the two copies of a and b represents one shift. This

shift is scored in the same way as gaps are scored under affine gap cost, i.e. based

on the shift opening cost ∆o plus the shift extension cost ∆ times the length of the

shift (number of shift columns).

We first consider affine shift cost and non-affine (i.e. linear) gap cost. Since affine

shifts are scored exactly in the same way as affine gaps, this situation is symmetric

to the case of affine gap cost combined with linear shift cost. The corresponding bi-

alignment problem can thus be solved efficiently by applying exactly the same idea

as in our previous algorithm (Theorem 6), only now keeping track by p and q of the

gap patterns in the respective alignments of rows 1&3 and 2&4. We immediately

obtain

Corollary 8 The bi-alignment problem with affine shift cost models (and linear

gap cost) can be solved in O(n4) time and space.

Combining Affine Gap and Shift Costs

More remarkably, we can even solve the general case of affine gap cost and affine

shift cost in polynomial time by dynamic programming. Essentially, we combine the

ideas of the above two algorithms. Our algorithm follows a grammar with general

decomposition

Ap → Ap′c (9)

In order to evaluate affine gaps and affine shifts correctly at the same time, we need

to know the last non-gap-only gap patterns of all four pairwise alignments of rows

1&2, 1&3, 2&4, and 3&4; thus, we utilize non-terminals Ap, for all p that encode

the respective gap patterns p = (p12, p13, p24, p34). By the same argument as before,

we can show this information to be sufficient to score shifts and gaps correctly in

affine cost models for every possible last column c.

One keeps track of the correct gap patterns for all of the relevant pairwise align-

ments by setting the entries of p′ as

p′ij :=

pij ci = − and cj = −
(ci
cj) otherwise

(10)

Stadler and Will Page 12 of 18

for ij ∈ {12, 13, 24, 34}, depending on p and c in Eq.(9). For termination, we add

the grammar rule:

Ap0 → ϵ (11)

for p0 := ((••), (
•
•), (

•
•), (

•
•)). This allows implicit accounting for gap and shift

openings of respective gaps and shifts at the left end of alignment strings.

Remarks about generalizations and complexity Note that the existence of an effi-

cient algorithm for general affine bi-alignment does not contradict the general hard-

ness of multiple alignment with affine gap costs, even if it suggests the following

generalization: Multiple (k-way) alignment with affine gap costs can be computed

by dynamic programming following the above idea of keeping track of the right-most

non-gap-only gap-patterns in all pairwise alignments. This requires considering
(
k
2

)
many pairwise gap patterns, each out of three possibilities (••), (

•
−), (−•). The re-

sulting DP-algorithm for k-way alignment thus needs exponentially many matrices

in k.

In bi-alignments of two sequences, we need to consider only four gap patterns,

two for the two alignments and two for the shifts between the sequence copies.

That is, there are (at most) 34 = 81 combinations, which have to be represented by

different matrices for the DP algorithm. This gets a little more practical, since many

of these combinations cannot occur in valid bi-alignments. For example, having

gap patterns (••) for both alignments of a and b, rules out all patterns for the

alignments of the copies that contradict having last columns

(•
•
•
•

)
,

(•
•
−
−

)
, or

(−
−
•
•

)
.

Consequently, we find only 51 consistent gap pattern combinations, while we can

proof 30 combinations inconsistent due to an analogous argument as sketched above.

Sub-Additive Gap Costs

The affine gap cost model, despite its algorithmic convenience, has been criticized

because empirical gap length distributions usually are power laws thus suggesting a

logarithmic gap costs [41]. However, gap costs of the form w(ℓ) = a+bℓ+c ln ℓ seem

to yield better alignments in practice [42]. Pairwise alignments with subadditive

gap costs can be computed by dynamic programming, considering insertions and

deletions of arbitrary length:

M(x1, x2) = max

M(x1 − 1, x2 − 1) + s(x1, x2)

maxℓ≥1 M(x1 − ℓ, x2) + w(a[x1 − ℓ+ 1..x1])

maxℓ≥1 M(x1, x2 − ℓ) + w(b[x2 − ℓ+ 1..x2])

(12)

This idea does not seem to generalize to bi-alignments. It is possible, however, to

generalize the end column type. Instead of only distinguishing (11), (
1
0), (

0
1), we can

make each of them length dependent. This allows us to write the end column types

⟨p, ℓ⟩, where ℓ ≥ 1 is the length of the run of columns of type p at the end of the

alignment. With this notation we can write

M⟨p,ℓ⟩(x) = M⟨p,ℓ−1⟩(x) + d(x, p, ℓ) for ℓ ≥ 1

M⟨p,0⟩(x) = max
p′ ̸=p

M⟨p′,ℓ⟩(x)
(13)

Stadler and Will Page 13 of 18

with initial condition M⟨p,0⟩(0) = 0. Here d(x, p, ℓ) equals the match score s(x)

for p = (••). For deletions, p = (•
−), we have d(x, p, ℓ) = w(a[x1 − ℓ + 1..x1]) −

w(a[x1 − ℓ + 1..x1 − 1]). The extensions of an insertion is scored by an analogous

expression. The auxiliary entries M⟨p,0⟩(x) are used to correctly score alignments in

which the last column is different from the previous end gap pattern. This recursion

runs in cubic time, but also requires cubic space (instead of quadratic space). For

our purposes, however, it has the advantage that the score is again defined column-

wise albeit at the expense of having to keep track of a linear instead of a constant

number of end gap types. It generalizes to a recursion with four indices to compute

the optimal bi-alignment.

Computational Results
We implemented the bi-aligment algorithm with affine gap cost (Corollary 7) in

Python 3. For improved performance, we adapted time-critical parts of the code to

the Python C-extension Cython with some carefully chosen static typing. The new

implementation was based on our previous implementation for RNA bi-alignment

with linear gap cost [23, 12]. Like the earlier version, it allows the user to limit the

number of positions either sequence can be shifted to the left or right against its

own structure by a constant λ. The restricted recursions, following in essence the

idea of [34, 35], have time complexity of O(n2λ2) instead of the unrestricted, but

often impractical complexity O(n4). In addition to efficient bi-alignment with affine

gap cost, new features have been added to the software:

1 Protein sequences may be scored with an arbitrary, user-defined similarity

matrix. The BLOSUM62 matrix [43, 44] is supplied as default.

2 Protein secondary structures are scored using a simple bonus (here, 800) for

matched secondary structure.

3 The dynamic programming matrices are stored as sparse matrices to to limit

space consumption to O(n2λ2) (compared to O(n4) space complexity of a

hypothetical non-sparse implementation).

4 In case of ambiguity, simpler shifts are prefered (For example the bi-alignment

of Fig 1 has co-optima with shift events in both sequences or shift events that

shift longer sub-sequences).

5 Improved graphical output of bi-alignments. Figures 1 and 5 were produced

using a Jupyter notebook that is included in the software distribution.

6 A flexible command line and Python interface is included.

As a proof of concept we generated optimal bi-alignments of DNA Polymerase I

from Escherichia (length 928) and Xanthomonas hortorum (length 933), while al-

lowing shifts of sequence against structure by up to two positions to the left or

to the right in either protein (λ = 2). On an Intel(R) Core(TM) i7-10810U CPU,

this (single-threaded) computation took 37 minutes. Note that a simple banding

strategy on insertions and deletions could dramatically speed up such computa-

tions, typically without sacrificing alignment quality. The analogous computation

allowing only one shift positions (λ = 1) was performed in 10.5 min. Due to filling

9 dynamic programming matrices and considering 15 recursion cases per entry, the

same implementation still takes 26 s, if shifts are completely forbidden (λ = 0).

Figure 5 shows the resulting bi-alignment for λ = 2. For comparison, the results

from λ = 1 and λ = 0 are given in Additional File 1. We chose a rather moderate

Stadler and Will Page 14 of 18

Figure 5 Bi-alignment of the proteins DNA Polymerase I of Escherichia (WP_016262675.1) and
Xanthomonas hortorum (WP_095575020.1). We use the same representation as in Fig. 1.

shift cost ∆ = −210, compared to a bonus of 800 per structure match as well as gap

extension and gap opening costs of −50 and −200, respectively. While we suspect

that this parameter choice is too generous, it serves here to demonstrate that the

algorithm readily predicts shifts that improve the compromise between primary and

Stadler and Will Page 15 of 18

secondary structure alignment. The estimation of realistic shift costs is a non-trivial

problem beyond the scope of this contribution.

Concluding Remarks
We have shown here that bi-alignments with affine gap cost models for both con-

stituent alignments and linear shift costs can be computed in quartic time by dy-

namic programming. Moreover, limiting the number of shifts to a constant reduces

the cost to quadratic space and time. This makes the detection of locally-confined

shifts computationally feasible for sequences of with length of realistic proteins or

mRNAs. While we have illustrated our algorithmic innovations here using amino

acid sequences and protein secondary structures as an example, the algorithm and

its implementation is applicable to any linear representation of monomer-wise fea-

tures along a biopolymer. In can be used, for instance, directly as an extension of

the linear-gap-cost bi-alignments of RNAs described in [12].

We have focused here on the analysis of optimization problem and development

of the algorithm. In addition to cost models for the constituent alignments U and

V, a bi-alignment problem also requires the specification of the shift costs, i.e. the

scoring model for W. Even though the scoring systems for U and V are borrowed

from other studies, the choice of appropriate shift parameters remains an open

problem for future work. This is a difficult problem for two reasons: (i) There

is, at present, no collection of test cases with known shifts of sequences versus

secondary structure for either proteins or RNAs that could be used to optimize the

parameters. (ii) A biologically sound survey of proteins should presumably use a

more elaborate scoring model for secondary structure elements that distinguishes

amino acid positions depending on the distance from the element’s ends. It stands

to reason that the choice of the scoring model for the secondary structures would

substantially influence estimates of the shift costs. Here, we are therefore content

with a solution of algorithmic issues and a reference implementation. This provides

the necessary tools for an in-depth empirical study of incongruent evolution of

protein secondary structures in the future.

The formal framework of bi-alignments, Eq. (3), is much more general than the

position-wise scoring models corresponding to regular multi-tape grammars. These

were studied here because the corresponding optimization problems can be solved

exactly by means of relatively simple dynamic programming algorithms. In a more

general setting, one may want to consider V as an alignment of contact structures

[45] or as an alignment of ordered sequences of 3D points, e.g. scored in terms of eu-

clidean distances [46, 47]. This is of increasing practical interest as recent advances

in protein folding [48, 49] provide access to high quality 3D structure predictions.

The availability of accurately predicted protein structures of course also yields sec-

ondary structures, e.g. with the help of DSSP [50], which could be used for a system-

atic survey of incongruences in protein secondary structures. Alternatively, it seems

promising to modify existing solutions to the protein structure alignment problems

[51] to the corresponding bi-alignment problems. It is not obvious whether such a

joint sequence and structure alignment problem implicitly contains a sequence-to-

structure threading problem, which is known to be NP-complete [52]. In another

forthcoming study, we are considering the corresponding problem for RNA sec-

ondary structures. In this case, the bi-alignment problem is amenable to a DP

Stadler and Will Page 16 of 18

approach related to Sankoff’s algorithm for the simultaneous folding and alignment

of RNAs [53].

In [12] we further generalized bi-alignments to poly-alignments comprising k > 2

pairwise alignments U(i), 1 ≤ i ≤ k ≥ 2 that are connected by a k-way alignment W.

Each of the alignments U(i) then describes one particular aspect of the sequence. In

addition to the individual amino acids and secondary structure elements, these may

represent comparisons of profiles of physico-chemical parameters. It is not difficult

to see that the grammar Eq.(7) generalizes to this case by defining end gap types

(p1, p2, . . . pk) with pi ̸=
(−
−
)
. The corresponding grammar then needs to consider

all 2k gap patterns for the last column of the k-way alignment W. Optimal poly-

alignments comprising k pairwise alignments with affine gap costs and additive cost

contributions for the shifts between each pair of constituent alignments thus can be

computed exactly in O(n2k) space and time. Complementarily, one may consider

alignments U and V of more than two sequences and their corresponding structures.

The scoring of W then must accommodate more complex shift patterns, whose to-

tal number again increases exponentially in k. It is unlikely, therefore, that exact

dynamic programming algorithms for these generalized problems will be practical.

This begs the question whether poly-alignment problems can be approximated e.g.

by progressive alignment schemes in a manner that is satisfactory from an applica-

tions point of view.

Acknowledgements

We thank Christian Höner zu Siederdissen for stimulating discussions and Verena Bender and Leonie Preker for

preliminary work as part of the the course Advanced Methods in Bioinformatics in 2020.

Funding

This work was supported in part by the German Research Foundation (DFG) as part of the Collaborative Research

Centre 1423 “Structural Dynamics of GPCR Activation and Signal Transduction” (SFB 1423/1 421152132).

Availability of data and materials

Implementations of the algorithms used in this contribution are available as free software from

https://github.com/s-will/BiAlign/releases/tag/v0.3b05. For easy installation, we provide packages

bialign on the Conda channel bioconda and the Python Package Index PyPI, respectively.

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Authors’ contributions

Both authors contributed to deriving the mathematical results, the interpretation of results and the writing of the

manuscript. SW implemented the algorithms.

Additional Files

Additional file 1 — Bi-Alignments with different choices of λ

Bi-alignments of the same data as in Figure 5 using a more restrictive value (λ = 1) and a shift-free alignment

(λ = 0). The latter corresponds to regular protein alignment with scores augmented by (mis)matches of the

predicted secondary structure.

Author details
1Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics,

Universität Leipzig, Härtelstraße 16–18, D-04107, Leipzig, Germany. 2Competence Center for Scalable Data

Services and Solutions Dresden/Leipzig, Interdisciplinary Center for Bioinformatics, German Centre for Integrative

Biodiversity Research (iDiv), and Leipzig Research Center for Civilization Diseases, Universität Leipzig,

Augustusplatz 12, D-04107 Leipzig, Germany. 3Max Planck Institute for Mathematics in the Sciences, Inselstraße

22, D-04109 Leipzig, Leipzig, Germany. 4Department of Theoretical Chemistry, University of Vienna Währinger

Straße 17, A-1090 Vienna, Austria. 5 Facultad de Ciencias, Universidad National de Colombia, Sede Bogotá,

Stadler and Will Page 17 of 18

Ciudad Universitaria, COL-111321 Bogotá, D.C., Colombia. 6 Santa Fe Institute, 1399 Hyde Park Rd., NM87501

Santa Fe, USA. 7 AMIBio, Laboratoire d’Informatique de l’École Polytechnique (LIX), Institute Polytechnique de

Paris (IP Paris), Batiment Turing, 1 rue d’Estienne d’Orves, F-91120 Palaiseau, France.

References
1. Wagner, G.P.: Homology, Genes, and Evolutionary Innovation. Princeton Univ. Press, Princeton NJ (2014)

2. Hofacker, I.L., Fekete, M., Stadler, P.F.: Secondary structure prediction for aligned RNA sequences. J. Mol.

Biol. 319, 1059–1066 (2002). doi:10.1016/S0022-2836(02)00308-X

3. Marks, D.S., Hopf, T.A., Sander, C.: Protein structure prediction from sequence variation. Nature Biotech 30,
1072–1080 (2012). doi:10.1038/nbt.2419

4. Chapman, M.A., Donaldson, I.J., Gilbert, J., Grafham, D., Rogers, J., Green, A.R., Göttgens, B.: Analysis of

multiple genomic sequence alignments: A web resource, online tools, and lessons learned from analysis of

mammalian SCL loci. Genome Res. 14, 313–318 (2004). doi:10.1101/gr.1759004

5. Hiller, M., Findeiß, S., Lein, S., Marz, M., Nickel, C., Rose, D., Schulz, C., Backofen, R., Prohaska, S.J.,

Reuter, G., Stadler, P.F.: Conserved introns reveal novel transcripts in Drosophila melanogaster. Genome Res.

19, 1289–1300 (2009). doi:10.1101/gr.090050.108

6. Stoltzfus, A., Logsdon Jr., J.M., Palmer, J.D., Ford, D.W.: Intron “sliding” and the diversity of intron

positions. Proc Natl Acad Sci USA 94, 10739–10744 (1997). doi:10.1073/pnas.94.20.10739

7. Lehmann, J., Eisenhardt, C., Stadler, P.F., Krauss, V.: Some novel intron positions in conserved drosophila

genes are caused by intron sliding or tandem duplications. BMC Evol. Biol. 10, 156 (2010).

doi:10.1186/1471-2148-10-156

8. Bocco, S., Csűrös, M.: Splice sites seldom slide: intron evolution in oomycetes. Genome Biol Evol 8, 2340–2350
(2016). doi:10.1093/gbe/evw157

9. Fekete, E., Flipphi, M., Ág, N., Kavalecz, N., Cerqueira, G., Scazzocchio, C., Karaffa, L.: A mechanism for a

single nucleotide intron shift. Nucleic Acids Res. 45, 9085–9092 (2017). doi:10.1093/nar/gkx520

10. Hare, E.E., Peterson, B.K., Iyer, V.N., Meier, R., Eisen, M.B.: Sepsid even-skipped enhancers are functionally

conserved in Drosophila despite lack of sequence conservation. PLoS Genet. 4, 1000106 (2008).

doi:10.1371/journal.pgen.1000106

11. Flamm, C., Fontana, W., Hofacker, I., Schuster, P.: RNA folding kinetics at elementary step resolution. RNA 6,
325–338 (2000). doi:10.1017/s1355838200992161

12. Waldl, M., Will, S., Wolfinger, M.T., Hofacker, I.L., Stadler, P.F.: Bi-alignments as models of incongruent

evolution of rna sequence and secondary structure. In: Cazzaniga, P., Besozzi, D., Merelli, I., Manzoni, L. (eds.)

Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2019)q. Lect. Notes Comp.

Sci., vol. 12313, pp. 159–170. Springer, Cham, Switzerland (2020). doi:10.1007/978-3-030-63061-4 15

13. Chou, P.Y., Fasman, G.D.: Prediction of protein conformation. Biochemistry 13, 222–245 (1974).

doi:10.1021/bi00699a002

14. Ashok Kumar, T.: CFSSP: Chou and fasman secondary structure prediction server. Wide Spectrum Res. J. 1,
15–19 (2013). doi:10.5281/zenodo.50733

15. Bart, A.G., Harris, K.L., Gillam, E.M.J., Scott, E.E.: Structure of an ancestral mammalian family 1B1

cytochrome P450 with increased thermostability. J. Biol. Chem. 295, 5640–5653 (2020).

doi:10.1074/jbc.RA119.010727

16. Dong, M., Ladavière, L., Penin, F., Deléage, G., Baggetto, L.G.: Secondary structure of P-glycoprotein

investigated by circular dichroism and amino acid sequence analysis. Biochimica Biophysica Acta –

Biomembranes 1371, 317–334. doi:10.1016/S0005-2736(98)00032-7
17. Schuster, P., Fontana, W., Stadler, P.F., Hofacker, I.L.: From sequences to shapes and back: A case study in

RNA secondary structures. Proc. Roy. Soc. Lond. B 255, 279–284 (1994). doi:10.1098/rspb.1994.0040

18. Babajide, A., Hofacker, I.L., Sippl, M.J., Stadler, P.F.: Neutral networks in protein space: A computational

study based on knowledge-based potentials of mean force. Folding & Design 2, 261–269 (1997).

doi:10.1016/S1359-0278(97)00037-0

19. Bornberg-Bauer, E.: How are model protein structures distributed in sequence space? Biophys J 73, 2393–2403
(1997). doi:10.1016/S0006-3495(97)78268-7

20. Kabsch, W., Sander, C.: On the use of sequence homologies to predict protein structure: identical

pentapeptides can have completely different conformations. Proc. Natl. Acad. Sci. USA 81, 1075–1078 (1984).

doi:10.1073/pnas.81.4.1075

21. Schultes, E.A., Bartel, D.P.: One sequence, two ribozymes: Implications for the emergence of new ribozyme

folds. Science 289(5478), 448–452 (2000). doi:10.1126/science.289.5478.448

22. Alexander, P.A., He, Y., Chen, Y., Orban, J., Bryan, P.N.: A minimal sequence code for switching protein

structure and function. Proc. Natl. Acad. Sci. USA 106, 21149–21154 (2009). doi:10.1073/pnas.0906408106

23. Waldl, M., Will, S., Wolfinger, M., L., H.I., Stadler, P.F.: Bi-alignments as models of incongruent evolution and

RNA sequence and structure. In: Cazzaniga, P., Besozzi, D., Merelli, I. (eds.) CIBB’19 Proceedings, p. 6

(2019). doi:10.1101/631606. BioRxiv

24. Sankoff, D.: Minimal mutation trees of sequences. SIAM J. Appl. Math. 28, 35–42 (1975).

doi:10.1137/0128004

25. Sankoff, D.: The early introduction of dynamic programming into computational biology. Bioinformatics 16,
41–47 (2000). doi:10.1093/bioinformatics/16.1.41

26. Höner zu Siederdissen, C., Hofacker, I.L., Stadler, P.F.: Product grammars for alignment and folding.

IEEE/ACM Trans. Comp. Biol. Bioinf. 12, 507–519 (2015). doi:10.1109/TCBB.2014.2326155

27. Setubal, J.C., Meidanis, J.: Introduction to Computational Molecular Biology. PWS Publishing Co, Boston, MA

(1997)

28. Retzlaff, N., Stadler, P.F.: Partially local multi-way alignments. Math. Comp. Sci. 12, 207–234 (2018).

doi:10.1007/s11786-018-0338-4

29. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid

Stadler and Will Page 18 of 18

sequence of two proteins. J Mol Biol 48, 443–453 (1970). doi:10.1016/0022-2836(70)90057-4

30. Vingron, M., Waterman, M.S.: Sequence alignment and penalty choice: Review of concepts, case studies and

implications. J. Mol. Biol. 235, 1–12 (1994). doi:10.1016/S0022-2836(05)80006-3

31. Waterman, M.S., Smith, T.F., Beyer, W.A.: Some biological sequence metrics. Adv. Math. 20, 367–387
(1976). doi:10.1016/0001-8708(76)90202-4

32. Dewey, T.G.: A sequence alignment algorithm with an arbitrary gap penalty function. J. Comp. Biol. 8,
177–190 (2001). doi:10.1089/106652701300312931

33. Gotoh, O.: An improved algorithm for matching biological sequences. J. Mol. Biol. 162, 705–708 (1982).

doi:10.1016/0022-2836(82)90398-9

34. Carrillo, H., Lipman, D.: The multiple sequence alignment problem in biology. SIAM J. Appl. Math. 48,
1073–1082 (1988). doi:10.1137/0148063

35. Lipman, D.J., Altschul, S.F., Kececioglu, J.D.: A tool for multiple sequence alignment. Proc. Natl. Acad. Sci.

USA 86, 4412–4415 (1989). doi:10.1073/pnas.86.12.4412

36. Kececioglu, J., Starrett, D.: Aligning alignments exactly. In: Bourne, P.E., Gusfield, D. (eds.) Proceedings of

the 8th ACM Conference on Research in Computational Molecular Biology (RECOMB), pp. 85–96. ACM, New

York, NY (2004). doi:10.1145/974614.974626

37. Gotoh, O.: Alignment of three biological sequences with an efficient traceback procedure. J. theor. Biol. 121,
327–337 (1986). doi:10.1016/S0022-5193(86)80112-6

38. Konagurthu, A.S., Whisstock, J., Stuckey, P.J.: Progressive multiple alignment using sequence triplet

optimization and three-residue exchange costs. J. Bioinf. and Comp. Biol. 2, 719–745 (2004).

doi:10.1142/S0219720004000831

39. Kruspe, M., Stadler, P.F.: Progressive multiple sequence alignments from triplets. BMC Bioinformatics 8, 254
(2007). doi:10.1186/1471-2105-8-254

40. Berkemer, S.J., Höner zu Siederdissen, C., Stadler, P.F.: Compositional properties of alignments. Math. Comp.

Sci. 15, 609–630 (2021). doi:10.1007/s11786-020-00496-8

41. Gonnet, G.H., Cohen, M.A., Benner, S.A.: Exhaustive matching of the entire protein sequence database.

Science 256, 1443–1445 (1992). doi:10.1126/science.1604319

42. Cartwright, R.A.: Logarithmic gap costs decrease alignment accuracy. BMC Bioinformatics 7, 527 (2006).

doi:10.1186/1471-2105-7-527

43. Eddy, S.R.: Where did the BLOSUM62 alignment score matrix come from? Nature Biotech. 22, 1035–1036
(2004). doi:10.1038/nbt0804-1035

44. Styczynski, M.P., Jensen, K.L., Rigoutsos, I., Stephanopoulos, G.: BLOSUM62 miscalculations improve search

performance. Nature Biotechn. 26, 274–275 (2008). doi:10.1038/nbt0308-274

45. Stadler, P.F.: Alignments of biomolecular contact maps. Interface Focus 11, 20200066 (2021).

doi:10.1098/rsfs.2020.0066

46. Poleksic, A.: Algorithms for optimal protein structure alignment. Bioinformatics 25, 2751–2756 (2009).

doi:10.1093/bioinformatics/btp530

47. Li, S.C.: The difficulty of protein structure alignment under the RMSD. Alg. Mol. Biol. 8, 1 (2013).

doi:10.1186/1748-7188-8-1

48. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R.,

Ž́ıdek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S.A.A., Ballard, A.J., Cowie, A., Romera-Paredes, B.,

Nikolov, S., Jain, R., Adler, J., Beck, T., Petersen, S., Reimann, D., Clancy, E., Zielinski, M., Steinegger, M.,

Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A.W., Kavukcuoglu, K., Kohli,

P., Hassabis, D.: Highly accurate protein structure prediction with AlphaFold. Nature 596 (2021).

doi:10.1038/s41586-021-03819-2

49. Baek, M., DiMaio, F., Anishchenko, J. Ivan Dauparas, Ovchinnikov, S., Lee, G.R., Wang, J., Cong, Q.C.,

Kinch, L.N., Schaeffer, R.D., Millán, C., Park, H.P., Adams, C., Glassman, C.R., DeGiovanni, A., Pereira, J.H.,

Rodrigues, A.V., van Dijk, A.A., Ebrecht, A.C., Opperman, D.J., Sagmeister, T., Buhlheller, C., Pavkov-Keller,

T., Rathinaswamy, M.K., Dalwadi, U., Yip, C.K.Y., Burke, J.E., Garcia, K.C., Grishin, N.V., Adams, P.D.,

Read, R.J., Baker, D.: Accurate prediction of protein structures and interactions using a three-track neural

network. Science 373, 871–876 (2021). doi:10.1126/science.abj8754

50. Kabsch, W., Sander, C.: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and

geometrical features. Biopolymers 22, 2577–2637. doi:10.1002/bip.360221211
51. Daniluk, P., Lesyng, B.: Theoretical and computational aspects of protein structural alignment 1, 557–598

(2014). doi:10.1007/978-3-642-28554-7 17

52. Lathrop, R.H.: The protein threading problem with sequence amino acid interaction preferences is

NP-complete. Protein Engineering, Design and Selection 7, 1059–1068 (1994). doi:10.1093/protein/7.9.1059

53. Sankoff, D.: Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM J. Appl.

Math. 45, 810–825 (1985). doi:10.1137/0145048

