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ABSTRACT

Context. Recent observational evidence has shown that RY Tau may present two different outflow stages, a quiescent and a more
active stage. We try to model this phenomenon.
Aims. We have performed new 2.5D magnetohydrodynamical simulations of the possible accretion-outflow environment of RY Tau
based on analytical solutions with the aim to reduce the relaxation time.
Methods. We used the analytical self-similar solution that we used to model the RY Tau microjet as initial conditions. In the closed
field line region of the magnetosphere, we reversed the direction of the flow and increased the accretion rate by increasing the density
and velocity. We also implemented the heating rate and adjusted it according to the velocity of the flow. The accretion disk was treated
as a boundary condition.
Results. The simulations show that the stellar jet and the accreting magnetosphere attain a steady state in only a few stellar rotations.
This confirms the robustness and stability of self-similar solutions. Additionally, two types of behavior were observed that are similar
to the behavior observed in RY Tau. Either the steady stellar outflow and magnetospheric inflow are separated by a low static force-
free region or the interaction between the stellar jet and the magnetospheric accretion creates episodic coronal mass ejections that
originate from the disk and bounce back onto the star.
Conclusions. The ratio of mass-loss rate to mass-accretion rate that coincides with the change in behavior observed in RY Tau lies
within the range of ratios that have been measured during the period in which the initial microjet was analyzed.

Key words. magnetohydrodynamics (MHD) – stars: jets – accretion, accretion disks – stars: low-mass – stars: winds, outflows –
stars: variables: T Tauri, Herbig Ae/Be

1. Introduction

Classical T Tauri stars (CTTS) are pre-main-sequence objects
that experience an active evolutionary stage with ongoing accre-
tion and outflow processes. A large fraction of CTTS have jets
or outflows, and more than 60% have stellar winds (Kwan et al.
2007). Jets are collimated outflows that may originate from the
star, from the surrounding accretion disk, or from the region
connecting the disk to the magnetosphere of the star. The cur-
rent relative consensus that has emerged suggests that the out-
flow probably has multicomponent sources. The real question is
which proportion of each ingredient is relevant and how it may
evolve with time.

One example that of interest for this study is the micro-
jet of RY Tau, which was first observed by Gómez de Castro
& Verdugo (2001, 2007). The authors suspected the presence
of a small-scale pure stellar jet because the UV emission
lines originate in a region that is too small to be produced
by a disk wind. Gómez de Castro & Verdugo (2007) concluded
from the UV density profile that the jet cannot be produced
by a magneto-centrifugally driven disk wind, but is rather of
stellar origin. Further observations (St-Onge & Bastien 2008;
Agra-Amboage et al. 2009) confirmed the presence of a micro

jet in this faint object. A more recent study involving a spec-
tral and photometric monitoring of RY Tau (Babina et al. 2016)
showed evidence of a disk wind perturbed by sporadic mag-
netospheric ejections. According to Calvet et al. (2004), RY
Tau is a CTTS, whose spectrum indicates that it is a G1.
It has a stellar radius of 2.9 ± 0.4 R� and a stellar mass of
2.0 ± 0.3 M�. In this study, we focus on the inner microjet and
ask whether most of this jet comes from the star or from the
magnetosphere.

Many models have been developed in order to explain the
angular momentum loss in CTTSs and how accretion is linked
to outflows. For instance, Matt & Pudritz (2005, 2008) suggested
that accretion processes feed stellar winds and have an impor-
tant role in angular momentum extraction, while the disk-locking
mechanism seems to fail, as shown by Romanova et al. (2011).

This has been confirmed in Sauty et al. (2011), where an ana-
lytical model of the microjet succeeded to reproduce the obser-
vations and the total mass loss rate extracted from the polar
coronal hole of the star. Using observational measurements of
the radius, mass, and period of the star, of the mass-loss rate,
the terminal velocity, and the radius of the jet, we have con-
strained the solution parameters using the self-similar approach
of Sauty & Tsinganos (1994).
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Much numerical effort has been expended to model out-
flowing structures that cause the star to spin down, in particu-
lar, on inner disk winds originating at the boundary of the disk
and the magnetosphere. This is the original idea of X-winds
(Shu et al. 1994), although fan-shaped winds are unlikely to
exist (Bardou & Heyvaerts 1996). The effort was extended to
conical winds (Romanova et al. 2009), to 3D simulations in
Romanova et al. (2011), or to a Rex-Wind (Zanni & Ferreira
2013). The structure studied by Zanni & Ferreira (2013) sug-
gests that magnetospheric ejections, similar to the coronal mass
ejections observed on the Sun, are efficient enough to extract a
relevant amount of angular momentum. The advantage of these
simulations is that they take the accretion disk structure and the
disk wind into account in a consistent way, together with the
magnetospheric accretion and ejection. However, all simulations
fail to take the inner stellar jet component into account because
they neglect any source of heating in the inner stellar corona.

Orlando et al. (2011) reported a similar magnetospheric
mass ejection triggered by flares. However, they considered
much lower mass-accretion rates of a few 10−9 M� yr−1 that fit
better Class III objects, such as weak-line T Tauri Stars (WTTS).

More recent 3D simulations of the interaction of the
disk and the magnetosphere with disk winds and magneto-
spheric ejections have been performed (Pantolmos & Matt 2017;
Pantolmos et al. 2020; Ireland et al. 2021), showing that the
disk-locking spins up the star. This spin-up can be compensated
only by a strong wind either from the star or the magnetosphere,
or from both locations.

Instead of using ad hoc magnetospheric configurations and
waiting for the relaxation time for the system to attain equilib-
rium, we take advantage of the existence of an analytical solution
for the stellar jet of RY Tau and use this solution as the ini-
tial condition for our simulations, both for the stellar jet and for
the magnetospheric accretion. This technique of using analytical
solutions relies on a method that has been developed in the past
to study the propagation of multicomponent jets, for instance, by
Matsakos et al. (2008, 2009, 2012).

In the magnetospheric accretion zone, we play a simple trick
using the reversibility of the velocity in steady MHD equations.
Thus we reverse the direction of the flow and increase the density
and the velocity such that we can play on the accretion rate for
a given initial mass loss. As the magnetosphere is magnetically
dominated, the density and velocity of the flow are less important
in the geometry than the magnetic field. As mentioned above,
other simulations have been performed by other groups such as
Romanova et al. (2009) and Zanni & Ferreira (2013), but they
emphasized the connection between the disk wind and the mag-
netospheric ejections. We instead focus on the effect of the stellar
jet on magnetospheric ejections.

One main drawback of our approach so far is that we do not
model the inside of the accretion disk with a fully consistent
disk wind. We are currently working on these improvements, but
the description of the interior of the disk requires implement-
ing resistivity. Nonetheless, in order to highlight some of the
basic features of the interaction of the stellar jet with the mag-
netospheric wind, it is sufficient to treat the disk as a boundary
condition. The disk is the equatorial source of mass and mag-
netic fluxes. Thus, we perform here new simulations that include
the stellar component, the magnetospheric accretion flux tubes,
and the central equatorial static dead zone in the magnetospheric
atmosphere of the star. The accretion disk is treated as an equa-
torial boundary condition.

In Sect. 2 we explain the simulation setup and how we built
on analytical solutions. Then we present two general classes of

solutions showing that we have mainly two types of behavior of
the magnetospheric wind in Sect. 3. We also discuss that these
two classes of solutions are independent of the simulation con-
ditions, except for the ratio of mass-accretion rate to mass-loss
rate. We compare our results in Sect. 4 to other simulations and
to observations of RY Tau. In Sect. 5 we conclude with the appli-
cation of our results to the dichotomic behavior of RY Tau.

2. Numerical conditions of the simulations

2.1. Analytical solution that was used as initial setup

We performed simulations with the PLUTO code developed
by Andrea Mignone and collaborators (see Mignone et al.
2007) in its version 4.2, with a Riemann solver following a
Lax–Friedrichs scheme (TVDLF). We satisfied the Courant–
Friedrichs–Levy (CFL) condition by using a CFL number of 0.4.
We used self-similar solutions developed by Sauty & Tsinganos
(1994) to build the initial setup and the boundary conditions, as
explained below.

Sauty et al. (2011) modeled the RY Tau microjet using a
semianalytical solution derived from the meridional self-similar
approach of Sauty & Tsinganos (1994). These analytical solu-
tions were developed for jets from low-mass accreting T Tauri
stars (TTS). They are exact solutions of the steady ideal MHD
equations for the mass density, ρ, the pressure P, the velocity
field V, and the magnetic field B of one fluid. These equations
describe the motion of the protons in a highly ionized plasma.

The authors took the stellar parameters of RY Tau into
account, namely the mass-loss rate, the stellar radius, and
the mass: Ṁloss = 10−8.5 M� yr−1 (Gómez de Castro & Verdugo
2001), R? = 2.4 R�, and M∗ = 1.63 M� (Hartigan et al. 1995),
respectively. Calvet et al. (2004) measured slightly different val-
ues with a stellar mass between 1.7 and 2.3 M�. This does not
change our results, which can easily be scaled with mass. The
velocity scales as the square root of the mass, which means that
varying the mass from 1.63 to 2.3 M� increases the velocity, the
mass flux, and the magnetic field strength by 19% for a constant
density. Similarly, the observed mass-loss rate that was used to
fix the boundary mass density on the star can be rescaled to
be adapted to model other asymptotic mass-loss rates. We took
advantage of the stability of the first analytical solution given in
Sauty et al. (2011) to use it as initial conditions for the simula-
tions. From the observational constraints, we deduced an analyt-
ical solution with a typical stellar dipolar magnetic field of about
600 G, which is reasonable for a T Tauri star. The UV electron
density observed at various distances fits the obtained solution
within the error bars.

The analytical solution also gives as an output an equatorial
rotational velocity of 8.6 km s−1, or a period of roughly 14.2 days
(Sauty et al. 2011). This value remains within the lower limit
of measured velocities for RY Tau in Bouvier et al. (1993).
However, this may be rather low for actual values of v sin i
around 52 km s−1, which correspond to a period about 3 days
when the inclination of the system of 66◦ is taken into account;
see Petrov et al. (1999). However, Petrov et al. (2021) found a
time variability in Hα and NaID2 lines with a period of about
22 days, which is not related to the rotational period of the star.
Nevertheless, the obtained solution reproduces the observational
constraints on the micro jet seen in UV spectral lines derived
by Gómez de Castro & Verdugo (2001, 2007) fairly well, and
those derived in the optical by St-Onge & Bastien (2008) and
Agra-Amboage et al. (2009). The dynamics of the outflow is not
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affected strongly by the rotation of the star because the stellar jet
is pressure driven.

Thus, the initial conditions rely on the RY Tau micro jet
model presented in Sauty et al. (2011). The initial conditions
of our simulations are given in Fig. 1. There are four regions,
namely the stellar jet component, the magnetospheric accre-
tion region, the dead zone, and the disk wind. Formally, the
meridional self-similar model is only valid for the star-driven
jet (region 1). In the closed field-line region (region 2), the flow
given by the analytical solution starts from the star and assumes a
sink of material at the equatorial boundary. This solution exhibits
a deceleration of the outflow in this region. Because the MHD
equations are reversible, we can change the direction of the flow
in the solution and still satisfy these equations. By doing so, we
obtain an inflow in the closed field-line region that is accelerated
from the equatorial plane to the star and simulates the magneto-
spheric accretion flow.

The accretion region corresponds to the actual accretion
columns. However, the system being axisymmetric, it has the
shape of a helmet streamer directed toward the star. A first set
of simulations was conducted allowing the disk to reach the star.
We ran a second set of simulations that reproduced accretion
disks with a truncation radius. In this set, we created a static
dead zone (region 3) in which the magnetic field of the star was
strong enough to limit the inner radius of the disk.

Additionally, the analytical solution provides a surround-
ing disk wind emerging from an infinitely thin accretion disk
(region 4). Although this wind may be weak and have a negli-
gible impact on the dynamics, it is an important feature of the
simulation. The disk wind rotation profile is not Keplerian in the
analytical solution. However, we performed two types of sim-
ulations, one in which we kept the original analytical rotation
profile, and a second in which we imposed a Keplerian profile
for the rotation of the disk and the disk wind. We discuss below
that this Keplerian profile has qualitatively no influence on the
dynamics of the solutions.

The most complete simulations included the four different
initial regions we just discussed. In region 1 of Fig. 1, the outflow
from the star emerges from the polar coronal hole. The stellar jet
component is entirely given by the analytical solution, including
heating, without any change.

Region 2 of Fig. 1 extends along the equatorial plane from
0.03 AU to 0.09 AU. It coincides with the magnetospheric accre-
tion zone, in which the density is higher. In this region, we
imposed a reversal of the sign of the poloidal velocity, Vp, of
the analytical solution to induce accretion, as mentioned above.
We have an accelerated transonic inflow from the disk to the
star, which remains subAlfvénic everywhere in the closed field-
line region, however. This means that we can start close from an
equilibrium state, even in the initial closed field-line region. Fur-
thermore, the azimuthal component of the magnetic field must
also reverse for consistency with the isorotation law. This rever-
sal of the azimuthal magnetic field is required because we do not
wish to reverse the azimuthal velocity on the star. The directions
of stellar and the disk rotation should be consistent. In region 2,
we can uniformly multiply the velocity by a given fixed factor.
The geometry of the flow is dominated by magnetic forces. It is
not affected by changes in the dynamics. The same is true for the
mass density, which we can uniformly multiply by a chosen fac-
tor. Thus, we can control and increase the initial magnetospheric
accretion rate, consistently with observations.

In summary, we multiplied the analytical density and veloc-
ity in the closed field-line accreting region by some given factors
(negative for the velocity), and we reversed the toroidal mag-

Fig. 1. Illustration of the initial conditions. The color scale shows the
logarithm of the density, the arrows show the velocity, and the solid
white lines represent the magnetic field. From the polar axis (verti-
cal axis) to the equatorial plane (horizontal axis), three different initial
regions lie above the stellar photosphere and one region lies outside
of the magnetosphere. The first region is an outflow from the star that
emerges from the polar coronal hole. It is surrounded by the second
region, in which the flow velocity has been reversed and the density
enhanced to induce magnetospheric accretion. The second region starts
on the equatorial plane from 0.03 AU to 0.09 AU. Inside this region lies
a third region, corresponding to a dead or static zone without flow. It
is located above the equatorial plane between the radius of the star at
0.011 AU and the inner disk radius 0.03 AU. The fourth region is the
disk wind. It starts on the right of the last open field-line connected to
the magnetosphere at $(π/2) = 0.09 AU on the equatorial plane (solid
white line) and extends above the accretion disk.

netic field while keeping the analytical values of the pressure,
the poloidal magnetic field, and the toroidal velocity. These ini-
tial values are also the boundary conditions imposed on the equa-
torial plane where the flow connects to the disk.

The static region or dead zone (region 3) starts along the
equatorial plane, from above the stellar surface at 0.01 AU up
to the inner disk radius at 0.03 AU. This static dead zone has
nothing to do with the so-called dead zone in the inner part of
the accretion disk at large distances. This is more like the dead
zone inside helmet streamers in the solar corona. In this dead
zone, the poloidal velocity of the flow is zero in the initial state.
The fluid is in solid rotation with the constant rotation frequency
of the star at a given latitude. To be consistent with the isoro-
tation law, the azimuthal component of the magnetic field must
also be set to zero in this region, because, being static, there is
no angular momentum transport inside it.

Region 4 is the disk wind. It starts at the right end of the
magnetosphere at 0.09 AU along the equatorial plane. In this
region, we either initially set the rotational velocity to the analyt-
ical value, or we replaced it by a Keplerian profile in the entire
region, depending on the simulation. This basically amounts to
saying that a disk wind emerges from the infinitely thin equato-
rial disk, but its density remains weak compared to the density
in the accreting magnetosphere and compared to the stellar jet
density.

2.2. Relaxation method and mapping the heating

The analytical solution corresponds to a given map of the heat
rate deposit along the flow. In the comoving frame and in steady
state, this rate is given by

qAn = ρAnVp,An ·

[
∇

(
Γ

Γ − 1
PAn

ρAn

)
−
∇PAn

ρAn

]
, (1)
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Table 1. Configuration of the selected simulations.

Simulation ID V ρ Dead Keplerian r0 r1 Number of grids
factor factor zone? rotation? in AU in AU in radial direction

Case A −1.0 1.0 No No 0.016 0.020 2
Case B −1.5 1.5 No No 0.016 0.020 2
Case C −1.5 5.0 No No 0.016 0.020 2
Case D −2.0 10.0 No No 0.016 0.020 2
Case C.1 −1.5 5.0 Yes Yes 0.016 0.020 2
Case D.1 −2.0 10.0 Yes Yes 0.016 0.020 2
Case C.2 −1.5 5.0 Yes Yes 0.012 0.018 3
Case D.2 −2.0 10.0 Yes Yes 0.012 0.018 3

Notes. The simulations are identified in the first column, followed by the initial multiplying factors imposed for velocity (V) and density (ρ) with
respect to the analytical solution in region 2 of Fig. 1. Some simulations include a dead zone (Col. 4) and a Keplerian rotating disk (Col. 5).
Columns 6 and 7 define the limits of the fixed zone. Depending on the starting radius, a different number of adjacent grids has been used in the
radial direction (last column).

where the subscript An refers to the values of the analytical solu-
tion. The total heating rate, q, corresponds to the heating rate, H,
minus the cooling rate, Λ. P is the pressure, ρ is the density, and
Vp is the poloidal velocity. Γ is the adiabatic index, which is 5/3
for a monoatomic gas.

As the equation of energy is written in the comoving frame,
changes in the direction and magnitude of the poloidal velocity
compared to the analytical solution should be taken into account
in the heating rate. Thus, the total heating rate q in the simulation
box was calculated from the following expression:

q = qAn
Vp · Vp,An

V2
p,An

· (2)

The time-dependent energy equation is given by

∂P
∂t

+ V · ∇P + ΓP∇ · V = q(Γ − 1). (3)

In order to solve the energy equation, PLUTO uses a fractional
step formalism with an operator splitting. The partial derivative
of the pressure is split into two terms,

∂P
∂t

=
∂P
∂t

∣∣∣∣∣
heat

+
∂P
∂t

∣∣∣∣∣
MHD

. (4)

The first term in the above equation is given by

∂P
∂t

∣∣∣∣∣
heat

= q(Γ − 1). (5)

Then the PLUTO code calculates the second term using the
MHD module without heating (see PLUTO userguide.pdf,
Sects. 6.2 and 9.1),

∂P
∂t

∣∣∣∣∣
MHD

= −V · ∇P − ΓP∇ · V. (6)

Adding Eq. (5) and (6), we solve Eq. (3) and obtain the total
pressure.

The method is a relaxation method for a given map of the
heating, which is just adjusted to the velocity pattern, consider-
ing a quasi-equilibrium. Thus, it is not surprising that in a few
stellar rotations only, the simulation reaches its final state, as dis-
cussed below.

2.3. Boundary conditions

PLUTO was used in its static grid version and in spherical coor-
dinates. Along the polar axis, we used axisymmetric conditions,
which correspond to the symmetry conditions there (no reflec-
tion, no perpendicular gradients, etc.).

The Alfvén surface of the analytical solution is a sphere of
radius rAlf = 22.4 r� = 0.104 AU (Sauty et al. 2011). The radius
of the star is r? = 0.011 AU. We started the simulations at ro
just above r?. There is a small zone between the polar axis and
the last open fieldline and from ro up to a radius r1, below two
stellar radii, in which gradients are very sharp and difficult to cal-
culate. In this zone, physical quantities were kept constant equal
to their initial values in order to avoid too strong gradient cal-
culations, which are time consuming. From now on, this zone is
called the “fixed zone”. We explored various sizes of this zone
(e.g., Table 1). We followed the same procedure as described in
Bogovalov & Tsinganos (2005) and Gracia et al. (2005), but in
a very restricted area. If this zone is too small, the computation
usually stops because the time step becomes too small. The ini-
tial acceleration of the stellar jet is extremely stable around the
polar axis and remains almost unchanged when the size of this
zone is changed.

The boundary conditions for the density, the pressure, the
poloidal velocity and the toroidal magnetic field were set free, at
ro in the closed fieldline region, between the last open field-line
and the equator. The toroidal velocity and the poloidal magnetic
field were fixed and equal to their initial values, however. At the
boundaries of the dead zone, we fixed solid-rotation conditions,
which implies that the toroidal magnetic field value is zero (see
Sect. 2.1).

Along the equatorial plane, the boundary conditions were
kept fixed and given by the initial setup. The rotation of the disk
outside the magnetospheric region (equatorial plane of region 4
in Fig. 1) was either fixed by the analytical solution values or
corresponded to a Keplerian velocity.

2.4. Numerical setup

We assumed a planar symmetry with respect to the equatorial
plane, and we used a grid in colatitude θ of 128 points between
θ = 1/128 rad and θ = π/2 − 1/128 rad. In the simulations, the
accretion disk therefore is a thin equatorial layer with an opening
angle θdisk = 1/128 rad.

First, we performed simulations with two grids (see the last
column of Table 1). The first grid has 512 points between ro =
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0.016 AU and r = 0.18 AU. The second grid is a stretched loga-
rithmic grid of 256 points between r = 0.18 AU and r = 25 AU.

Second, we performed simulations with higher spatial reso-
lution in the radial direction r. There, we used three consecutive
adjacent grids (see the last column of Table 1). We still had a
uniform grid of 512 points, starting at r = 0.02 AU and finishing
r = 0.18 AU. We kept the stretched grid of 256 points between
r = 0.18 AU and r = 25 AU. We introduced an additional uni-
form grid of 64 points between r0 = 0.012 AU and r = 0.02 AU.

The PLUTO code uses a unique cell in the azimuthal direc-
tion, with periodic conditions due to axisymmetry. We used two
different intervals for the fixed zone. In the lowest-resolution
simulations, we used [r0, r1] = [0.016, 0.020] AU. In the two
last simulations with higher resolution, we brought the fixed
zone closer to the star by using [r0, r1] = [0.012, 0.018] AU (see
Cols. 6 and 7 of Table 1). Changing the number of grids and/or
the radius of the base and/or the size of the fixed zone [r0, r1]
modifies the computational time and the relaxation time. The
higher the resolution, the slower the time step.

The PLUTO code uses dimensionless quantities. We normal-
ized all quantities by the values given in Sauty et al. (2011). The
normalization factor for the velocity was VPLUTO = 111 km s−1.
This is the Alfvén velocity, VAlf , along the polar axis of the
analytical solution scaled to RY Tau. The normalization fac-
tor for the radius was rPLUTO = rAlf , which implies tPLUTO =
rPLUTO/VPLUTO ' 1.7 days. Similarly, the normalization factor
for the mass density was ρPLUTO = 2.48 × 10−15 g cm−3.

We performed several simulations to make a parametric
study. We present a selection of the most representative ones in
Table 1.

A first series of simulations (cases A, B, C, and D) allowed us
to see the effect of increasing the mass-accretion rate. These sim-
ulations do not include the Keplerian rotation profile on the disk.
Thus, we kept the analytical disk wind solution in region 4 of
Fig. 1. They started at ro = 0.016 AU, and the dead zone was not
included. The magnetospheric accretion region filled the closed
field-line region, and so the inner part of the disk reached the star
through a boundary layer. However, in our axisymmetric simu-
lations, the dead zone is completely embedded in the optically
thick magnetospheric accretion zone. Thus, an external observer
would not be able to conclude whether there is a dead zone or
not.

A second series of simulations (cases C.1, D.1, C.2, and D.2)
included the dead zone and the Keplerian rotation. Cases C.1 and
D.1 started at ro = 0.016 AU with two radial grids and a fixed
zone up to r1 = 0.020 AU for two different mass-accretion rates.
Cases C.2 and D.2 were improved simulations starting closer
to the star at ro = 0.012 AU and with a reduced fixed zone
up to r1 = 0.018 AU. This implies that we also increased the
resolution by using three radial grids. In this second series of
simulations, the initial truncation radius at which the dead zone
(region 3) stops was equal to 0.03 AU. The relaxation state was
reached before 30 PLUTO time units. The static dead zone was
conserved after a compression leading to a truncation radius of
nearly 0.022 AU for cases C.1 and C.2, and less than 0.02 AU for
cases D.1 and D.2.

Our simulations were also performed with an increased res-
olution and larger grid scales compared to previous works of
other authors. For comparison, Ireland et al. (2021) had 256
points in colatitude between [0, π], equivalent to our grid.
They only had 320 points on a logarithmic grid from 2 solar
radii (∼0.02 AU) and 101 solar radii (∼0.47 AU), however.
Romanova et al. (2009) had typical grids of 31 points in colat-
itude between [0, π/2]. The grids in the radial direction had

51 points between 2 and 32 stellar radii for simulations in the
conical regime. For their typical CTTS, this is between ∼0.019
AU and ∼0.30 AU. The grids had 85 points between 2 and 96
stellar radii (∼0.018 AU to ∼0.89 AU) for simulations in the pro-
peller regime. Zanni & Ferreira (2013) used a grid of 100 points
in colatitude between [0, π/2], and 214 stretched points in the
radial direction between one and 28.6 stellar radii (∼0.009 AU
to ∼0.27 AU).

3. Two classes of solutions

3.1. Typology of the solutions

The different setups we present here show how our self-similar
analytical solution can be used to model, in presence of a stel-
lar jet, an accreting magnetosphere with different mass-accretion
fluxes by varying the initial accretion velocities and densities.
We present the evolution of the solution typologies as a func-
tion of the multiplying factors of ρ and V in the accreting
magnetosphere.

Velocity and density cannot be increased arbitrarily in the
simulations. In other words, there is a correspondence between
the combination of multiplying factors for velocity and density.
If these two parameters are not increased in a specific way, the
simulation does not reach a stable state.

For the series of cases A, B, C, and D, we plot the density
maps at PLUTO time '100 in Fig. 2. In all the solutions, the
inner stellar jet around the polar axis is conserved. The mass loss
and the extracted angular momentum from the star remain close
to the original values of the analytical solution. This confirms
the stability of self-similar solutions regardless of the situation
around the equatorial plane, as reported in Sauty et al. (2017)
and Todorov et al. (2016).

Our results highlight two types of simulations. We observe
a first type with lower mass-accretion rates (cases A, B, and C)
that reach steady state without episodic magnetospheric flows.
A second type of simulations appears for higher mass-accretion
rates (case D), in which the flow reaches a quasi-steady state with
episodic magnetospheric mass ejection. Cases A and B show a
small plume of enhanced density, however, that stays at the fron-
tier between the stellar jet and the magnetospheric accretion.

For simulations with a dead zone, we found the same transi-
tion between cases C.1 (Fig. 3) and D.1 (Fig. 4). These figures
show the evolution of the two types of solutions. The first (case
C.1) is completely steady, while the second (case D.1) is quasi-
steady. Increasing the resolution of the simulations and starting
at a lower radius does not change the results. We always end up
with two typical classes of solutions represented by C.2 and D.2,
with similar characteristics to cases C.1 and D.1, respectively.
Case C.2 is presented in Fig. 5 and case D.2 in Fig. 6. The two
solution types reach their final state after 25 PLUTO time units,
which means after three rotations of the central star.

3.2. Steady solutions without magnetospheric ejection

This first type of solutions (cases A, B, C, C.1, and C.2) came as
a surprise as the solutions do not have magnetospheric ejecta.
Previous simulations with a magnetic configuration like this
always show such magnetospheric mass ejection, for instance,
in Romanova et al. (2009) or Zanni & Ferreira (2013). Even the
propeller regime versus conical wind regime observed in the
simulations of Ustyugova et al. (2006) is completely different
from our study. There the conical wind of magnetospheric origin
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(a) (b)

(c) (d)

Fig. 2. Density maps for simulations A, B, C, and D. The plots represent the logarithmic density in PLUTO units (ρPLUTO = 2.48 × 10−15 g cm−3).
The velocity vectors are shown through the black arrows, and the magnetic field lines are represented by the solid white lines. The distances
on the vertical (z) and horizontal ($) axis are represented in astronomical units. All the plots refer to PLUTO time = 100, which corresponds to
approximately 12 stellar rotations.

(a) (b)

(c) (d)

Fig. 3. Logarithmic density maps in PLUTO units (ρPLUTO = 2.48 × 10−15 g cm−3; left) and logarithmic mass flux maps, also in PLUTO units
(ρVPLUTO = 2.75× 10−8 g cm−2 s−1; right). We plot simulation case C.1 at PLUTO time = 50 and 100. Case C.1 includes a dead zone. The numbers
are identical at the two different times. The velocity vectors are shown as black arrows, and the magnetic field lines are represented by the solid
white lines. The distances on the vertical (z) and horizontal ($) axis are represented in astronomical units.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. Logarithmic density maps in PLUTO units (ρPLUTO = 2.48 × 10−15 g cm−3; left) and logarithmic mass flux maps, also in PLUTO units
(ρVPLUTO = 2.75 × 10−8 g cm−2 s−1; right). We plot simulation case D.1 at PLUTO time = 30, 50, 75, and 100. The velocity vectors are shown as
black arrows, and the magnetic field lines are represented by the solid white lines. The distances on the vertical (z) and horizontal ($) axis are
represented in astronomical units.
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(a) (b)

Fig. 5. Simulation case C.2, representative of the first solution type. Panel a shows the logarithmic density map in PLUTO units (ρPLUTO =
2.48 × 10−15 g cm−3) and panel b shows the logarithmic mass flux map, also in PLUTO units (ρVPLUTO = 2.75 × 10−8 g cm−2 s−1). The velocity
vectors are shown as black arrows, and the magnetic field lines are represented by the solid white lines. The distances on the vertical (z) and
horizontal ($) axis are represented in astronomical units. The plot refers to PLUTO time = 30, which corresponds to 3.6 stellar rotations.

(a) (b)

Fig. 6. Simulation case D.2, which is representative of the second solution type. Panel a shows the logarithmic density map in PLUTO units
(ρPLUTO = 2.48 × 10−15 g cm−3) and panel b the logarithmic mass flux map, also in PLUTO units (ρVPLUTO = 2.75 × 10−8 g cm−2 s−1). The velocity
vectors are shown as black arrows, and the magnetic field lines are represented by the solid white lines. The distances on the vertical (z) and
horizontal ($) axis are represented in astronomical units. The plot refers to PLUTO time = 30, which corresponds to 3.6 stellar rotations.

is always present. The fast axial jet appears only if the star is a
fast rotator.

Simulation C.2 reaches a global fully steady configuration,
in which a low-density channel separates the outflowing from
the inflowing regions. The stellar jet region in C.2 is even
closer to the analytical solution than for D.2 when we compare
Figs. 5a and 6a with the initial setup in Fig. 1. The initial con-
ditions are identical for solutions C.2 and D.2 in the outflowing
region, and they have the same size.

Thus, by including a realistic inner stellar jet, we see that it is
easily possible to completely suppress the magnetospheric ejec-
tion. Instead, a low-density region forms between the jet zone
and the accretion zone. Because the density is so low in this inter-
mediate zone, the magnetic field dominates. This region is there-
fore force free. Although this holds for jets from young stars, the
result may have other applications to relativistic jets with two
components, the inner spine jet and the outer disk wind. A con-
figuration with an intermediate force free zone would help sta-
bilize the inner leptonic jet from the black hole, embedded in
the hadronic disk wind in the two stream models proposed by
Sol et al. (1989).

Interestingly, the remarkable steadiness of the C-type solu-
tions (C, C.1, and C.2) may be related to this low-density, static,
force-free region. In this region, the magnetic pressure domi-

nates the plasma pressure and leads to the formation of a low-
density channel without evidence of outflowing material.

3.3. Quasi-steady solutions with magnetospheric ejections

Case D.2 is representative of the second type of simulations, as
shown in Fig. 6. It shows a more complex but expected con-
figuration. The inner stellar jet is very similar to the original
analytical solution, but it is slightly more open with a lower
mass-loss rate. Outside, the disk wind is close to the initial solu-
tion. In addition, magnetospheric ejections are released by recon-
nection of the magnetic field lines, boosted by the increase in
the accretion rate. This type of solution resembles the time-
dependent MHD simulations performed by various authors, for
example, Zanni & Ferreira (2013) and Romanova et al. (2009).
The approach used in our work emphasizes the non-negligible role
of the inner stellar jet that stabilizes the magnetospheric ejection.

Even though the mass seems to come from the star, the mate-
rial of the magnetospheric ejection eventually comes from the
disk. The ejected mass from the disk bounces back onto the star,
where the channel reduces the size. This magnetospheric ejec-
tion would be observationally indistinguishable from an X-wind
or an REX-wind. This release of material into the interstellar
medium is accompanied by consecutive disconnections and
reconnections of the magnetic fields. Reconnection relies here
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(a) (b)

Fig. 7. Density maps for a simulation with a very narrow initial accretion zone. Panel a shows the initial setup (t = 0), and panel b corresponds to
t = 20 Pluto time units, i.e., 2.4 stellar rotations. The velocity vectors are shown as black arrows, and the magnetic field lines are represented by
the solid white lines. The distances on the vertical (z) and horizontal ($) axis are represented in astronomical units.

Table 2. Mass fluxes and velocities for the selected simulations.

Simulation ID log Ṁloss log Ṁacc Ṁloss/Ṁacc Vacc Vproj
(M� yr−1) ( M� yr−1) (km s−1) (km s−1)

Case A −8.6 −8.4 0.71 95 138
Case B −8.6 −8.3 0.45 151 138
Case C −8.6 −7.7 0.12 312 137
Case C.1 −8.6 −7.9 0.22 289 143
Case C.2 −8.6 −7.7 0.13 295 163
Case D −8.6 −7.3 0.05 225 138
Case D.1 −8.7 −7.8 0.11 226 143
Case D.2 −8.6 −7.3 0.05 215 158

Notes. The simulations are identified in the first column. The next columns list the averaged mass-loss rates (Ṁloss) and mass-accretion rates (Ṁacc)
in logarithmic scale, as well as the maximum accretion velocities (Vacc) and the averaged terminal velocities of the jet projected along the line of
sight (Vproj).

on numerical diffusion. However, we verified that the timescale
and the location of the reconnection events do not depend on the
spatial resolution of the simulation. We are therefore confident
about the physics of these events. We observed similar effects in
previous simulations (e.g., Matsakos et al. 2012).

3.4. Varying the disk rotation profile

We performed several simulations with or without a Keplerian
profile. In cases C.1, D.1, C.2, and D.2, we imposed Keplerian
rotation on the equatorial plane from the last closed field-line
outward (in the initial state, at r = 0.0875 AU), as well as in disk
wind region 4. Conversely, cases A, B, C, and D maintained the
initial rotation profile of the analytical solution.

By comparing case C, shown in Fig. 2c, to case C.1, shown
in Fig. 3c, and case D, shown in Fig. 2d, to case D.1, shown
in Fig. 4g, we clearly see that the Keplerian disk wind profile
does not affect the global structure. There might even be a slight
stabilization effect of the stellar outflow because the Keplerian
rotation profile produces an increase in the magnetocentrifugal
launching. The disk wind density is slightly higher in this case,
acting as a wall to maintain the stellar solution.

We also ran similar simulations, imposing the Keplerian pro-
file on the equatorial boundary alone, but keeping the analytical
solution in the remaining box in the initial state. The overall solu-
tions are again similar.

Although we expected that the rotation discontinuity along
the equatorial plane between the accretion disk and the magne-

tosphere would create strong instabilities, the code handled the
sharp shear in rotational velocity quite well. The discontinuity
smoothly diluted in the outflow.

3.5. Varying the size of the accretion zone
and the dead zone

We showed that the inner dead zone does not significantly affect
the overall behavior of the ejected mass in the stellar jet or in the
magnetospheric region. The dead zone plays a quantitative role
in controlling, by its size, the amount of accreted mass and the
ejected magnetospheric mass-loss rate. It does not qualitatively
change the fact that we still have two different types of simu-
lations (C and D). For reasonable initial sizes of the dead zone,
we observed that the system always stabilized with the same size
of the final dead zone. This final size corresponds to the region
where the equilibrium is force free.

We also performed other simulations with much larger dead
zones, inducing a very thin accretion layer. This usually led to a
disruption of the accretion column, and the entire disk material
goes into the jet. In principle, it could correspond to a WTTS
where accretion onto the star has supposedly stopped. An exam-
ple is given in Fig. 7. It shows at t = 0, Fig. 7a, a very thin
accretion region where ρ is multiplied by 5.0 and the velocity
by −1.5, as in cases C, C.1, and C.2. At t = 20 Pluto time units
or 2.4 stellar rotations, Fig. 7b, an empty zone forms and the
simulation is completely steady. The magnetospheric accretion
has disappeared completely as well.
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We do not assume that this is an exact simulation for a
WTTS. It is more like a toy model, but it clearly indicates that
we can perform stable and steady simulations where the stellar
accretion stops, but the disk wind remains as well as the stellar
jet. Observationally, such a configuration would have a very faint
micro jet, but no large-scale powerful outflow. A full treatment
of the accretion disk is needed in order to confirm this results.
Here the disk is simply a boundary along the equatorial plane.

3.6. Terminal jet and maximum accretion velocities

To characterize the inflow and outflow dynamics, we calcu-
lated the maximum accretion velocity inside the closed mag-
netosphere and the terminal velocity of the stellar jet projected
along the line of sight. The results are summarized in the two
last columns in Table 2.

The terminal velocities of the stellar jet were calculated by
averaging along a vertical line between z = 2.2 and z = 2.75 AU
and at the cylindrical radius of $ ≈ 0.8 AU, which corresponds
to the radius of the stellar jet. Then, taking for RY Tau an incli-
nation of i = 65◦ (Long et al. 2019), we obtained values between
137 km s−1 and 163 km s−1 for the projected velocities along the
line of sight. This is consistent with observations. All these val-
ues are so close to each other that it would be impossible to
observationally separate the different cases because velocities
are usually measured with an uncertainty between 10 and 20%.

The projected velocities of cases C.2 and D.2, 163 km s−1

and 158 km s−1, correspond to an averaged terminal velocity of
the jet of 385 km s−1 and 374 km s−1, respectively. These are
the simulations with the highest resolution. These velocities
are close to the value of the initial analytical solution, which
has a terminal velocity along the polar axis of 393 km s−1 (see
Sauty et al. 2011).

Simulations C, C.1, and C.2 show higher maximum accre-
tion velocities than simulations D, D.1, and D.2, see Table 2. For
instance, in case C.2, we measure a maximum accretion veloc-
ity of 295 km s−1, while in case D.2, the maximum accretion
velocity is 215 km s−1. This result may sound counterintuitive.
One possible explanation is the following. In case C.2, the mass-
accretion flux is higher between 0.02 and 0.05 AU on the equa-
torial plane, as shown in Fig. 5b in green. In case D.2, the mass
accretion flux is spread over a wider range of radii between 0.02
and 0.07 AU on the equatorial plane, shown in Fig. 6b in green.
As a consequence, in case D.2, the mass with higher veloci-
ties coming from the disk between 0.06 and 0.08 AU does not
reach the star, but feeds the magnetospheric ejection, which may
explain the lower maximum accretion velocity we finally obtain.

3.7. Mass accretion and mass-loss rates

The mass fluxes were calculated for each PLUTO time in two
regions onto a spherical shell of radius 0.02 AU. We calcu-
lated the mass-loss rate, Ṁloss, in the stellar jet region (region 1
of Fig. 1) using the spherical shell MF Jet in Fig. 8 and the
mass-accretion rate, Ṁacc, in the closed magnetospheric region
(region 2 of Fig. 1) using the spherical shell MF Mag in Fig. 8.

To derive the mass fluxes, we integrated ρVp across the open
magnetic field lines of the stellar jet region for Ṁloss and across
the foot points of the closed magnetospheric flux tubes for Ṁacc.
Table 2 gives the averaged mass-accretion rate, the mass-loss
rate, the ratio Ṁloss/Ṁacc, the maximum of the accretion velocity,
and the averaged terminal velocity of the jet for the eight selected
simulations.

Fig. 8. Illustration of the regions in which the mass fluxes were mea-
sured. We calculate the jet mass-loss rate, MF Jet, along the blue line,
where the velocity field is directed outward, and the magnetospheric
mass-accretion rate, MF Mag, along the red line, where the velocity
field is directed inward. The star is represented in yellow. The gray area
extends from the surface of the star to ro, where integration starts. The
magnetospheric region is delimited by the closed magnetic fieldlines
(solid black lines), at the initial stage of the MHD simulations.

We plot the measured mass fluxes with time for cases A, B,
C, D, C.1, and D.1 in Fig. 9 and for the two cases C.2 and D.2
in Fig. 10. All plots extend from PLUTO time 30–100. Basi-
cally, all simulations have very similar constant stellar mass-
loss rates. This figure confirms the steadiness of cases C, C.1
and C.2. Cases D, D.1, and D.2 have a slightly higher vari-
ation in the mass-loss rates. When Case D.2 is taken as an
example, the stellar mass-loss rate, Ṁloss, varies from 2.69 ×
10−9 to 2.75 × 10−9 M� yr−1, however, which is a variation
of less than 2%, which is negligible. The averaged mass-loss
rate of all our simulations is very close to the value of the
analytical solution, 10−8.5 = 3.16 × 10−9 M� yr−1, taken from
Gómez de Castro & Verdugo (2001).

Cases A and B are not relevant for the mass-accretion rates
because they are so low that the ratio of mass-loss rate to mass-
accretion rate is unrealistic. Mass-accretion rates are constant in
cases C, C.1, and C.2. The value for C.1 is slightly lower than
the value for C because the dead zone suppresses part of the
accretion onto the star. The difference in accretion rate between
case C.1 and case C.2 is related to the higher resolution of the
second case. The averaged values of the mass-accretion rates of
cases D, D.1, and D.2 follow the same trend. The time-averaged
mass-accretion rates are 10−7.68 = 2.1 × 10−8 M� yr−1 for C.2
and 10−7.27 = 5.3 × 10−8 M� yr−1 for D.2, in agreement with the
typical range of values found for RY Tau (Hartigan et al. 1995;
Calvet et al. 2004; Mendigutía et al. 2011; Costigan et al. 2014).
In any case, the differences in the averaged mass-accretion rates
of simulations C, C.1, C.2, D, D.1, and D.2 are well below the
observational precision.

We note that cases D, D.1 and D.2 show stronger variation
of the mass accretion rate than cases A, B, C, C.1, and C.2
because of the magnetospheric ejection. This is precisely the
variation in the mass-accretion rate onto the star that can help
us to estimate the mass loss in the magnetospheric ejection. In
case D, the mass-accretion rate, Ṁacc, varies from 4.4 × 10−8 to
5.6×10−8 M� yr−1, which means a variation of 27%. In case D.1,
it varies from 1.26×10−8 to 2.5×10−8 M� yr−1, which represents
a variation of 98%. In case D.2, the mass-accretion rate onto the
star, Ṁacc, varies from 5.01×10−8 to 6.30×10−8 M� yr−1, which
means a variation of 26%.

Because we fixed the boundaries on the equatorial plane, the
equatorial mass-accretion flux from the disk remains constant.
Because the mass has to go somewhere, the difference between
the minimum and the maximum of the mass accretion rate onto
the star corresponds to the mass-loss rate of the magnetospheric
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Case A Case B Case C Case D Case C.1 Case D.1

Fig. 9. Logarithmic mass flux values measured in the stellar jet and accreting magnetospheric regions for cases A, B, C, D, C.1, and D.1 between
PLUTO time 30 and 100, which means between 3.6 and 12 stellar rotations. The vertical blue lines correspond to PLUTO times 50, 75, and 100
used for the plots of case D.1 in Fig. 4.

ejection. The magnetospheric mass-loss rate of case D peaks at
1.19 × 10−8 M� yr−1, while the average stellar mass-loss rate is
around 2.7 × 10−9 M� yr−1. For case D.1, the equivalent mag-
netospheric mass-loss rate peaks at 1.23 × 10−8 M� yr−1, while
the average stellar mass-loss rate is about 1.8 × 10−9 M� yr−1.
For case D.2, this magnetospheric mass-loss rate peaks at about
1.30 × 10−8 M� yr−1, which is again roughly four times the stel-
lar mass-loss rate. However, in all cases, the magnetospheric
mass-loss rate is strongly variable. In total, the episodic magne-
tospheric ejection mass is therefore comparable in magnitude to
the continuous stellar mass-loss rate. This means that the vari-
ation may not be observationally detectable, considering that
we measure the total mass-loss rate, the stellar component, and
the magnetospheric component, and mass-loss rates are usually
determined within a factor of about 2.

Although the difference between the total mass-loss rate does
not vary by more than a factor of 2 on average, the ejected mass
from the magnetosphere in cases D, D.1, and D.2 is high enough
to significantly clear the environment of the star and decrease
the circumstellar extinction. This fits the scenario proposed by
Petrov et al. (2019) to explain the two states of RY Tau. Case D.2
would correspond to the active state with an enhanced outflow,
as we explain in Sect. 4.2.

4. Discussion

4.1. Comparison with other simulations

We performed simulations of the close environment of RY Tau
with initial conditions corresponding to the analytical solution
of Sauty et al. (2011). We started by including a magnetospheric
accretion region alone, increasing the mass-accretion rate. Then,
the simulation set up was improved by the inclusion of a dead

C.2
D.2

Fig. 10. Logarithmic mass flux values measured in the stellar jet and
accreting magnetospheric regions for cases C.2 (dashed line) and D.2
(solid line) between PLUTO time 30 and 100 (3.6 and 12 stellar rota-
tions, respectively).

zone and a Keplerian rotation profile in the disk. Finally, we
increased the numerical resolution.

We reached a quasi-steady state within 3 stellar rotations,
which corresponds to 42.6 days for the star of our simulations.
Zanni & Ferreira (2013) reached stable equilibria after more than
50 stellar rotations, which corresponds to more than 250 days,
because their star rotated faster. Romanova et al. (2009, 2011)
reached stable equilibria after 500 days, which corresponds to
about 100 stellar rotations in their case. Thus, our method reduces
the relaxation timescale by a factor of 5–10. More recent simula-
tions of Ireland et al. (2021) achieved stable equilibria after 2 to 3
rotations of the central star. The reason probably is that they also
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included a stellar jet component with a high velocity, but very low
density. However, it should be noted that all other simulations use
smaller grids with lower resolutions (see the end of Sect. 2.4 for a
detailed comparison). Another reason for our shorter simulation
time may be that we started close to equilibrium because we used
the analytical solution as initial conditions.

By increasing the mass-accretion rate in our simulations, we
found two classes of solutions with different behaviors. Class 1
corresponds to lower mass-accretion rates and class 2 to higher
mass-accretion rates. For class 2, we have quasi-steady solu-
tions with magnetospheric ejections (Cases D, D.1, and D.2).
They are somewhat similar to the simulations presented by
Zanni & Ferreira (2013) and Romanova et al. (2009) with a con-
ical magnetospheric mass ejection, which removes some of the
angular momentum from the star and the disk. Class 1 is a new
type of steady simulations (cases A, B, C, C.1, and C.2) that are
different from those of Zanni & Ferreira (2013), Ustyugova et al.
(2006) and Romanova et al. (2009), but closer to the stellar jet
simulations of Matt & Pudritz (2005, 2008). Class 1 simula-
tions do not show episodic magnetospheric ejecta, but instead
a low-density channel separating the magnetospheric accretion
zone from the stellar jet. This may be due to the presence of a
strong stellar component. The low-density force-free region is
more pronounced for higher accretion rates such as case C than
cases A or B. However, the accretion rates in cases A and B are
very close to the stellar mass-loss rates (see Table 2). However,
these ratios close to one are not observed in YSOs, and we there-
fore did not apply these two cases to RY Tau.

Clearly, the transition from class 1 to class 2 is between
case C and case D, without a dead zone (see Fig. 2), between
case C.1 (Fig. 3) and case D.1 (Fig. 4) with a dead zone, and
between case C.2 (Fig. 3) and case D.2 (Fig. 4) with a dead zone
and an increased accuracy. There is a similar transition between
these two classes, regardless of the size of the dead zone and of
the inner boundary of the simulation. Table 2 shows that class 2
solutions only arise when the ratio of mass loss to mass-accretion
rate is lower than 0.11.

These two classes of solutions we found have similar mass-
loss rates. When we compared the two classes of solutions, we
obtained a stronger variation in mass-accretion rate than of mass
loss (e.g., cases C.2 and D.2 presented in Fig. 10), but from an
observational point of view, it would be very difficult two dis-
tinguish the two classes because the uncertainties on the mea-
surements of mass-loss rates and mass-accretion rates are much
higher than the differences found in our simulations.

Our two types of solutions can be compared to the propeller
regime versus conical wind regime observed by Ustyugova et al.
(2006) and Romanova et al. (2009) in their simulations. As
mentioned before, it is slightly different from our study.
Ustyugova et al. (2006) and Romanova et al. (2009) always had
magnetospheric ejection from the disk in the form of a massive
conical wind. Only in the propeller regime is there a strong axial
jet from the star because the rotation is strong and much closer
to the breakup velocity. This simulation therefore applies to fast-
rotating stars. As a consequence, the propeller and the conical
wind regimes cannot be observed simultaneously in a star, as the
stellar rotation evolves over thousands of years.

Zanni & Ferreira (2013) claimed in their conclusion that the
mass flux in their magnetospheric ejections is 1%–2% of the
mass-accretion rate. As we mentioned, the mass-loss rate in
the magnetospheric mass flux of D.2 varies up to 26% of the
mass-accretion rate, while the stellar mass-loss rate is of about
5%. Thus the ratio of the mass ejected from the magnetosphere
to the accreted mass on the start is comparable to the ratio
obtained in Zanni & Ferreira (2013) and also in Romanova et al.

(2009) A more detailed analysis of the magnetospheric ejecta
can be found in Romanova et al. (2011) and Ireland et al. (2021),
but the qualitative conclusions are identical for the comparison
with our simulations.

Our simulations do not differ from the analytical solution
for the stellar spin-down. The mass-loss rate and the angular
momentum flux extracted by the stellar jet are similar in the
analytical solution and numerical simulations. Using the method
explained Sauty et al. (2011), we calculated a braking time of
about 0.6 million year or even shorter. There are two main rea-
sons for this similarity between the analytical solution and the
numerical simulations. First, in Sauty et al. (2011), only the stel-
lar jet open field-line region was responsible for the stellar brak-
ing. Second, the inversion of the toroidal magnetic field, Bϕ, and
the poloidal velocity, VP, in the magnetospheric accretion zone
ensures that the total angular momentum flux on the star remains
positive, directed outward. Thus the disk effectively magneti-
cally brakes the star. In other words, the magnetospheric field-
lines exert an efficient disk-locking on the star. The end result is
that the stellar jet and magnetospheric accretion spin-down the
star in a similar way in our simulations. As in Sauty et al. (2011),
this gives a spin-down of less than one million years for the star,
which is well within the lifetime in the CTTS phase.

4.2. Comparison with observations of RY Tau

The literature contains many values for the mass loss and accre-
tion rates for RY Tau determined with different methods through-
out the years. The values for the mass-accretion rates vary
from 10−7.7 to 10−7.0 M� yr−1, while the mass-loss rate oscillates
between 10−8.8 and 10−7.1 M� yr−1 (Kuhi 1964; Edwards et al.
1987; Hartigan et al. 1995; Gómez de Castro & Verdugo 2001;
Agra-Amboage et al. 2009; Skinner et al. 2018).

In the following, we concentrate our discussion on cases C.2
and D.2 as they correspond to the most extended grids
and the highest resolution. The mass-loss rates for these
two cases do not deviate significantly from the value given
by Gómez de Castro & Verdugo (2001), 10−8.5 M� yr−1, for
the RY Tau microjet. Case C.2 agrees with the value of
10−7.7 M� yr−1 obtained by Mendigutía et al. (2011) for the
mass-accretion rates, and the results of case D.2 are within
the range of values derived by Costigan et al. (2014), namely
10−7.6−10−7.1 M� yr−1. The mass fluxes obtained in these two
classes of solutions are well within the measurement error bars
in any case, which means that it difficult to determine which case
fits the observations best.

Further constraints could be achieved by comparing the
ratio of the mass loss and accretion rates. For RY Tau,
Agra-Amboage et al. (2009) estimated values ranging from 0.02
and 0.4 and Hartigan et al. (1995) reported a ratio of 0.06. When
compared with our simulations, which show ratios of 0.13 and
0.05 for cases C.2 and D.2, respectively, the quasi-steady solu-
tion of case D.2 is consistent with the latter reference. The broad
range of values observed by Agra-Amboage et al. (2009) do not
allow us to distinguish between the two cases C.2 and D.2.

The maximum accretion velocities measured in the sim-
ulations are within the range of velocities mentioned by
Edwards et al. (1987), between 200 and 300 km s−1. As
mentioned, we retrieved projected velocities in the line of
sight of the observer of 162 km s−1 for case C.2, and 158 km s−1

for case D.2. Both values are compatible with the velocity of
−136 ± 10 km s−1 obtained by Skinner et al. (2018) from the
observation of the C IV line at a distance of 39 AU from the star.
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In a recent analysis of simultaneous spectral and photometric
observations carried out for 5 years, Petrov et al. (2019) found
that RY Tau has a bimodal behavior. For most of the time, the
star exhibited a variable outflow, although a period of quiescent
state was also observed. This latest state was observed for sev-
eral months, in which this star became fainter and less active
in outflowing activity. Conversely, periods of higher brightness
(lower circumstellar extinction) of RY Tau are correlated with
moments of increased outflow activity observed from the spec-
tral profile of Hα. Petrov et al. (2019) suggested that these out-
flows might be sporadic magnetospheric ejections that modify
the dusty disk wind geometry and therefore the brightness of the
star and spectral footprint. We propose that the steady configura-
tion of case C.2 may match the quiescent epoch of RY Tau and
the configuration of case D.2 may fit the active stage. We sug-
gest that the increase in the outflow intensity during the episodic
plasma ejections is a consequence of an increase in accretion, as
shown in the simulations from the transition of cases C.2–D.2.
Petrov et al. (2019) found that although the instant accretion rate
is highly variable, the average level does not change significantly
between the quiescent and the active regime. Unfortunately, the
mass-accretion rate transition between C.2 and D.2 in our simu-
lations falls within the uncertainty on the average observed mass-
accretion rate. We therefore cannot reach a definitive conclusion
for the case of RY Tau.

5. Conclusion

We used a pressure-driven outflow model with accretion imple-
mented in the closed magnetosphere to simulate the accretion
and outflowing environment of the intermediate-mass classical
T Tauri star RY Tau. Clearly, our best simulations correspond
to cases C.2 and D.2. The increase in velocity and density from
cases C.2–D.2 enables us to obtain higher accretion rates. Fur-
thermore, when we computed the ratios of ejected and accreted
material, the values of the two simulations are quite consistent
with the literature and support the observational evidence that
accretion dominates ejection.

Additionally, we were able to achieve a steady configuration
for class 1 solutions in 2.5 stellar rotations, in contrast to all pre-
vious simulations that did not take the coronal stellar wind prop-
erly into account. The more recent simulations of Ireland et al.
(2021) have a stellar jet component and comparable timescales.

Class 2 simulations present a more perturbed configuration
in which magnetospheric ejections propagate between the stellar
jet and closed magnetospheric regions. Although comparable,
the magnetospheric mass-loss rate does not dominate the stel-
lar mass-loss rate. Much higher accretion rates are needed for a
strong magnetospheric flow. The accretion velocities measured
for cases C.2 and D.2 seem to agree with observations, as do the
terminal velocities determined for the stellar jet.

We suggest that the classes of solutions obtained in this study
match the two behaviors observed for RY Tau in Petrov et al.
(2019). C.2 could match the quiescent epoch of RY Tau, charac-
terized by lower brightness, and D.2 could be linked to a more
active stage that is characterized by enhanced outflow activity.

In a future work, the analytical solution used in the sim-
ulations could be extended to another range of stellar radii
and masses in order to replicate the circumstellar environment
of other CTTS. We also started new simulations initiating the
disk wind solution with an analytical Blandford and Payne-type

solution (Blandford & Payne 1982). This is quite promising, but
the present work is an essential preliminary study before we pro-
ceed with more sophisticated models.
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