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Abstract

Advantageous (or propitious) selection occurs when an increase in the premium of an in-
surance contract induces high-cost agents to quit, thereby reducing the average cost among
remaining buyers. Hemenway (1990) and many subsequent contributions motivate its ad-
vent by differences in risk-aversion among agents, implying different prevention efforts. We
argue that it may also appear in the absence of moral hazard, when agents only differ in
riskiness and not in (risk) preferences. We first show that profit-maximization implies that
advantageous selection is more likely when markup rates and the elasticity of insurance
demand are high. We then move to standard settings satisfying the single-crossing prop-
erty and show that advantageous selection may occur when several contracts are offered,
when agents also face a non-insurable background risk, or when agents face two mutually
exclusive risks that are bundled together in a single insurance contract. We exemplify this
last case with life care annuities, a product which bundles long-term care insurance and
annuities, and we use Canadian survey data to provide an example of a contract facing
advantageous selection.
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1 Introduction

Since the classical contribution of Rothschild and Stiglitz (1976), most of the literature on

asymmetric information in insurance markets has highlighted the difficulties associated with

adverse selection. As is well-known, these difficulties include the under-provision of insurance,

and even sometimes a market breakdown, without trade at all (Hendren, 2013). By contrast,

the seminal paper by Hemenway (1990) argues that sometimes selection can be advantageous.

In such a case, insurers should be more eager to increase insurance provision, thereby yielding

very different market outcomes, as well as different testable predictions.

Hemenway (1990, 1992) and most subsequent papers (de Meza and Webb, 2001; Finkelstein

and McGarry, 2006; Cohen and Einav, 2007; Davidoff and Welke, 2007; Fang et al. 2008;

Wang et al. 2009; De Donder and Hindriks, 2009) envision advantageous selection as arising

from differences in risk-aversion among agents: more risk-averse agents buy more coverage, and

simultaneously exert more self-protection efforts, so that they may end up less risky overall.1

Our paper instead argues that advantageous selection may occur under various circumstances,

including regular settings where agents differ only in riskiness, exhibiting the same attitude

towards risk, and where moral hazard is excluded. To do so, we first have to provide a precise

definition for the type of selection.

Indeed, two definitions of selection can be drawn from the literature. Chiappori and Salanié

(2000) focus on testing for the existence of private information, and to do so they propose a

correlation test: under adverse selection, it is expected that riskier agents choose higher coverage,

thus yielding a Positive Correlation Property (PCP hereafter) between coverage and riskiness.

Conversely, a negative correlation (NCP) points toward the existence of advantageous selection.

Notice that such a test is global, and requires data about distinct populations of agents, each

buying a different contract. More recently, Einav and Finkelstein (2011) aim at estimating

welfare changes, and to do so they mostly focus on the case where only one insurance contract
1Hemenway (1990) makes a distinction between favorable and propitious selection, in that the latter is a

special case of the former. We use the word advantageous in this paper, noting that the recent literature uses
the terms advantageous, favorable and propitious interchangeably.
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is offered, to agents who are privately informed of their own exogenous riskiness. A change in

the contract premium then modifies the agents’ decision to insure, and therefore changes the

indemnities the insurer expects to pay. This article defines the type of selection by the sign of

the slope of the insurer’s average cost function: Advantageous selection occurs when “as price is

lowered and more individuals opt into the market, the marginal individual opting in has higher

expected cost than infra-marginal individuals” (p.124).2 This local definition thus only requires

data on a population of agents buying the same contract.

In this paper, we adopt this definition, because it is better tailored to the study of pricing

by the insurer. We also follow this paper by considering that adverse selection is a serious

impediment to the provision of insurance, while on the opposite advantageous selection tends

to favor over-insurance. Notice that these two definitions are strongly related, at least in this

one-contract setting with exogenous riskiness: in the case of advantageous selection, the local

definition states that lowering the premium attracts relatively more costly agents from the pool of

uninsured agents, so that the average cost among clients increases; while the negative correlation

property says that insured agents display on average lower costs than uninsured agents. This

intuition will however be shown to fail in richer settings with more than one contract.

We begin by noticing that in many theoretical approaches with two types of agents, perfect

competition or binding incentive constraints imply that demand functions are infinitely elastic,

even for small changes in the premium (see for example the analysis in de Meza and Webb

(2001), among many others). In Section 3, we adopt instead a general framework where demand

functions are continuous so that each insurer enjoys some degree of market power, and chooses

the premium to maximize the profit from the contract this insurer offers. A simple result follows.

A contract may face advantageous selection (using the marginal cost definition) only when the

premium markup over average cost, and the elasticity of demand for this contract, are high

enough. The first element points in the direction of market power. The second one means that
2Making the link with previous empirical investigations, they also note that “making inferences about marginal

individuals is difficult, however. As a result, the early empirical approaches developed strategies that attempt
to get around this difficulty by, instead, focusing on comparing averages”, and more precisely by “comparing
the expected cost of those with insurance to the expected cost of those without (or comparing those with more
insurance coverage to those with less coverage)” (p.127). We are thus back to the global correlation test.
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a significant fraction of consumers (presumably the high-cost consumers) do not enjoy much rent,

compared to other contracts, so that these consumers may leave en masse when the premium

is raised.

To which contract these consumers switch is in fact a key question. Section 4 studies a

classical model à la Rothschild-Stiglitz (1976), in which a single-crossing property ensures that

riskier agents end up with higher coverage. This means that in any case, the definition based

on a correlation between riskiness and coverage results in the impossibility of advantageous

selection (i.e., the PCP holds). We then observe that such a conclusion is not warranted when

one applies the marginal-cost definition to a given contract. Indeed, an increase in the premium

makes some agents quit, either to subscribe to a contract with less coverage (then these agents

must be relatively low-risk agents, according to the single-crossing property), or to a contract

with more coverage (for the relatively high-risks agents). The balance between these two opposite

effects is thus ambiguous, and so is the nature of selection. Hence, even in the most structured

case where coverage is positively correlated with riskiness, a contract may well face advantageous

selection. The global measure of selection (PCP) thus disagrees with the local test proposed by

Einav et al. (2011), due to the existence of both contracts with lower coverage (including the

absence of insurance), and of contracts with higher coverage.

We then explore more realistic settings with two exclusive risks in Section 5. Once more,

there is no moral hazard, and agents differ only through their riskiness, which is now a two-

dimensional variable. To avoid the effects described above, we only allow for one insurance

contract. We first assume that only one risk is insurable, while the other one is a non-insurable

background risk. As a consequence, when buying insurance for the first risk, a consumer should

take into account the fact that he pays the premium even in the state when the insurable risk did

not occur, while the background risk did. This reduces his willingness-to-pay for an insurance

contract covering only the first risk, and more so for an agent whose probability to face the

background risk is higher. Therefore, participation in an insurance contract depends on private

exposure to the background risk. We show by means of an example that agents with a high

probability to incur the insurable loss may choose not to insure, because they also display a
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high probability of the background risk. This proves that advantageous selection may occur

even when a single contract is offered, provided the correlation of the insurable risk with the

background risk is high enough.

In the same model, but allowing both risks to be insured, we also show how a contract

bundling together coverage against the two risks may face advantageous selection, even though

all contracts that would cover only one of these risks would face adverse selection. This leads to

the observation that issuing bundled insurance contracts may help insurers avoid the difficulties

associated with adverse selection.

Section 6 applies this idea to the bundling of longevity and Long-Term Care (LTC hereafter)

risks. Longevity risk is usually insured through annuity contracts, for which empirical studies

tend to support the existence of adverse selection.3 LTC corresponds to the risk of becoming

dependent at old age and of needing “day-to-day help with activities such as washing and dress-

ing, or help with household activities such as cleaning and cooking” (OECD, 2011). While this

risk realizes with high probability and implies significant expenses, most people choose not to

insure against it. OECD (2011) has estimated that only 2% of LTC expenditures are financed

by private LTC insurance (LTCI hereafter) in OECD countries, while the figure is 7% in the

US. This is what is often referred to as the LTCI puzzle. Adverse selection is often mentioned

as one reason why this market is so little developed.4 Notice that in both cases, moral hazard

can be assumed away, so that only riskiness matters.

We claim that proposing an insurance contract that would insure against both the longevity

and the LTC risks could alleviate simultaneously both adverse selection problems. Such a

contract was first proposed by Pauly (1990) who saw it as a way to foster the purchase of

LTCI in a context where individuals rationally decide not to buy LTCI. Such a contract has

then be referred to as a ‘life care annuity’ contract in Murtaugh et al. (2001) and Brown and

Warshawsky (2013), who see it as a way to alleviate underwriting problems (quite common on
3Some classical references are Finkelstein and Poterba (2002, 2004), and Rothschild (2009).
4On the LTC insurance puzzle and the importance of adverse selection, see among others, Pauly (1990), Sloan

and Norton (1997), Brown and Finkelstein (2007, 2009), Pestieau and Ponthiere (2012), Lockwood (2018) and
Boyer et al. (2019, 2020).
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the LTCI market) as well as adverse selection problems.5 Intuitively, agents with poor health

face high prices for LTC insurance, while they are less costly on the annuity side because of their

reduced life expectancy. The bundling of insurance would thus increase the participation of poor

health/low life expectancy individuals and reduce the extent of adverse selection. Our argument

is different since we argue that bundling could even generate advantageous selection. In fact,

using Canadian survey data we are able to recover the two-dimensional riskiness probabilities

for a dataset of 2.000 agents, and under reasonable assumptions on preferences we exhibit an

example of a bundled contract displaying advantageous selection.

2 Framework and definitions

In this section, we describe a general insurance economy with hidden types. As discussed above,

we depart from most of the existing literature by providing rationales for advantageous selection

which do not hinge on moral hazard.

Consider a fixed population of observationally identical consumers. Each consumer faces a

risk, which is represented by a stochastic, individual-specific state of the world, whose realization

is public. An insurance contract is a premium P ≥ 0 to be paid upfront, and an indemnity

function I(.), which specifies the amount to be paid as a function of the realization of the state.

Each consumer is endowed with a private information α, that may bear both on his pref-

erences and riskiness, and whose distribution in the population is known.6 An individual with

type α who buys the contract (P, I(.)) obtains a payoff V (P, I(.), α), and for the moment we only

assume that this payoff is decreasing with the premium P . The insurer’s revenue is P , minus the

cost associated to the payment of indemnities that we represent as a function c(I(.), α). Notice

that a consequence of excluding moral hazard is that this cost does not depend on P .7

As an illustration, in the Rothschild-Stiglitz (1976) model, agents face a binomial risk on

their wealth and differ through their riskiness α distributed on [0, 1]. Then, an insurance contract
5Ameriks et al. (2011) provides survey evidence of a significant potential demand for such a product.
6From Section 4 on, we assume that agents differ only in riskiness.
7Moral hazard would re-introduce P as an argument of c, either because the agent’s choice of effort may be

impacted by the value of the premium through wealth effects, or – more perversely– because the agent may be
indifferent between several effort levels and may change his selection as a function of the premium.
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is simply a pair (P, I), and payoffs and costs are:

V (P, I, α) = αu(w − L+ I − P ) + (1− α)u(w − P )

c(I, α) = αI,

where w is the initial wealth level, L is the loss, and u(.) is an increasing and concave function. By

contrast, our general framework encompasses in addition non-expected utility, multiple states,

or general cost functions.

The market situation we consider throughout the paper is as follows. The focus is on a partic-

ular contract (P, I(.)), while other available contracts (Pj , Ij(.))j∈J are fixed. A consumer with

type α will select the contract under study if and only if the following participation constraint

holds:

PC(α) : V (P, I(.), α) ≥ max
j∈J

V (Pj , Ij(.), α).

This inequality defines a set of subscribers, together with the subscribers’ distribution of

types. If this set is nonempty, and ignoring ties, we can define the insurer’s average cost for this

contract as a function

AC(P, I(.), (Pj , Ij(.))j∈J) = E[c(I(.), α)|PC(α) holds],

where the expectation is taken over the set of types. Because the emphasis will be put on

changes in the premium P , we shall often omit arguments and use the lighter notation AC(P ).

As in Einav et al. (2010a) and Einav and Finkelstein (2011), we adopt the following definition:

Definition 1 A contract (P, I(.)) is said to face adverse selection when AC(P ) is increasing

with P , while it faces advantageous selection when AC(P ) is decreasing with P .

These definitions formalize the idea that a change in premium affects the composition of the

pool of subscribers, in a manner that may harm or benefit the insurer. In fact, in the absence of

moral hazard this composition effect is the unique channel through which a change in premium

has some impact on the expected cost of the contract.8

8Interestingly, the survey in Einav et al. (2010b) allows for moral hazard, but uses a different definition:
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As recalled in the Introduction, Hemenway (1990, 1992) and many subsequent works single

out a rationale for advantageous selection which relies on agents having different attitudes to-

wards risk, and choosing both their coverage and their prevention effort. The driving force is

that more risk-averse agents choose both a higher coverage and higher prevention efforts, and it

may be that this second effect is strong enough to reduce the riskiness of insured agents below

that of uninsured agents. Accordingly, the nature of selection is an empirical question, and the

test these works use is based on the correlation between riskiness and coverage. This positive

correlation property (PCP, see Chiappori and Salanié (2000)) states that riskier agents buy more

coverage, and it is often a consequence of well-structured theoretical models à la Rothschild-

Stiglitz (1976). Chiappori et al. (2006) use a revealed preference argument to show that a

similar property also obtains in very general models, provided profits are non-increasing with

coverage. As underlined in de Meza and Webb (2001), a negative correlation property (NCP)

may also appear in a competitive equilibrium when administrative costs are significant.

From an empirical viewpoint, our definition focuses on a single contract, but requires to

estimate how demand changes as a function of the premium; while the correlation test requires to

collect data for at least two contracts (or to compare the population of insured to the population

of uninsured agents). As mentioned in the Introduction, Einav and Finkelstein (2011) argue

that both definitions are equivalent in the specific setting they study, where AC(P ) is assumed

monotonic in P .

In the next section, we study the case of a profit-maximizing insurer facing a continuous

insurance demand and we relate advantageous selection to the equilibrium markup and elasticity

for the contract proposed.

There is adverse selection if AC(P ) is greater than the average cost of insuring the whole population with the
contract (P, I(.)), assuming that each agent would select the optimal effort under that contract. This definition
has the drawback of requiring a precise knowledge of the whole population, while the definition we use allows
to only consider the effects of an increase in the premium of a contract on the population of subscribers to this
contract.
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3 Advantageous selection and profit maximization

Many theoretical analyses of insurance markets assume a discrete set of types, together with

perfect competition in prices. This implies that equilibrium incentive constraints bind for a

nonzero fraction of consumers, leading to discontinuous demand functions.9 Maybe more realis-

tically, we assume in this Section that the insurer offering the contract under study enjoys some

market power, so that he faces a continuous demand function D(P ), equal to the measure of

agents for whom the participation constraint PC(α) holds. Assuming differentiability, we define

the demand elasticity, ε, as usual:

ε(P ) = −PD
′(P )

D(P )
> 0,

with D′(P ) < 0. Then, the insurer’s profits are

Π(P ) = (P −AC(P ))D(P ).

Assuming that the insurer sets the premium to maximize profits from this contract, the first-

order condition is

Π′(P ) = (1−AC ′(P ))D(P ) + (P −AC(P ))D′(P ) = 0.

Advantageous selection occurs when AC ′(P ) < 0. Replacing in the above condition, this yields:

ε(P )
P −AC(P )

P
> 1.

Result 1 When the insurer enjoys market power on a given insurance contract, advantageous

selection requires that the product of the markup rate above average cost, and of the elasticity of

demand for this contract, be above one.

Advantageous selection is thus more likely to appear when competition is weak and when

high-cost consumers derive few benefits from the contract, so that they are ready to quit en masse

as soon as the premium increases. It is interesting to note that such a result can only arise when
9This property indeed holds for equilibria in Rothschild and Stiglitz (1976) or de Meza and Webb (2001).
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profits are positive; if they are zero, then the first-order condition for profit maximization implies

AC ′(P ) = 1, and one must conclude to the presence of adverse selection. Finally, the first-order

condition itself need not hold if the insurer optimizes profits jointly over the multiple contracts

it offers, and it is meaningless if demand is discontinuous at P ; in the latter case, a precise study

of incentive constraints is needed.

In any case, whatever the market structure, a study of selection requires to know who the

consumers are, and to which other contract they switch. This is what we intend to do in the

next sections. We make no specific assumption regarding competition in the insurance market

and rather look at the conditions under which advantageous selection (as given by Definition 1)

occurs for a given set of insurance contracts. The next section studies the important class of

settings where the single-crossing condition holds, implying that the PCP also holds, and shows

that advantageous selection may nevertheless occur when several contracts are offered.

4 Advantageous selection when the single crossing property
holds

We now focus on a particular class of settings that have been widely used in the literature in

order to study the effects of adverse selection. In the Rothschild and Stiglitz (1976) model,

agents differ only in riskiness, and those with a higher probability of loss are more costly to

the insurer. For the same reason, they are also more eager to buy more coverage. This single-

crossing property creates a rich structure. For a given set of insurance contracts, the subscribers

of each contract form an interval of risk types, and these intervals are ordered by coverage so

that the PCP necessarily holds.

We first show that this structure also arises in equilibrium for a much more general class of

models. Formally, consider the case where α is unidimensional, with a differentiable distribution

F on the interval [0, 1]. Suppose that consumers face a monetary risk L continuously distributed

over some interval, and that higher types face a higher risk, in the sense of the Monotone

Likelihood Ratio Property (MLRP herafter).10 Each agent is an expected utility maximizer,
10This property expresses that the ratio of conditional densities g(L|α′)/g(L|α) is increasing in L when α′ > α,
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and gets the payoff

V (P, I(.), α) ≡ E[u(w − P + I(L)− L)|α]

when he subscribes to the insurance contract (P, I(.)). Note that all agents share the same

utility function, and thus the same risk attitude.

As in Chiappori et al. (2006), we assume that available contracts specify indemnity functions

I(.) that are increasing with the loss, and in addition that the amount which is not covered

increases with the loss, i.e., L − I(L) is increasing with L (for example, because one does

not want the agent to hide the true extent of their losses). Finally, we assume that available

contracts can be ranked by coverage, in the following sense: a contract (P2, I2(.)) covers more

than a contract (P1, I1(.)) if and only if the difference I2(L) − I1(L) is increasing in L. Many

classes of real-life contracts satisfy these requirements, for example contracts with deductibles

(I(L) = max{L−D, 0}), or co-insurance contracts (I(L) = δL, δ < 1).

Our last assumption is that the individual cost function c(I(.), α) increases with the expected

payment E[I(L)|α]. Then MLRP yields two properties. First, higher types are more costly to

insure. Second, if a type prefers a contract that covers more to a contract that covers less, then

so do all higher types.11 This single-crossing property implies that the population of types is

segmented in intervals, with higher (and thus costlier) types choosing contracts with higher cov-

erage. This generalized model thus yields the same market structure as the Rothschild-Stiglitz

model, and this implies that the PCP holds, for every pair of contracts.

The set of subscribers to a contract (P, I(.)) thus forms an interval of types [α(P ), α(P )].

Notice that the lower bound, α(P ) is increasing with P , while the upper bound, α(P ) is de-

creasing with P . Indeed, when P increases, low-risk agents prefer switching to a contract with

less coverage, and high-risk agents to one with more coverage.

Consider first the particular case where only one contract is offered on the market. This

thus making higher losses more likely for higher types.
11A proof of this result is provided in Appendix.
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contract attracts all types above the threshold α(P ), so that α(P ) = 1, and we obtain

AC(P ) =

∫ 1

α(P )
c(I(.), α)dF (α)

1− F (α(P ))
.

In this case, adverse selection must prevail: the marginal consumers who leave when the

premium is increased are those consumers with the lowest types α(P ), and these types display

the lowest cost among all subscribers. Indeed, one easily shows that the derivative AC ′(P ) has

the sign of

f(α(P ))α′(P )[AC(P )− c(I(.), α(P ))],

which is nonnegative.

However, in the more general case where several contracts are offered, there might exist

a contract offering a higher coverage, and in that case the upper bound α(P ) is not trivial

anymore. Then we have

AC(P ) =

∫ α(P )

α(P )
c(I(.), α)dF (α)

F (α(P ))− F (α(P ))
,

and we get that the derivative AC ′(P ) has the same sign as

f(α(P ))α′(P )[AC(P )− c(I(.), α(P ))] + f(α(P ))α′(P )[c(I(.), α(P ))−AC(P )]. (1)

An increase in P now has two effects. Marginal subscribers with the lowest types decide to

migrate to a contract with a lower coverage (the first term above), while marginal subscribers

with the highest type instead migrate to a contract with higher coverage (the second term). The

sum of these effects is ambiguous, as α′(P ) ≤ 0 ≤ α′(P ).12 Once more, the nature of selection

appears to be more an empirical question than a theoretical one.

To summarize, we have shown that adverse and advantageous selection are mirror images

of each other. They appear simultaneously, for each contract, as soon as the set of contracts is

sufficiently rich. The assumptions we made in this section are often said to formalize the idea of

adverse selection – but in fact they generate advantageous selection as well. At the extremes, the
12Even when postulating uniformly distributed types and costs c(I(.), α) linear in α, expression (1) only tells

us to check the sign of α′(P ) + α′(P ). Despite these strong assumptions, this sign still depends on detailed
properties of neighboring contracts and remains ambiguous.
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contract with the lowest coverage (maybe the null contract) must exhibit advantageous selection,

while the contract with the highest coverage must exhibit adverse selection; in between, the

nature of selection depends not only on costs, preferences, and the distribution of types, but

also on the presence and characteristics of other contracts.

Result 2 Under single-crossing, advantageous selection may arise when there exists an alter-

native insurance contract offering higher coverage.

5 Advantageous selection, background risk and bundling

In this section, we explore two other possible sources of advantageous selection, namely the

existence of a background risk, and the bundling of two risks into a unique insurance contract.

Once more, this exploration will be conducted in a standard framework, with agents privately

informed of their riskiness. Given the previous result, we also assume that there are no other

contracts available on the market, so that a result of advantageous selection cannot be attributed

to the existence of alternative contracts providing higher coverage.

5.1 The setting

For each agent, there are three mutually exclusive individual states of the world, labelled 0,

1 and 2. An agent ending up in state i incurs a monetary loss equal to Li, with L0 = 0 so

that state 0 is the state without loss. An agent’s type α = (α1, α2) specifies the probabilities of

ending up in state i = {1, 2}, with α1+α2 < 1. Types are distributed in the population of agents

according to a c.d.f. F . An insurer proposes to these agents a single contract (P, I1, I2). If an

agent of type (α1, α2) buys it, then the insurer’s cost is simply the expectation of indemnities

paid:

c(I1, I2, α) = α1I1 + α2I2,
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and the expected utility of an agent with initial wealth w is13

V (P, I1, I2, α) = α1u(w − L1 + I1 − P ) + α2u(w − L2 + I2 − P ) + (1− α1 − α2)u(w − P ).

where u is strictly increasing and strictly concave in income, and is the same for all agents.

5.2 Background risk

One intriguing question is whether advantageous selection can occur for contracts that cover a

single risk, say the risk of being in state 1, while individuals face also a second uninsurable risk

(equivalently, a background risk), say risk 2. Thus, consider the contract (P, I1, 0). A type α

buys this contract if and only if V (P, I1, 0, α) ≥ V (0, 0, 0, α), or equivalently

α1u(w − P − L1 + I1) + α2u(w − L2 − P ) + (1− α1 − α2)u(w − P )

≥ α1u(w − L1) + α2u(w − L2) + (1− α1 − α2)u(w).

This participation constraint can be rewritten as

α1u(w − P − L1 + I1) + (1− α1)u(w − P ) ≥ α1u(w − L1) + (1− α1)u(w)

+ α2[u(w − L2)− u(w − L2 − P )− (u(w)− u(w − P ))].

We recognize on the first line the usual trade-off associated to the risk α1 of a single loss L1,

but on the second-line an additional term appears. The bracketed expression turns out to be

positive under risk-aversion, and is increasing in P . This means that a higher α2 makes the agent

more reluctant to participate, and more sensitive to an increase in the premium. Intuitively,

because risks are exclusive, the only impact of the background risk is to increase the utility

cost of paying the contract premium. This simple observation means that even in the case of a

contract that covers only one risk, the participation frontier is not trivial.

We now show that this contract may face advantageous selection, even though it is the

only contract on the market. Consider the simple case of full coverage: I1 = L1. Then the
13In this section, we abstract from the possibility of state-dependent preferences as our rationale for the

emergence of advantageous selection is orthogonal to this issue. In Section 6, we consider state-dependent
preferences because they seem indispensable when modeling the risk of death.
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participation constraint can be rewritten as

bα1 − a ≥ α2,

where

a =
u(w)− u(w − P )

u(w − L2)− u(w − L2 − P )− (u(w)− u(w − P ))
> 0

b =
u(w)− u(w − L1)

u(w − L2)− u(w − L2 − P )− (u(w)− u(w − P ))
> 0.

where a may increase or decrease with P (because of wealth effects) while b decreases with P .

This participation frontier is represented in the space of types in Figure 1 by an ascending solid

line. Agents with types (α1, α2) above the frontier prefer not to buy the contract while those

with types below do. The descending solid line is the line α2 + α1 = 1, that constrains feasible

types. The bottom triangle is thus the set of subscribers to the contract under study.

-
α1

6

α2

0 1

1
R

R x•

y
•

Figure 1: Advantageous selection with a background risk

Note: Types in the bottom triangle buy the contract; the dotted line is an iso-cost curve.

To illustrate our argument, consider the special case where types take only two values x and

y, as shown in the figure. The iso-cost curve corresponding to the average cost is the vertical

dotted line, with an equation given by

AC(P ) = E[α1I1|bα1 − a ≥ α2].
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Being an average cost, it must thus lie in between x and y, as shown on Figure 1. An increase in

P then translates the ascending solid line in the direction of the arrows, into a new ascending line

(it is parallel to the initial line under constant absolute risk-aversion). One sees on Figure 1 that

this move indeed induce type y agents to quit buying the contract because their high probability

of a background risk reduces their willingness-to-pay for insurance, while type x agents choose

to stay. In this case, an increase in P leads to a reduction in AC(P ), and advantageous selection

occurs.14 We have shown the following result:

Result 3 The presence of a background risk makes advantageous selection possible, even in the

simple case of an insurance contract designed to cover only one risk.

Note that the introduction of the background risk L2 is the only difference with the Rothschild-

Stiglitz model. To check for the role of correlations in the above result, one has to carefully

distinguish two notions. We assumed that the two risks were exclusive, and thus a strong form

of negative correlation between losses. Alternatively, one could assume that the two losses are

independent, thus creating four different states of nature instead of three. It can be shown that

under constant absolute risk-aversion, the new participation constraint is independent from the

value of α2, and therefore that we are back to a standard model where adverse selection must

hold; taking wealth effects into account considerably complicates the picture, and we will not

follow this avenue further. Going back to our case where risks are exclusive, one sees from the

above reasoning that a form of positive correlation between riskinesses has to hold for advanta-

geous selection to prevail: when the premium is increased, agents with high values for α1 are

the first to leave because they also display high values for α2, and thus are more sensitive to

this increase in the premium.

5.3 Contract bundling

Let us now study whether advantageous selection may occur when both risks are insured through

a single contract. We proceed step-by-step.

14The NCP holds for sure in the final situation, as riskier types are not covered anymore. The correlation
property thus agrees with our definition in this very specific case.
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Participation and expected cost under bundling A bundling contract (P, I1, I2) provides

insurance against both risks. We therefore assume I1, I2 > P > 0. An agent of type (α1, α2)

buys the contract if and only if V (P, I1, I2;α) ≥ V (0, 0, 0;α), or equivalently

PC(α) : α1A1 + α2A2 ≥ H,

where

H = u(w)− u(w − P ) > 0

can be interpreted as the utility cost of the premium in the absence of loss, while

Ai = u(w − Li + Ii − P )− u(w − Li) +H > 0 i = 1, 2 (2)

adds to H the utility gain from being insured when state i realizes. Note that A1, A2 and

H are independent of the agent’s type. Figure 2 represents this set of types, whose frontier is

the solid line α1A1 + α2A2 = H. Agents whose type lies above the frontier buy the insurance

contract (P, I1, I2), while types below the frontier do not. Because agents dislike increases in

the premium, such an increase must shift the frontier upwards, meaning that both H/A1 and

H/A2 must increase with P ; this is readily verified using the above formulas.

Moving to the insurer’s side, an iso-cost curve is α1I1 + α2I2 = c for some constant cost c.

One of these iso-cost curves is represented by the dotted line in Figure 2. Note that there is

no a priori reason why iso-cost and participation lines should have the same slope, a point on

which we shall come back soon. Finally, the expected cost of the contract is

AC(P ) = E[α1I1 + α2I2|PC(α) holds]. (3)

Necessary conditions for the existence of advantageous selection Advantageous se-

lection necessitates that an increase in the premium lead some high-cost types to unsubscribe.

These marginal subscribers’ types must thus belong to the participation frontier, with individual

costs c(I1, I2, α) above the average cost AC(P ). At this point, essentially two cases may occur.

It may be that all types on the participation frontier have the same cost. In that situation,

the slope of the participation frontier equals the slope of an iso-cost curve, i.e., I1/I2 = A1/A2.
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Figure 2: Advantageous selection under contract bundling
Note: Types above the solid line buy the bundling contract; the dotted line is an iso-cost curve.

In this case, all types above the frontier display a higher cost than those at the frontier, and the

iso-cost corresponding to the average cost AC(P ) must also lie above the participation frontier.

Then advantageous selection cannot occur: an increase in P moves the participation frontier

upward and all consumers who stop buying the contract are the lowest cost ones.

Alternatively and generically, types on the participation frontier may exhibit different costs.

To fix ideas, suppose that the participation frontier is steeper than iso-cost curves, i.e., I1/I2 <

A1/A2, which is the case illustrated on Figure 2 (the opposite inequality would define a symmetri-

cal case and would be dealt with similarly). Then, individual costs decrease when one goes down

the frontier, from the northwest to the southeast. A necessary condition to obtain advantageous

selection is that the highest cost on the frontier (which equals α2I2 at (α1, α2) = (0, H/A2)) is

larger than AC(P ). Since AC(P ) is an average cost, the corresponding iso-cost line must lie

above the one representing the lowest cost in the population of subscribers, which is also the

lowest cost on the frontier (which equals α1I1 at (α1, α2) = (H/A1, 0)). Therefore, a necessary

condition for advantageous selection to occur is

I1
A1

<
AC(P )

H
<

I2
A2

. (4)

Moreover, if the premium increases, some agents decide not to buy the contract anymore, and
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the participation constraint moves upward. For advantageous selection to arise, an additional

necessary condition is that the measure of agents exiting the market to the left of the intersection

of the iso-cost and the frontier (that is, with costs above the average) be sufficiently large

compared to the measure of agents exiting the market to the right of the intersection (with costs

below the average).

Existence of advantageous selection under full insurance We now provide a simple

example to show that advantageous selection may indeed occur. To do so, we assume full

insurance for both risks (I1 = L1 and I2 = L2), so that we now have

Ai = u(w)− u(w − Li), i = 1, 2 H = u(w)− u(w − P ).

In particular, the slope of the participation frontier A1/A2 becomes independent of P . This is

also the case for the slope of the iso-cost curve which now equals L1/L2. It is interesting to note

that, due to risk-aversion, the ratio

Ai
Li

=
u(w)− u(w − Li)

Li
(5)

is increasing in Li. Therefore, when L1 = L2 the two slopes are equal, and advantageous selection

cannot occur, as already observed. In fact, in such a situation, we are back to a Rotschild-Stiglitz

model with one contract covering against a single loss that realizes with probability α1 + α2.

Assume now L1 > L2. Since Ai/Li increases with Li, the slope of the participation frontier

is larger (in absolute value) than the slope of the iso-costs, as in Figure 2, and therefore the

highest-cost types on the participation frontier are those with a type close to (0, H/A2). We

obtain the paradoxical result that, although the indemnity is larger for the first loss than for the

second one (since I1 = L1 > I2 = L2), the minimum cost for the insurer on the participation

frontier is attained for a type with a high probability of the largest loss (i.e. α1 = H/A1). The

intuition for this result comes from the behavior of agents. Since L1 > L2, insurance against

state 1 is more valuable to agents than insurance against state 2. This translates into a smaller

participation threshold (i.e., minimum risk αi to buy the insurance contract) for contract 1 (i.e.
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H/A1 < H/A2). Due to risk-aversion, this effect on the loss probability for the insurer more

than compensates for the higher loss L1.

We now propose a distribution of types under which adverse selection holds for every unbun-

dled contract of the form (P, I1, 0) or (P, 0, I2), while advantageous selection occurs for at least

one bundled contract. Consider the case where a proportion 1/2 of agents face only risk 1, with

a loss probability α1 uniformly distributed on [0, 1]; and the other half face only risk 2, with α2

also uniformly distributed. Then only agents in the first group may be attracted by a contract

(P, I1, 0), and this simple structure à la Rothschild-Stiglitz immediately implies that adverse

selection must prevail for such a contract; and similarly for contracts of the form (P, 0, I2).

There remains to show that advantageous selection may happen for some full-insurance

contract (P,L1, L2). We need participation from both groups, so let us set P so that P < L2 <

L1, or equivalently H < A2 < A1. Then the average cost is

AC(P ) =

∫ 1
H
A1

α1L1dα1 +
∫ 1

H
A2

α2L2dα2∫ 1
H
A1

dα1 +
∫ 1

H
A2

dα2

.

Result 4 One can find a Constant Relative Risk Aversion utility function and parameters

(w,L1, L2) such that AC(P ) is decreasing on a non-empty interval of values of P , for the full

insurance contract (P, I1 = L1, I2 = L2).

A constructive proof with a relative risk aversion equal to 2 is provided in the Appendix.

6 The life care annuity market

We now switch to the study of a practical case where bundling different risks into a single

contract may create advantageous selection. These two risks are the longevity risk, and the

LTC risk. In what follows, we distinguish three exclusive states of nature: state 0 corresponds

to a short life; state 1 is associated to a long life with bad health, during which costly LTC

is needed; finally, state 2 is associated to a long and healthy life, with intermediate needs for

higher revenues.
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Data come from a survey conducted in 2016 on 2,000 respondents aged 50 to 70, from

Ontario and Québec, representative of the older population in these two provinces.15 The survey

includes many socio-demographic and health information about each participant. A health

microsimulation model (COMPAS) provides estimates of personalized lifetime exposure to death

and disability (Boisclair et al., 2016) from socio-economic and health individual characteristics.

This microsimulation model estimated the individuals’ probability to be alive at 85 years old

as well as the probability of ever entering a nursing home. This enabled us to recover the type

(α1, α2) of each individual since the probability to be alive at 85 corresponds to α1 + α2 while

the probability of entering a nursing equals α1. The probability of dying before age 85 is then

given by 1− α1 − α2. Figure 3 represents this cloud of 2,000 points in the type space. We also

present descriptive statistics in Table 1.

Figure 3: Probability distribution of (α1, α2).

Interestingly, the figure allows to distinguish two groups. The lucky group in the Northwest

displays a high probability α2 of good health; while the other (unlucky) group displays a high

risk of needing LTC (a high α1). Note that the correlation coefficient between α1 and α2 is
15Data are available at https://dataverse.scholarsportal.info/dataset.xhtml?persistentId=doi:10.

5683/SP2/PP5U7Y. To correct for the under- or overrepresentation of some socio-demographic groups in the
sample, we reweighed the data using the Labor Force Survey of 2014. More details about this survey are given
in Boyer et al. (2019, 2020).
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α1 α2 1− α1 − α2

mean 0.262 0.386 0.352
std 0.112 0.16 0.119
min 0.055 0.000 0.125
max 0.523 0.698 0.938

Table 1: Distribution of types for the 2,000 individuals.

equal to −0.67. This suggests that those agents who need LTC do not have a high demand for

annuities which are served only in good health, and vice-versa. For each risk insured separately,

we thus expect adverse selection to prevail, as it is a one-dimensional risk without moral hazard,

and the correlation of riskinesses is negative (see our comments at the end of subsection 5.2).

Recall that the three possible states of the world correspond to early death (state 0), depen-

dency (state 1), and good health (state 2). Then the loss L2 in state 2 can be construed as the

income needed when alive (and, hence, justifying the buying of annuities), while L1−L2 > 0 can

be seen as the cost of LTC services. A life care annuity contract (P, I1, I2) consists in providing

an annuity I2 together with LTC insurance coverage (I1 − I2 > 0). For an agent with income w

and type α = (α1, α2), the expected utility from buying this contract is

V (P, I1, I2, α) = α1u(w − L1 + I1 − P ) + α2u(w − L2 + I2 − P ) + (1− α1 − α2)v(w − P ),

where we assume the same utility function u(x) when alive (whenever dependent or not), but a

different utility function v(x) when dead.16

Using this model, we now show that it is possible to design life care annuity contracts with

advantageous selection by bundling together the risk of a long life under good health, and the

risk of becoming dependent. In this numerical exercise, we assume the following functional forms

and parameter values:

u(x) =
x1−ε

1− ε
, v(x) = βu(x)

where we set β = 0.8 and ε = 0.8.17 The utility of leaving a bequest is thus smaller than
16This function v(x) can be seen as a "joy of giving" utility–i.e., the individual derives utility from leaving

some bequests in case of death. The modeling is similar, for instance, to Glomm and Ravikumar (1992), Kopczuk
and Lupton (2007), Piketty and Saez (2013) and Fleurbaey et al. (2022).

17Assuming a coefficient of relative risk aversion (i.e. ε) smaller than one is supported by empirical evidence
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the utility of consuming the same amount when alive. In our sample, the average income is

107, 000 CAD with median 72, 000 CAD, so we have set w = 100, 000 CAD, L1 = 87, 000 CAD,

L2 = 55, 0000 CAD.

Figure 4 is the simulated equivalent of Figure 2 in Section 5.3, for a premium P = 57, 850CAD.

In the figure, the blue line represents the participation frontier and the dotted line represents the

iso-cost line corresponding to the average cost AC(P ). In this example, the necessary condition

for advantageous selection (4) is satisfied since the participation frontier has a steeper slope than

the iso-average-cost line, and since both intersect. Orange dots account for agents choosing not

to buy the contract, while green dots represent individuals buying the contract.

Note: the intersection arises at (0.183, 0.618).

Figure 4: Advantageous selection

For this contract, we find that a local increase in P lowers the average cost of the contract,

generating advantageous selection. When P increases, some individuals located on or immedi-

ately above the participation frontier stop buying the contract. Note that the isocost curves

are flatter than the participation constraint in the (α1,α2) space. As P increases, two groups of

agents stop buying the contract. The first group (located to the left of the intersection between

(see for instance, Karagyozova and Siegelman, 2012; Holt and Laury, 2002; Chetty, 2006). Assuming different
values for β and ε does not qualitatively change our results.
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the two lines) has a large probability of remaining healthy but a probability to need formal LTC

low enough to induce them to stop buying the bundled contract. The second group (located

to the right of the intersection) exhibits a large LTC risk, but a probability of a long healthy

life small enough that they quit buying the more expensive contract. The former group (made

of agents with a larger-than-average cost among contract buyers) is large enough compared to

the latter (with lower-than-average cost) that the average cost of the contract decreases when

its price is increased. Advantageous selection may then occur when bundling the longevity and

LTC risks within life care annuities. Note that this argument necessitates a negative correlation

between the longevity risk and the LTC risk, so that, as we just described the agents who are

more (resp. less) costly on the annuity side of the contract are also less (resp. more) costly on

the LTC side of the contract.

7 Conclusion

In this paper, we propose several novel rationales for advantageous selection. If the demand

for a specific insurance contract is continuous in its price, we show that advantageous selection

requires that the equilibrium markup and the price elasticity of demand be large enough. We

then study a large class of environments where the single-crossing property implies the positive

correlation property, and show how adverse and advantageous selections are mirror images of

each other. More precisely, when several contracts are offered, the increase in the price of a

single contract induces both low-cost and high-cost agents to stop buying this contract, so that

the type of selection at equilibrium is essentially an empirical question. Finally, we study an

environment with two mutually exclusive risks, and show that advantageous selection may arise

either when one risk is a background, uninsurable one, or when the two risks are bundled into

the same contract. The necessary condition for advantageous selection to arise has a simple

geometrical interpretation, stating that the iso-preference curve (delineating the set of buyers

from non buyers) has to intersect the iso-average-cost line in the probabilities space. We then

provide two numerical examples showing that advantageous selection can indeed occur, the first
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based on the simplest setting (uniform probability distributions of perfectly negatively correlated

risks) and the second obtained from a Canadian survey covering the survival and long-term care

risks.

These results show that advantageous selection may appear in various settings without moral

hazard, when agents only differ in their riskiness, and not in their attitude toward risk. This is

due to a composition effect: the set of clients to a contract changes as the premium changes,

in ways that are specific to each situation. This effect is also impacted by the presence of

market power, and by the existence of contracts offering higher coverage. Therefore, the nature

of selection is likely to remain an empirical question, in particular when it comes to bundling

different risks. Our study of this complicated geometry opens up the possibility of building new

contracts for which issues associated with adverse selection are alleviated or even annihilated,

and that would fare better on markets plagued by asymmetric information.
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Appendix

A study of the single-crossing property in Section 4

Let α < α′, and consider two contracts (P1, I1(.)) and (P2, I2(.)). Define wi(L) = w − Pi −

L+Ii(L). If the second contract covers more, then there exists L0 such that u(w2(L))−u(w1(L))

is at most zero when L < L0, and is at least zero when L > L0. Then the difference in payoffs

for type α′ ∫
L

[u(w2(L))− u(w1(L))]dG(L|α′)

can be split in two integrals∫
L<L0

[u(w2(L))− u(w1(L))]
g(L|α′)
g(L|α)

dG(L|α) +

∫
L>L0

[u(w2(L))− u(w1(L))]
g(L|α′)
g(L|α)

dG(L|α).

Recall that MLRP states that the ratio of densities is increasing with L. Therefore, because

u(w2)− u(w1) changes sign at L0, this expression is at least g(L0|α′)/g(L0|α), times∫
L<L0

[u(w2(L))− u(w1(L))]dG(L|α) +

∫
L>L0

[u(w2(L))− u(w1(L))]dG(L|α),

which is the difference in payoffs for type α. This proves that if α prefers the second contract

to the first, then so does α′, as announced.

Proof of Result 4: We have

AC(P ) =
1

2

L1(1− ( HA1
)2) + L2(1− ( HA2

)2)

1− H
A1

+ 1− H
A2

=
1

4
(L1 + L2)

1− bH2

1− aH
,

where

a =
1

2
(

1

A1
+

1

A2
) ∈ [

1

A1
,

1

A2
] b =

1

L1 + L2
(
L1

A2
1

+
L2

A2
2

).

Since H = u(w)−u(w−P ) is an increasing function of P , and the Ai = u(w)−u(w−Li), i =

1, 2, do not depend on it, we directly differentiate with respect to H to get that AC ′(P ) has the

same sign as

− 2bH(1− aH) + (1− bH2)a = −2bH + abH2 + a. (6)
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This expression is decreasing in H for H < 1/a, which holds since H < A2 < A1. Therefore,

if the derivative of the average cost is negative at H = A2, then it is negative on a nonempty

interval [H0, A2], where H0 is the smallest solution to equation (6). There remains to provide a

numerical example. Take for example a CRRA function with relative risk-aversion equal to 2,

and the following parameters:

u(x) = −1/x,w = 10, L1 = 9, L2 = 7.

Then we obtain

A1 = 0.9, A2 = 0.233, a = 2.698, b = 8.73

and the derivative (−2bH + abH2 + a) is negative for H ∈ [0.22, 0.2333], or equivalently for

P ∈ [6.871, 7].
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